Noether's problem and unramified Brauer groups (joint work with M. Kang and B.E. Kunyavskii)

Akinari Hoshi

Rikkyo University

July 18, 2012

Table of contents

(1) Introduction: Noether's problem

- Noether's problem
- Some examples: monomial actions
(2) Main theorem: Noether's problem over \mathbb{C}
(3) Unramified Brauer groups \& retract rationality
(4) Proof $\left(\Phi_{10}\right): B_{0}(G) \neq 0$
(5) Proof $\left(\Phi_{6}\right): B_{0}(G)=0$

§1. Introduction: Noether's problem

- k; a field (base field, not necessarily algebraically closed)
- G; a finite group
- G acts on $k\left(x_{g} \mid g \in G\right)$ by $g \cdot x_{h}=x_{g h}$ for $g, h \in G$
- $k(G):=k\left(x_{g} \mid g \in G\right)^{G}$; invariant field

Noether's problem

Emmy Noether (1913) asks whether $k(G)$ is rational over k ? (= purely transcendental over k ?; $k(G)=k\left(\exists t_{1}, \ldots, \exists t_{n}\right)$?)

- the quotient variety \mathbb{A}^{n} / G is rational over k ?

Theorem (Fisher, 1915)

Let A be a finite abelian group of exponent e. Assume that (i) either char $k=0$ or char $k>0$ with char $k \nmid e$, and (ii) k contains a primitive e-th root of unity. Then $k(A)$ is rational over k.

- $\mathbb{C}(A)$ is rational over \mathbb{C} !

Noether's problem

Emmy Noether (1913) asks whether $k(G)$ is rational over k ?
(= purely transcendental over k ?; $k(G)=k\left(\exists t_{1}, \ldots, \exists t_{n}\right)$?)
Let A be a finite abelian group.

- (Swan, 1969) $\mathbb{Q}\left(C_{47}\right)$ is not rational over \mathbb{Q} He used K. Masuda's method (1968).
- S. Endo, T. Miyata (1973), V.E. Voskresenskii (1973), ... e.g. $\mathbb{Q}\left(C_{8}\right)$ is not rational over \mathbb{Q}.
- (Lenstra, 1974) $k(A)$ is rational over $k \Longleftrightarrow$ certain conditions; for example, $\mathbb{Q}\left(C_{p^{r}}\right)$ is rational over \mathbb{Q}
$\Longleftrightarrow \exists \alpha \in \mathbb{Z}\left[\zeta_{\varphi\left(p^{r}\right)}\right]$ such that $\left|N_{\mathbb{Q}\left(\zeta_{\varphi\left(p^{r}\right)}\right) / \mathbb{Q}}(\alpha)\right|=p$
- $h\left(\mathbb{Q}\left(\zeta_{m}\right)\right)=1$ if $m<23$
$\Longrightarrow \mathbb{Q}\left(C_{p}\right)$ is rational over \mathbb{Q} for $p \leq 43$. rational also for $61,67,71$;
$\mathbb{Q}\left(C_{p}\right)$ is not rational over \mathbb{Q} for $p=79$ (Endo-Miyata), and $p=53,59,73$. But we do not know when $p=83,89,97, \ldots$
- G; non-abelian case, ..., nilpotent, p-groups, ..., ?

Let G be a finite groups, k be any field.

- (Maeda, 1989) $k\left(A_{5}\right)$ is rational over k;
- (Rikuna, 2003; Plans, 2007) $k\left(G L_{2}\left(\mathbb{F}_{3}\right)\right)$ and $k\left(S L_{2}\left(\mathbb{F}_{3}\right)\right)$ is rational over k;
- (Serre, 2003)
if 2-Sylow subgroup of $G \simeq C_{8 m}$, then $\mathbb{Q}(G)$ is not rational over \mathbb{Q}; if 2-Sylow subgroup of $G \simeq Q_{16}$, then $\mathbb{Q}(G)$ is not rational over \mathbb{Q}; e.g. $G=Q_{16}, S L_{2}\left(\mathbb{F}_{7}\right), S L_{2}\left(\mathbb{F}_{9}\right)$,
$S L_{2}\left(\mathbb{F}_{q}\right)$ with $q \equiv 7$ or $9(\bmod 16)$.

Some examples: monomial actions

- $k(G):=k\left(x_{g} \mid g \in G\right)^{G}$; invariant field

Noether's problem

Emmy Noether (1913) asks whether $k(G)$ is rational over k ?
(= purely transcendental over k ?; $k(G)=k\left(\exists t_{1}, \ldots, \exists t_{n}\right)$?)
By Hilbert 90, we have

No-name lemma (e.g. Miyata (1971, Remark 3))

Let G act faithfully on k-vector space V, W be a faithful $k[G]$-submodule of V. Then $K(V)^{G}$ is rational over $K(W)^{G}$.

Rationality problem: linear action

Let G act on finite-dimensional k-vector space V and $\rho: G \rightarrow G L(V)$ be a representation. Whether $k(V)^{G}$ is rational over k ?

- the quotient variety V / G is rational over k ?

Assume that
$\rho: G \rightarrow G L(V)$; monomial, i.e. the corresponding matrix representatin of g has exactly one non-zero entry in each row and each column for $\forall g \in G$. $k(V)=k\left(w_{1}, \ldots, w_{n}\right)$ where $\left\{w_{1}, \ldots, w_{n}\right\}$; a basis of $V^{*}=\operatorname{Hom}(V, k)$.

Then G acts on $k(\mathbb{P}(V))=k\left(\frac{w_{1}}{w_{n}}, \ldots, \frac{w_{n-1}}{w_{n}}\right)$ by monomial action. By Hilbert 90, we obtain

Lemma (e.g. Miyata (1971, Lemma))

$k(V)^{G}$ is rational over $k(\mathbb{P}(V))^{G} \quad$ (i.e. $k($
$V / G \approx \mathbb{P}(V) / G \times \mathbb{P}^{1}$ (birational equivalent)

Example: $\mathrm{GL}\left(2, \mathbb{F}_{3}\right)$ and $\mathrm{SL}\left(2, \mathbb{F}_{3}\right)$

$$
\begin{aligned}
& G=\mathrm{GL}\left(2, \mathbb{F}_{3}\right)=\langle A, B, C, D\rangle \subset G L_{4}(\mathbb{Q}), \\
& H=\mathrm{SL}\left(2, \mathbb{F}_{3}\right)=\langle A, B, C\rangle \subset G L_{4}(\mathbb{Q}) \text { where } \\
& A=\left[\begin{array}{cccc}
0 & 1 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right], B=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & -1 \\
0 & 1 & 0 & 0
\end{array}\right], C=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right],(\# G=48, \# H=24) \\
&
\end{aligned}
$$

The actions of G and H on $\mathbb{Q}(V)=\mathbb{Q}\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$ are:

$$
\begin{aligned}
& A: w_{1} \mapsto-w_{2} \mapsto-w_{1} \mapsto w_{2} \mapsto w_{1}, w_{3} \mapsto-w_{4} \mapsto-w_{3} \mapsto w_{4} \mapsto w_{3}, \\
& B: w_{1} \mapsto-w_{3} \mapsto-w_{1} \mapsto w_{3} \mapsto w_{1}, w_{2} \mapsto w_{4} \mapsto-w_{2} \mapsto-w_{4} \mapsto w_{2}, \\
& C: w_{1} \mapsto-w_{2} \mapsto w_{3} \mapsto w_{1}, w_{4} \mapsto w_{4}, \quad D: w_{1} \mapsto w_{1}, w_{2} \mapsto-w_{2}, w_{3} \leftrightarrow w_{4} .
\end{aligned}
$$

$\mathbb{Q}(\mathbb{P}(V))=\mathbb{Q}(x, y, z)$ where $x=w_{1} / w_{4}, y=w_{2} / w_{4}, z=w_{3} / w_{4}$. G and H act on $\mathbb{Q}(x, y, z)$ as $G / Z(G) \simeq S_{4}$ and $H / Z(H) \simeq A_{4}$ by

$$
\begin{aligned}
& A: x \mapsto \frac{y}{z}, y \mapsto \frac{-x}{z}, z \mapsto \frac{-1}{z}, B: x \mapsto \frac{-z}{y}, y \mapsto \frac{-1}{y}, z \mapsto \frac{x}{y}, \\
& C: x \mapsto y \mapsto z \mapsto x, D: x \mapsto \frac{x}{z}, y \mapsto \frac{-y}{z}, z \mapsto \frac{1}{z} .
\end{aligned}
$$

Definition (monomial action)

A k-automorphism σ of $k\left(x_{1}, \ldots, x_{n}\right)$ is called monomial if

$$
\sigma\left(x_{j}\right)=c_{j}(\sigma) \prod_{i=1}^{n} x_{i}^{a_{i, j}}, \quad 1 \leq j \leq n
$$

where $\left[a_{i, j}\right]_{1 \leq i, j \leq n} \in \mathrm{GL}(n, \mathbb{Z})$ and $c_{j}(\sigma) \in k^{\times}:=k \backslash\{0\}$.
If $c_{j}(\sigma)=1$ for any $1 \leq j \leq n$ then σ is called purely monomial.
A group action on $k\left(x_{1}, \ldots, x_{n}\right)$ by monomial k-automorphisms is also called monomial.

Theorem (Hajja,1987)

Let k be a field, G be a finite group acting on $k\left(x_{1}, x_{2}\right)$ by monomial k-automorphisms. Then $k\left(x_{1}, x_{2}\right)^{G}$ is rational over k.

Theorem (Hajja-Kang 1994, H.-Rikuna 2008)

Let k be a field, G be a finite group acting on $k\left(x_{1}, x_{2}, x_{3}\right)$ by purely monomial k-automorphisms. Then $k\left(x_{1}, x_{2}, x_{3}\right)^{G}$ is rational over k.

Theorem (Prokhorov, 2010)

Let G be a finite group acting on $\mathbb{C}\left(x_{1}, x_{2}, x_{3}\right)$ by monomial k-automorphisms. Then $\mathbb{C}\left(x_{1}, x_{2}, x_{3}\right)^{G}$ is rational over \mathbb{C}.

Theorem (Kang-Prokhorov, 2010)

Let G be a finite 2-group and k be a field of char $k \neq 2$ and $\sqrt{a} \in k$ for any $a \in k$. If G acts on $k\left(x_{1}, x_{2}, x_{3}\right)$ by monomial k-automorphisms, then $k\left(x_{1}, x_{2}, x_{3}\right)^{G}$ is rational over k.

However negative solutions exist for some (k, G) in dimension 3 case, e.g. $\mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right)^{\langle\sigma\rangle}, \sigma: x_{1} \mapsto x_{2} \mapsto x_{3} \mapsto \frac{-1}{x_{1} x_{2} x_{3}}$, is not \mathbb{Q}-rational (Hajja,1983).

Theorem (Saltman, 2000)

Let k be a field of char $k \neq 2, \sigma$ be a monomial k-automorphism action of $k\left(x_{1}, x_{2}, x_{3}\right)$ by $x_{1} \mapsto \frac{a_{1}}{x_{1}}, x_{2} \mapsto \frac{a_{2}}{x_{2}}, x_{3} \mapsto \frac{a_{3}}{x_{3}}$.
If $\left[k\left(\sqrt{a_{1}}, \sqrt{a_{2}}, \sqrt{a_{3}}\right): k\right]=8$, then $k\left(x_{1}, x_{2}, x_{3}\right)^{\langle\sigma\rangle}$ is not retract rational over k, hence not rational over k.

Theorem (Kang, 2004)

Let k be a field, σ be a monomial k-automorphism acting on $k\left(x_{1}, x_{2}, x_{3}\right)$ by $x_{1} \mapsto x_{2} \mapsto x_{3} \mapsto \frac{c}{x_{1} x_{2} x_{3}} \mapsto x_{1}$. Then $k\left(x_{1}, x_{2}, x_{3}\right)^{\langle\sigma\rangle}$ is rational over k if and only if at least one of the following conditions is satisfied:
(i) char $k=2$; (ii) $c \in k^{2}$; (iii) $-4 c \in k^{4}$; (iv) $-1 \in k^{2}$.

If $k(x, y, z)^{\langle\sigma\rangle}$ is not rational over k, then it is not retract rational over k.

- rational over $k \Longrightarrow$ "retract rational" over k; not rational over $k \Longleftarrow$ not retract rational over k (we will recall the definition later)

Lemma (Kang-Prokhrov, 2010, Lemma 2.8)

Let k be a field, G be a finite group acting on $k\left(x_{1}, \ldots, x_{n}\right)$ by monomial k-automorphism. Then there is a normal subgroup H of G such that
(i) $k\left(x_{1}, \ldots, x_{n}\right)^{H}=K\left(z_{1}, \ldots, z_{n}\right)$;
(ii) G / H acts on $k\left(z_{1}, \ldots, z_{n}\right)$ by monomial k-automorphisms;
(iii) $\rho: G / H \rightarrow G L_{n}(\mathbb{Z})$ is injective.

Hence we may assume that $\rho: G \rightarrow G L_{3}(\mathbb{Z})$ is injective.
$\exists G \leq G L_{3}(\mathbb{Z}) ; 73$ finite subgroups (up to conjugacy).

Theorem (Yamasaki, arXiv:0909.0586)

Let k be a field of char $k \neq 2 . \exists 8$ groups $G \leq G L_{3}(\mathbb{Z})$ such that $k\left(x_{1}, x_{2}, x_{3}\right)^{G}$ is not retract rational over k, hence not rational over k. Moreover, we may give the necessary and sufficient conditions.

Two of 8 groups are Saltman's and Kang's cases.

Theorem (Yamasaki-H.-Kitayama, 2011)

Let k be a field of char $k \neq 2, G \leq G L_{3}(\mathbb{Z})$ act on $k\left(x_{1}, x_{2}, x_{3}\right)$ by monomial k-automorphisms. Then $k\left(x_{1}, x_{2}, x_{3}\right)^{G}$ is rational over k except for the Yamasaki's 8 cases and one case of A_{4}.
The exceptional case of A_{4}, it is rational over k if $[k(\sqrt{a}, \sqrt{-1}): k] \leq 2$.

Corollary

$\exists L=k(\sqrt{a})$ with $a \in k^{\times}$such that $L\left(x_{1}, x_{2}, x_{3}\right)^{G}$ is rational over L.
However \exists monomial action of $C_{2} \times C_{2}$ such that $\mathbb{C}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{C_{2} \times C_{2}}$ is not retract rational, hence not rational over \mathbb{C} !

§2. Main theorem: Noether's problem over \mathbb{C}

Let G be a p-group. $\mathbb{C}(G):=\mathbb{C}\left(x_{g} \mid g \in G\right)^{G}$.

- (Fisher, 1915) $\mathbb{C}(A)$ is rational over \mathbb{C} if A; finite abelian group.
- (Saltman, 1984)

For $\forall p$; prime, \exists meta-abelian p-group G of order p^{9} such that $\mathbb{C}(G)$ is not retract rational over \mathbb{C}.

- (Bogomolov, 1988) For $\forall p$; prime, \exists meta-abelian p-group G of order p^{6} such that $\mathbb{C}(G)$ is not retract rational over \mathbb{C}.

Indeed they showed $B_{0}(G) \neq 0$; unramified Brauer group

- "rational" \Longrightarrow "stably rational" \Longrightarrow "retract rational" \Longrightarrow " $B_{0}(G)=0$ " not rational \Leftarrow not stably rational \Leftarrow not retract rational $\Leftarrow B_{0}(G) \neq 0$
where $B_{0}(G)$ is the unramified Brauer group $H_{\mathrm{nr}}^{2}(\mathbb{C}(G), \mathbb{Q} / \mathbb{Z})$ We will give the precise definition later.

Noether's problem over \mathbb{C}

Let G be a p-group.

- (Chu-Kang, 2001)

Let G be a p-group of order $\leq p^{4}$. Then $\mathbb{C}(G)$ is rational over \mathbb{C}.

- (Chu-Hu-Kang-Prokhorov, 2008)

Let G be a group of order $2^{5}=32$. Then $\mathbb{C}(G)$ is rational over \mathbb{C}.

- (Chu-Hu-Kang-Kunyavskii, 2010) If G is a group of order $2^{6}=64$, then $B_{0}(G) \neq 0 \Longleftrightarrow G$ belongs to the isoclinism family Φ_{16}. In particular, $\exists 9$ groups G of order $2^{6}=64$ such that $\mathbb{C}(G)$ is not retract rational over \mathbb{C}. (by $\left.B_{0}(G) \neq 0\right)$
- $\exists 267$ groups of order 64 . $\left(\Phi_{1}, \ldots, \Phi_{27}\right)$
- (Moravec, to appear in Amer. J. Math.) If G is a group of order $3^{5}=243$, then $B_{0}(G) \neq 0 \Longleftrightarrow G=G(243, i)$ with $28 \leq i \leq 30$. In particular, $\exists 3$ groups G of order $3^{5}=243$
such that $\mathbb{C}(G)$ is not retract rational over \mathbb{C}.
- $\exists 67$ groups of order 243 . $\left(\Phi_{1}, \ldots, \Phi_{10}\right)$

Main theorem

Theorem (H.-Kang-Kunyavskii, arXiv:1202.5812)

Let p be an odd prime and G be a group of order p^{5}. Then $B_{0}(G) \neq 0 \Longleftrightarrow G$ belongs to the isoclinism family Φ_{10}. In particular, $\exists \operatorname{gcd}(4, p-1)+\operatorname{gcd}(3, p-1)+1$ (resp. $\exists 3$) groups
G of order $p^{5}(p \geq 5)$ (resp. $p=3$) such that $\mathbb{C}(G)$ is not retract rational over \mathbb{C}.

- $\exists 15$ (14) groups of order $p^{4}(p \geq 3)(p=2)$.
- $\exists 2 p+61+\operatorname{gcd}(4, p-1)+2 \operatorname{gcd}(3, p-1)$ groups of $\operatorname{order} p^{5}(p \geq 5) .\left(\Phi_{1}, \ldots, \Phi_{10}\right)$

Definition (isoclinic)

Two p-groups G_{1} and G_{2} are called isoclinic if there exist group isomorphisms $\theta: G_{1} / Z\left(G_{1}\right) \rightarrow G_{2} / Z\left(G_{2}\right)$ and $\phi:\left[G_{1}, G_{1}\right] \rightarrow\left[G_{2}, G_{2}\right]$ such that $\phi([g, h])=\left[g^{\prime}, h^{\prime}\right]$ for any $g, h \in G_{1}$ with $g^{\prime} \in \theta\left(g Z\left(G_{1}\right)\right)$, $h^{\prime} \in \theta\left(h Z\left(G_{1}\right)\right)$.

$$
\begin{array}{cc}
G_{1} / Z\left(G_{1}\right) \times G_{1} / Z\left(G_{1}\right) \xrightarrow{(\theta, \theta)} \\
{[,] \mid} & G_{2} / Z\left(G_{2}\right) \times G_{2} / Z\left(G_{2}\right) \\
{\left[G_{1}, G_{1}\right] \xrightarrow{\simeq} \xrightarrow{\simeq}} & \downarrow,] \\
& {\left[G_{2}, G_{2}\right]}
\end{array}
$$

- Let $G_{n}(p)$ be the set of all non-isomorphic groups of order p^{n}. equivalence relation $\sim \Longleftrightarrow$ they are isoclinic.
Each equivalence class is called an isoclinism family.

Invariants

- lower central series
- \# of conj. classes with precisely p^{i} members
- \# of irr. complex rep. of G of degree p^{i}
- $\# G=p^{4}(p>2) . \exists 15$ groups $\left(\Phi_{1}, \Phi_{2}, \Phi_{3}\right)$
- $\# G=2^{4}=16$. $\exists 14$ groups $\left(\Phi_{1}, \Phi_{2}, \Phi_{3}\right)$
- $\# G=p^{5}(p>3) . \exists 2 p+61+(4, p-1)+2 \times(3, p-1)$ groups $\left(\Phi_{1}, \ldots, \Phi_{10}\right)$

	Φ_{1}	Φ_{2}	Φ_{3}	Φ_{4}	Φ_{5}	Φ_{6}	Φ_{7}	Φ_{8}
$\#$	7	15	13	$p+8$	2	$p+7$	5	1
$(p=3)$						7		

	Φ_{9}	Φ_{10}
$\#$	$2+(3, p-1)$	$1+(4, p-1)+(3, p-1)$
$(p=3)$		3

Question 1.11 in [HKK] (arXiv:1202.5812)

Let G_{1} and G_{2} be isoclinic p-groups.
Is it true that the fields $k\left(G_{1}\right)$ and $k\left(G_{2}\right)$ are stably isomorphic, or, at least, that $B_{0}\left(G_{1}\right)$ is isomorphic to $B_{0}\left(G_{2}\right)$?

- $G_{1} \sim G_{2} \Longrightarrow B_{0}\left(G_{1}\right)=B_{0}\left(G_{2}\right)$ proved by Moravec (arXiv:1203.2422)
- $G_{1} \sim G_{2} \Longrightarrow k\left(G_{1}\right) \approx k\left(G_{2}\right)$ proved by Bogomolov-Böhning (arXiv: 1204.4747)

§3. Unramified Brauer groups \& retract rationality

Definition (stably rational)

L is called stably rational over k if $L\left(y_{1}, \ldots, y_{m}\right)$ is rational over k.
Definition (retract rational) \leftrightarrow "projective" object by Saltman (1984)
Let k be an infinite field, and $k \subset L$ be a field extension.
L is retract rational over k if $\exists k$-algebra $R \subset L$ such that
(i) L is the quotient field of R;
(ii) $\exists f \in k\left[x_{1}, \ldots, x_{n}\right] \exists k$-algebra hom. $\varphi: R \rightarrow k\left[x_{1}, \ldots, x_{n}\right][1 / f]$ and $\psi: k\left[x_{1}, \ldots, x_{n}\right][1 / f] \rightarrow R$ satisfying $\psi \circ \varphi=1_{R}$.

Definition (unirational)

L is unirational over k if L is a subfield of rational field extension of k.

- Let L_{1} and L_{2} be stably isomorphic fields over k.

If L_{1} is retract rational over k, then so is L_{2} over k.

- "rational" \Longrightarrow "stably rational" \Longrightarrow "retract rational " \Longrightarrow "unirational"

Retract rationality

Theorem (Saltman, DeMeyer)

Let k be an infinite field and G be a finite group.
The following are equivalent:
(i) $k(G)$ is retract k-rational.
(ii) There is a generic G-Galois extension over k;
(iii) There exists a generic G-polynomial over k.

- related to Inverse Galois Problem (IGP). $\quad(\mathrm{i}) \Longrightarrow \operatorname{IGP}(G / k)$: true

Definition (generic polynomial)

A polynomial $f\left(t_{1}, \ldots, t_{n} ; X\right) \in k\left(t_{1}, \ldots, t_{n}\right)[X]$ is generic for G over k if (1) $\operatorname{Gal}\left(f / k\left(t_{1}, \ldots, t_{n}\right)\right) \simeq G$;
(2) $\forall L / M \supset k$ with $\operatorname{Gal}(L / M) \simeq G$, $\exists a_{1}, \ldots, a_{n} \in M$ such that $L=\operatorname{Spl}\left(f\left(a_{1}, \ldots, a_{n} ; X\right) / M\right)$.

- By Hilbert's irreducibility theorem, $\exists L / \mathbb{Q}$ such that $\operatorname{Gal}(L / \mathbb{Q}) \simeq G$.
"rational" \Longrightarrow "stably rational" \Longrightarrow "retract rational" \Longrightarrow "unirational".
- The direction of the implication cannot be reversed.
- (Lüroth's problem) "unirational" \Longrightarrow "rational" ? YES if trdeg=1
- (Castelnuovo, 1894)
L is unirational over \mathbb{C} and $\operatorname{trdeg}_{\mathbb{C}} L=2 \Longrightarrow L$ is rational over \mathbb{C}.
- (Zariski, 1958) Let k be an alg. closed field and $k \subset L \subset k(x, y)$. If $k(x, y)$ is separable algebraic over L, then L is rational over k.
- (Zariski cancellation problem) $V_{1} \times \mathbb{P}^{n} \approx V_{2} \times \mathbb{P}^{n} \Longrightarrow V_{1} \approx V_{2}$? Inparticular, "stably rational" \Longrightarrow "rational"?
- $L=\mathbb{Q}(x, y, t)$ with $x^{2}+3 y^{2}=t^{3}-2$
$\Longrightarrow L$ is not rational over \mathbb{Q} and $L\left(y_{1}, y_{2}, y_{3}\right)$ is rational over \mathbb{Q}. (Beauville, J.-L. Colliot-Thélène, Sansuc Swinnerton-Dyer, 1985)
- $L\left(y_{1}, y_{2}\right)$ is rational over \mathbb{Q} (Shepherd-Barron).
- $\mathbb{Q}\left(C_{47}\right)$ is not stably rational over \mathbb{Q} but retract rational over \mathbb{Q}.
- $\mathbb{Q}\left(C_{8}\right)$ is not retract rational over \mathbb{Q} but unirational over \mathbb{Q}.

Unramified Brauer group

Definition (Unramified Brauer group) Saltman (1984)

Let $k \subset K$ be an extension of fields.
$\operatorname{Br}_{v, k}(K)=\cap_{R} \operatorname{Image}\{\operatorname{Br}(R) \rightarrow \operatorname{Br}(K)\}$ where $\operatorname{Br}(R) \rightarrow \operatorname{Br}(K)$ is the natural map of Brauer groups and R uns over all the discrete valuation rings R such that $k \subset R \subset K$ and K is the quotient field of R.

- If k is infinite field and K is retract rational over k, then natural map $\operatorname{Br}(k) \rightarrow \operatorname{Br}_{v, k}(K)$ is an isomorphism. In partidular, if k is an algebraically closed field and K is retract rational over k, then $\mathrm{Br}_{v, k}(K)=0$.
- "retract rational" $\Longrightarrow B_{0}(G)=0$ where $B_{0}(G)=\operatorname{Br}_{v, k}(k(G))$.

Theorem (Bogomolov 1988, Saltman 1990)

Let G be a finite group, k be an algebraically closed field with $\operatorname{gcd}\{|G|, \operatorname{char} k\}=1$. Let μ denote the multiplicative subgroup of all roots of unity in k. Then $\operatorname{Br}_{v, k}(k(G))$ is isomorphic

$$
B_{0}(G)=\bigcap_{A} \operatorname{Ker}\left\{\operatorname{res}_{G}^{A}: H^{2}(G, \mu) \rightarrow H^{2}(A, \mu)\right\}
$$

where A runs over all the bicyclic subgroups of G (a group A is called bicyclic if A is either a cyclic group or a direct product of two cyclic groups).

- "retract rational" $\Longrightarrow B_{0}(G)=0$ where $B_{0}(G)=\operatorname{Br}_{v, k}(k(G))$. $B_{0}(G) \neq 0 \Longrightarrow$ not retract rational over $k \Longrightarrow$ not rational over k.
- $B_{0}(G)$ is a subgroup of the Schur multiplier $H_{2}(G, \mathbb{Z}) \simeq H^{2}(G, \mathbb{Q} / \mathbb{Z})$, which is called Bogomolov multiplier.
§4. Proof $\left(\Phi_{10}\right): B_{0}(G) \neq 0$

We give a sketch of the proof of

Theorem 1 (the case Φ_{10})

Let p be an odd prime and G be a group of order p^{5} belonging to the isoclinism family Φ_{10}. Then $B_{0}(G) \neq 0$.

We may obtain the following two lemmas:

Lemma 1

Let G be a finite group, N be a normal subgroup of G. Assume that (i) $\operatorname{tr}: H^{1}(N, \mathbb{Q} / \mathbb{Z})^{G} \rightarrow H^{2}(G / N, \mathbb{Q} / \mathbb{Z})$ is not surjective where tr is the transgression map, and (ii) for any bicyclic subgroup A of G, the group $A N / N$ is a cyclic subgroup of G / N. Then $B_{0}(G) \neq 0$.

Lemma 2

Let $p \geq 3$ and G be a p-group of order p^{5} generated by f_{i} where $1 \leq i \leq 5$. Suppose that, besides other relations, the generators f_{i} satisfy the following conditions:
(i) $f_{4}^{p}=f_{5}^{p}=1, f_{5} \in Z(G)$,
(ii) $\left[f_{2}, f_{1}\right]=f_{3},\left[f_{3}, f_{1}\right]=f_{4},\left[f_{4}, f_{1}\right]=\left[f_{3}, f_{2}\right]=f_{5}$, $\left[f_{4}, f_{2}\right]=\left[f_{4}, f_{3}\right]=1$, and
(iii) $\left\langle f_{4}, f_{5}\right\rangle \simeq C_{p} \times C_{p}, G /\left\langle f_{4}, f_{5}\right\rangle$ is a non-abelian group of order p^{3} and of exponent p.
Then $B_{0}(G) \neq 0$.
Proof of Lemma 2.
Choose $N=\left\langle f_{4}, f_{5}\right\rangle \simeq C_{p} \times C_{p}$. Then we may check that Lemma 1 is satisfied. Thus $B_{0}(G) \neq 0$.

Proof of Theorem 1.
All groups which belong to Φ_{10} satisfy the conditions as in Lemma 2.

Lemma 1

Let G be a finite group, N be a normal subgroup of G. Assume that (i) $\operatorname{tr}: H^{1}(N, \mathbb{Q} / \mathbb{Z})^{G} \rightarrow H^{2}(G / N, \mathbb{Q} / \mathbb{Z})$ is not surjective where tr is the transgression map, and (ii) for any bicyclic subgroup A of G, the group $A N / N$ is a cyclic subgroup of G / N. Then $B_{0}(G) \neq 0$.

Proof. Consider the Hochschild-Serre 5-term exact sequence

$$
\begin{aligned}
0 & \rightarrow H^{1}(G / N, \mathbb{Q} / \mathbb{Z}) \rightarrow H^{1}(G, \mathbb{Q} / \mathbb{Z}) \rightarrow H^{1}(N, \mathbb{Q} / \mathbb{Z})^{G} \\
& \xrightarrow{\operatorname{tr}} H^{2}(G / N, \mathbb{Q} / \mathbb{Z}) \xrightarrow{\psi} H^{2}(G, \mathbb{Q} / \mathbb{Z})
\end{aligned}
$$

where ψ is the inflation map.
Since tr is not surjective (the first assumption (i)), we find that ψ is not the zero map. Thus Image $(\psi) \neq 0$.
We will show that Image $(\psi) \subset B_{0}(G)$. By the definition, it suffices to show that, for any bicyclic subgroup A of G, the composite map $H^{2}(G / N, \mathbb{Q} / \mathbb{Z}) \xrightarrow{\psi} H^{2}(G, \mathbb{Q} / \mathbb{Z}) \xrightarrow{\text { res }} H^{2}(A, \mathbb{Q} / \mathbb{Z})$ becomes the zero map.

Consider the following commutative diagram:

$$
\begin{gathered}
H^{2}(G / N, \mathbb{Q} / \mathbb{Z}) \xrightarrow{\psi} H^{2}(G, \mathbb{Q} / \mathbb{Z}) \xrightarrow{\text { res }} H^{2}(A, \mathbb{Q} / \mathbb{Z}) \\
\psi_{0} \downarrow \\
\quad \psi_{1} \\
H^{2}(A N / N, \mathbb{Q} / \mathbb{Z}) \stackrel{\tilde{\psi}}{\simeq} H^{2}(A / A \cap N, \mathbb{Q} / \mathbb{Z})
\end{gathered}
$$

where ψ_{0} is the restriction map, ψ_{1} is the inflation map, $\widetilde{\psi}$ is the natural isomorphism.
Since $A N / N$ is cyclic (the second assumption (ii)), write $A N / N \simeq C_{m}$ for some integer m.
It is well-known that $H^{2}\left(C_{m}, \mathbb{Q} / \mathbb{Z}\right)=0$.
Hence ψ_{0} is the zero map. Thus res $\circ \psi: H^{2}(G / N, \mathbb{Q} / \mathbb{Z}) \rightarrow H^{2}(A, \mathbb{Q} / \mathbb{Z})$ is also the zero map.
By Image $(\psi) \subset B_{0}(G)$ and Image $(\psi) \neq 0$, we get that $B_{0}(G) \neq 0$.

§5. Proof $\left(\Phi_{6}\right): B_{0}(G)=0$

- $G=\Phi_{6}(211) a=\left\langle f_{1}, f_{2}, f_{0}, h_{1}, f_{2}\right\rangle, f_{1}^{p}=h_{1}, f_{2}^{p}=h_{2}$, $Z(G)=\left\langle h_{1}, h_{2}\right\rangle, f_{0}^{p}=h_{1}^{p}=h_{2}^{p}=1$
$\left[f_{1}, f_{2}\right]=f_{0},\left[f_{0}, f_{1}\right]=h_{1},\left[f_{0}, f_{2}\right]=h_{2}$
$0 \rightarrow H^{1}(G / N, \mathbb{Q} / \mathbb{Z}) \rightarrow H^{1}(G, \mathbb{Q} / \mathbb{Z}) \rightarrow H^{1}(N, \mathbb{Q} / \mathbb{Z})^{G} \xrightarrow{\operatorname{tr}} H^{2}(G / N, \mathbb{Q} / \mathbb{Z}) \xrightarrow{\Psi} H^{2}(G, \mathbb{Q} / \mathbb{Z})$

§5. Proof $\left(\Phi_{6}\right): B_{0}(G)=0$

- $G=\Phi_{6}(211) a=\left\langle f_{1}, f_{2}, f_{0}, h_{1}, f_{2}\right\rangle, f_{1}^{p}=h_{1}, f_{2}^{p}=h_{2}$, $Z(G)=\left\langle h_{1}, h_{2}\right\rangle, f_{0}^{p}=h_{1}^{p}=h_{2}^{p}=1$ $\left[f_{1}, f_{2}\right]=f_{0},\left[f_{0}, f_{1}\right]=h_{1},\left[f_{0}, f_{2}\right]=h_{2}$

$$
0 \rightarrow H^{1}(G / N, \mathbb{Q} / \mathbb{Z}) \rightarrow H^{1}(G, \mathbb{Q} / \mathbb{Z}) \rightarrow H^{1}(N, \mathbb{Q} / \mathbb{Z})^{G} \xrightarrow{\mathrm{tr}} H^{2}(G / N, \mathbb{Q} / \mathbb{Z}) \xrightarrow{\nmid} H^{2}(G, \mathbb{Q} / \mathbb{Z})
$$

\downarrow

$$
\begin{aligned}
\operatorname{Ker}\left\{H^{2}(G, \mathbb{Q} / \mathbb{Z}) \xrightarrow{\text { res }} H^{2}(N, \mathbb{Q} / \mathbb{Z})\right\}= & H^{2}(G, \mathbb{Q} / \mathbb{Z})_{1} \\
& \downarrow \\
& H^{1}\left(G / N, H^{1}(N, \mathbb{Q} / \mathbb{Z})\right) \\
& \lambda \downarrow \\
& H^{3}(G / N, \mathbb{Q} / \mathbb{Z})
\end{aligned}
$$

- Explicit formula for λ is given by Dekimpe-Hartl-Wauters (arXiv:1103.4052)
- $N:=\left\langle f_{1}, f_{0}, h_{1}, h_{2}\right\rangle \Longrightarrow G / N \simeq C_{p} \Longrightarrow H^{2}(G / N, \mathbb{Q} / \mathbb{Z})=0$
- $B_{0}(G) \subset H^{2}(G, \mathbb{Q} / \mathbb{Z})_{1}$
- We should show $H^{2}(G, \mathbb{Q} / \mathbb{Z})_{1}=0(\Longleftrightarrow \lambda$: injective $)$

