Noether's problem and unramified Brauer groups (joint work with M. Kang and B.E. Kunyavskii)

Akinari Hoshi

Rikkyo University

July 18, 2012

Table of contents

Introduction: Noether's problem

- Noether's problem
- Some examples: monomial actions

2) Main theorem: Noether's problem over ${\mathbb C}$

Onramified Brauer groups & retract rationality

- **4** Proof (Φ_{10}) : $B_0(G) \neq 0$
- **5** Proof (Φ_6) : $B_0(G) = 0$

$\S1.$ Introduction: Noether's problem

- ▶ k; a field (base field, not necessarily algebraically closed)
- ► G; a finite group
- G acts on $k(x_g \mid g \in G)$ by $g \cdot x_h = x_{gh}$ for $g, h \in G$
- $k(G) := k(x_g \mid g \in G)^G$; invariant field

Noether's problem

Emmy Noether (1913) asks whether k(G) is rational over k? (= purely transcendental over k?; $k(G) = k(\exists t_1, \ldots, \exists t_n)$?)

• the quotient variety \mathbb{A}^n/G is rational over k?

Theorem (Fisher, 1915)

Let A be a finite abelian group of exponent e. Assume that (i) either char k = 0 or char k > 0 with char $k \not\mid e$, and (ii) k contains a primitive e-th root of unity. Then k(A) is rational over k.

• $\mathbb{C}(A)$ is rational over \mathbb{C} !

Noether's problem

Emmy Noether (1913) asks whether k(G) is rational over k? (= purely transcendental over k?; $k(G) = k(\exists t_1, \ldots, \exists t_n)$?)

Let A be a finite abelian group.

- ► (Swan, 1969) Q(C₄₇) is not rational over Q He used K. Masuda's method (1968).
- ▶ S. Endo, T. Miyata (1973), V.E. Voskresenskii (1973), ... e.g. $\mathbb{Q}(C_8)$ is not rational over \mathbb{Q} .
- ► (Lenstra, 1974) k(A) is rational over $k \iff$ certain conditions; for example, $\mathbb{Q}(C_{p^r})$ is rational over \mathbb{Q} $\iff \exists \alpha \in \mathbb{Z}[\zeta_{\varphi(p^r)}]$ such that $|N_{\mathbb{Q}(\zeta_{\varphi(p^r)})/\mathbb{Q}}(\alpha)| = p$
- h(Q(ζ_m)) = 1 if m < 23
 ⇒ Q(C_p) is rational over Q for p ≤ 43. rational also for 61, 67, 71; Q(C_p) is not rational over Q for p = 79 (Endo-Miyata), and p = 53, 59, 73. But we do not know when p = 83, 89, 97,...
 G; non-abelian case, ..., nilpotent, p-groups, ..., ?

Let G be a finite groups, k be any field.

- (Maeda, 1989) $k(A_5)$ is rational over k;
- ▶ (Rikuna, 2003; Plans, 2007) k(GL₂(𝔽₃)) and k(SL₂(𝔽₃)) is rational over k;
- (Serre, 2003)
 if 2-Sylow subgroup of G ≃ C_{8m}, then Q(G) is not rational over Q;
 if 2-Sylow subgroup of G ≃ Q₁₆, then Q(G) is not rational over Q;
 e.g. G = Q₁₆, SL₂(F₇), SL₂(F₉),
 SL₂(F_q) with q ≡ 7 or 9 (mod 16).

Some examples: monomial actions

• $k(G) := k(x_g \mid g \in G)^G$; invariant field

Noether's problem

Emmy Noether (1913) asks whether k(G) is rational over k? (= purely transcendental over k?; $k(G) = k(\exists t_1, \ldots, \exists t_n)$?)

By Hilbert 90, we have

No-name lemma (e.g. Miyata (1971, Remark 3))

Let G act faithfully on k-vector space V, W be a faithful k[G]-submodule of V. Then $K(V)^G$ is rational over $K(W)^G$.

Rationality problem: linear action

Let G act on finite-dimensional k-vector space V and $\rho : G \to GL(V)$ be a representation. Whether $k(V)^G$ is rational over k?

• the quotient variety V/G is rational over k?

Assume that

 $\rho: G \to GL(V)$; monomial, i.e. the corresponding matrix representatin of g has exactly one non-zero entry in each row and each column for $\forall g \in G$. $k(V) = k(w_1, \ldots, w_n)$ where $\{w_1, \ldots, w_n\}$; a basis of $V^* = \operatorname{Hom}(V, k)$.

Then G acts on $k(\mathbb{P}(V)) = k(\frac{w_1}{w_n}, \dots, \frac{w_{n-1}}{w_n})$ by monomial action. By Hilbert 90, we obtain

Lemma (e.g. Miyata (1971, Lemma))

 $k(V)^G$ is rational over $k(\mathbb{P}(V))^G$ (i.e. $k(V)^G = k(\mathbb{P}(V))^G(t)$).

 $V/G \approx \mathbb{P}(V)/G \times \mathbb{P}^1$ (birational equivalent)

Example: $GL(2, \mathbb{F}_3)$ and $SL(2, \mathbb{F}_3)$

$$\begin{split} & G = \operatorname{GL}(2, \mathbb{F}_3) = \langle A, B, C, D \rangle \subset GL_4(\mathbb{Q}), \\ & H = \operatorname{SL}(2, \mathbb{F}_3) = \langle A, B, C \rangle \subset GL_4(\mathbb{Q}) \text{ where} \\ & A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, (\#G = 48, \#H = 24) \\ & \text{The actions of } G \text{ and } H \text{ on } \mathbb{Q}(V) = \mathbb{Q}(w_1, w_2, w_3, w_4) \text{ are:} \\ & A : w_1 \mapsto -w_2 \mapsto -w_1 \mapsto w_2 \mapsto w_1, w_3 \mapsto -w_4 \mapsto -w_3 \mapsto w_4 \mapsto w_3, \\ & B : w_1 \mapsto -w_3 \mapsto -w_1 \mapsto w_3 \mapsto w_1, w_2 \mapsto w_4 \mapsto -w_2 \mapsto -w_4 \mapsto w_2, \\ & C : w_1 \mapsto -w_2 \mapsto w_3 \mapsto w_1, w_4 \mapsto w_4, \quad D : w_1 \mapsto w_1, w_2 \mapsto -w_2, w_3 \leftrightarrow w_4. \\ & \mathbb{Q}(\mathbb{P}(V)) = \mathbb{Q}(x, y, z) \text{ where } x = w_1/w_4, y = w_2/w_4, z = w_3/w_4. \\ & G \text{ and } H \text{ act on } \mathbb{Q}(x, y, z) \text{ as } G/Z(G) \simeq S_4 \text{ and } H/Z(H) \simeq A_4 \text{ by} \\ & A : x \mapsto \frac{y}{z}, y \mapsto \frac{-x}{z}, z \mapsto \frac{-1}{z}, B : x \mapsto \frac{-z}{y}, y \mapsto \frac{-1}{y}, z \mapsto \frac{x}{y}, \\ & C : x \mapsto y \mapsto z \mapsto x, D : x \mapsto \frac{x}{z}, y \mapsto \frac{-y}{z}, z \mapsto \frac{1}{z}. \end{split}$$

Definition (monomial action)

A k-automorphism σ of $k(x_1, \ldots, x_n)$ is called monomial if

$$\sigma(x_j) = c_j(\sigma) \prod_{i=1}^n x_i^{a_{i,j}}, \quad 1 \le j \le n$$

where $[a_{i,j}]_{1 \le i,j \le n} \in \operatorname{GL}(n, \mathbb{Z})$ and $c_j(\sigma) \in k^{\times} := k \setminus \{0\}$.

If $c_j(\sigma) = 1$ for any $1 \le j \le n$ then σ is called purely monomial.

A group action on $k(x_1, \ldots, x_n)$ by monomial k-automorphisms is also called monomial.

Theorem (Hajja, 1987)

Let k be a field, G be a finite group acting on $k(x_1, x_2)$ by monomial k-automorphisms. Then $k(x_1, x_2)^G$ is rational over k.

Theorem (Hajja-Kang 1994, H.-Rikuna 2008)

Let k be a field, G be a finite group acting on $k(x_1, x_2, x_3)$ by purely monomial k-automorphisms. Then $k(x_1, x_2, x_3)^G$ is rational over k.

Theorem (Prokhorov, 2010)

Let G be a finite group acting on $\mathbb{C}(x_1, x_2, x_3)$ by monomial k-automorphisms. Then $\mathbb{C}(x_1, x_2, x_3)^G$ is rational over \mathbb{C} .

Theorem (Kang-Prokhorov, 2010)

Let G be a finite 2-group and k be a field of char $k \neq 2$ and $\sqrt{a} \in k$ for any $a \in k$. If G acts on $k(x_1, x_2, x_3)$ by monomial k-automorphisms, then $k(x_1, x_2, x_3)^G$ is rational over k.

However negative solutions exist for some (k, G) in dimension 3 case, e.g. $\mathbb{Q}(x_1, x_2, x_3)^{\langle \sigma \rangle}$, $\sigma : x_1 \mapsto x_2 \mapsto x_3 \mapsto \frac{-1}{x_1 x_2 x_3}$, is not Q-rational (Hajja,1983).

Theorem (Saltman, 2000)

Let k be a field of char $k \neq 2$, σ be a monomial k-automorphism action of $k(x_1, x_2, x_3)$ by $x_1 \mapsto \frac{a_1}{x_1}$, $x_2 \mapsto \frac{a_2}{x_2}$, $x_3 \mapsto \frac{a_3}{x_3}$. If $[k(\sqrt{a_1}, \sqrt{a_2}, \sqrt{a_3}) : k] = 8$, then $k(x_1, x_2, x_3)^{\langle \sigma \rangle}$ is not retract rational over k, hence not rational over k.

Theorem (Kang, 2004)

Let k be a field, σ be a monomial k-automorphism acting on $k(x_1, x_2, x_3)$ by $x_1 \mapsto x_2 \mapsto x_3 \mapsto \frac{c}{x_1 x_2 x_3} \mapsto x_1$. Then $k(x_1, x_2, x_3)^{\langle \sigma \rangle}$ is rational over k if and only if at least one of the following conditions is satisfied: (i) char k = 2; (ii) $c \in k^2$; (iii) $-4c \in k^4$; (iv) $-1 \in k^2$. If $k(x, y, z)^{\langle \sigma \rangle}$ is not rational over k, then it is not retract rational over k.

 rational over k ⇒ "retract rational" over k; not rational over k ⇐ not retract rational over k (we will recall the definition later)

Lemma (Kang-Prokhrov, 2010, Lemma 2.8)

Let k be a field, G be a finite group acting on $k(x_1, \ldots, x_n)$ by monomial k-automorphism. Then there is a normal subgroup H of G such that (i) $k(x_1, \ldots, x_n)^H = K(z_1, \ldots, z_n)$; (ii) G/H acts on $k(z_1, \ldots, z_n)$ by monomial k-automorphisms; (iii) $\rho: G/H \to GL_n(\mathbb{Z})$ is injective.

Hence we may assume that $\rho: G \to GL_3(\mathbb{Z})$ is injective.

 $\exists G \leq GL_3(\mathbb{Z}); 73$ finite subgroups (up to conjugacy).

Theorem (Yamasaki, arXiv:0909.0586)

Let k be a field of char $k \neq 2$. $\exists 8$ groups $G \leq GL_3(\mathbb{Z})$ such that $k(x_1, x_2, x_3)^G$ is not retract rational over k, hence not rational over k. Moreover, we may give the necessary and sufficient conditions.

Two of 8 groups are Saltman's and Kang's cases.

Theorem (Yamasaki-H.-Kitayama, 2011)

Let k be a field of char $k \neq 2$, $G \leq GL_3(\mathbb{Z})$ act on $k(x_1, x_2, x_3)$ by monomial k-automorphisms. Then $k(x_1, x_2, x_3)^G$ is rational over k except for the Yamasaki's 8 cases and one case of A_4 . The exceptional case of A_4 , it is rational over k if $[k(\sqrt{a}, \sqrt{-1}) : k] \leq 2$.

Corollary

$$\exists L = k(\sqrt{a})$$
 with $a \in k^{\times}$ such that $L(x_1, x_2, x_3)^G$ is rational over L .

However \exists monomial action of $C_2 \times C_2$ such that $\mathbb{C}(x_1, x_2, x_3, x_4)^{C_2 \times C_2}$ is not retract rational, hence not rational over \mathbb{C} !

$\S2.$ Main theorem: Noether's problem over $\mathbb C$

Let G be a p-group. $\mathbb{C}(G) := \mathbb{C}(x_g \mid g \in G)^G$.

- (Fisher, 1915) $\mathbb{C}(A)$ is rational over \mathbb{C} if A; finite abelian group.
- (Saltman, 1984)
 For ∀p; prime, ∃ meta-abelian p-group G of order p⁹ such that C(G) is not retract rational over C.
- (Bogomolov, 1988)
 For ∀p; prime, ∃ meta-abelian p-group G of order p⁶
 such that C(G) is not retract rational over C.

Indeed they showed $B_0(G) \neq 0$; unramified Brauer group

• "rational" \implies "stably rational" \implies "retract rational" \implies " $B_0(G) = 0$ "

not rational \leftarrow **not** stably rational \leftarrow **not** retract rational $\leftarrow B_0(G) \neq 0$

where $B_0(G)$ is the unramified Brauer group $H^2_{nr}(\mathbb{C}(G), \mathbb{Q}/\mathbb{Z})$ We will give the precise definition later.

Noether's problem over $\ensuremath{\mathbb{C}}$

Let G be a p-group.

- ▶ (Chu-Kang, 2001) Let G be a p-group of order $\leq p^4$. Then $\mathbb{C}(G)$ is rational over \mathbb{C} .
- ▶ (Chu-Hu-Kang-Prokhorov, 2008)
 Let G be a group of order 2⁵ = 32. Then C(G) is rational over C.
- (Chu-Hu-Kang-Kunyavskii, 2010) If G is a group of order 2⁶ = 64, then B₀(G) ≠ 0 ⇔ G belongs to the isoclinism family Φ₁₆. In particular, ∃ 9 groups G of order 2⁶ = 64 such that C(G) is not retract rational over C. (by B₀(G) ≠ 0)
- ▶ $\exists 267 \text{ groups of order } 64. \ (\Phi_1, \ldots, \Phi_{27})$
- (Moravec, to appear in Amer. J. Math.) If G is a group of order $3^5 = 243$, then $B_0(G) \neq 0 \iff G = G(243, i)$ with $28 \le i \le 30$. In particular, $\exists \ 3$ groups G of order $3^5 = 243$ such that $\mathbb{C}(G)$ is not retract rational over \mathbb{C} .
- ▶ $\exists 67 \text{ groups of order } 243. (\Phi_1, \dots, \Phi_{10})$

Theorem (H.-Kang-Kunyavskii, arXiv:1202.5812)

Let p be an odd prime and G be a group of order p^5 . Then $B_0(G) \neq 0 \iff G$ belongs to the isoclinism family Φ_{10} . In particular, $\exists \gcd(4, p-1) + \gcd(3, p-1) + 1$ (resp. $\exists 3$) groups G of order p^5 ($p \ge 5$) (resp. p = 3) such that $\mathbb{C}(G)$ is not retract rational over \mathbb{C} .

- ▶ $\exists 15 \ (14)$ groups of order $p^4 (p \ge 3) \ (p = 2).$
- ► $\exists 2p + 61 + \gcd(4, p 1) + 2 \gcd(3, p 1)$ groups of order $p^5(p \ge 5)$. $(\Phi_1, \dots, \Phi_{10})$

Definition (isoclinic)

Two *p*-groups G_1 and G_2 are called isoclinic if there exist group isomorphisms $\theta: G_1/Z(G_1) \to G_2/Z(G_2)$ and $\phi: [G_1, G_1] \to [G_2, G_2]$ such that $\phi([g, h]) = [g', h']$ for any $g, h \in G_1$ with $g' \in \theta(gZ(G_1))$, $h' \in \theta(hZ(G_1))$.

$$\begin{array}{ccc} G_1/Z(G_1) \times G_1/Z(G_1) & \xrightarrow{(\theta,\theta)} & G_2/Z(G_2) \times G_2/Z(G_2) \\ & & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$$

 Let G_n(p) be the set of all non-isomorphic groups of order pⁿ. equivalence relation ~ ⇐⇒ they are isoclinic. Each equivalence class is called an isoclinism family.
 Invariants

- Iower central series
- # of conj. classes with precisely p^i members
- # of irr. complex rep. of G of degree p^i

Question 1.11 in [HKK] (arXiv:1202.5812)

Let G_1 and G_2 be isoclinic *p*-groups. Is it true that the fields $k(G_1)$ and $k(G_2)$ are stably isomorphic, or, at least, that $B_0(G_1)$ is isomorphic to $B_0(G_2)$?

$\S3$. Unramified Brauer groups & retract rationality

Definition (stably rational)

L is called stably rational over k if $L(y_1, \ldots, y_m)$ is rational over k.

Definition (retract rational) \leftrightarrow "projective" object by Saltman (1984)

Let k be an infinite field, and $k \subset L$ be a field extension. L is retract rational over k if $\exists k$ -algebra $R \subset L$ such that (i) L is the quotient field of R; (ii) $\exists f \in k[x_1, \ldots, x_n] \exists k$ -algebra hom. $\varphi : R \to k[x_1, \ldots, x_n][1/f]$ and $\psi : k[x_1, \ldots, x_n][1/f] \to R$ satisfying $\psi \circ \varphi = 1_R$.

Definition (unirational)

L is unirational over k if L is a subfield of rational field extension of k.

- ► Let L₁ and L₂ be stably isomorphic fields over k. If L₁ is retract rational over k, then so is L₂ over k.
- "rational" \implies "stably rational" \implies "retract rational " \implies "unirational"

Retract rationality

Theorem (Saltman, DeMeyer)

Let k be an infinite field and G be a finite group.
The following are equivalent:
(i) k(G) is retract k-rational.
(ii) There is a generic G-Galois extension over k;
(iii) There exists a generic G-polynomial over k.

▶ related to Inverse Galois Problem (IGP). (i) \implies IGP(G/k): true

Definition (generic polynomial)

A polynomial $f(t_1, \ldots, t_n; X) \in k(t_1, \ldots, t_n)[X]$ is generic for G over k if (1) $\operatorname{Gal}(f/k(t_1, \ldots, t_n)) \simeq G$; (2) $\forall L/M \supset k$ with $\operatorname{Gal}(L/M) \simeq G$, $\exists a_1, \ldots, a_n \in M$ such that $L = \operatorname{Spl}(f(a_1, \ldots, a_n; X)/M)$.

▶ By Hilbert's irreducibility theorem, $\exists L/\mathbb{Q}$ such that $Gal(L/\mathbb{Q}) \simeq G$.

"rational" \implies "stably rational" \implies "retract rational " \implies "unirational".

- The direction of the implication cannot be reversed.
- (Lüroth's problem) "unirational" \implies "rational" ? YES if trdeg= 1
- ► (Castelnuovo, 1894) L is unirational over \mathbb{C} and $\operatorname{trdeg}_{\mathbb{C}}L = 2 \Longrightarrow L$ is rational over \mathbb{C} .
- ► (Zariski, 1958) Let k be an alg. closed field and k ⊂ L ⊂ k(x, y). If k(x, y) is separable algebraic over L, then L is rational over k.
- ► (Zariski cancellation problem) $V_1 \times \mathbb{P}^n \approx V_2 \times \mathbb{P}^n \Longrightarrow V_1 \approx V_2$? Inparticular, "stably rational" \Longrightarrow "rational"?
- L = Q(x, y, t) with x² + 3y² = t³ − 2
 ⇒ L is not rational over Q and L(y₁, y₂, y₃) is rational over Q.
 (Beauville, J.-L. Colliot-Thélène, Sansuc Swinnerton-Dyer, 1985)
- $L(y_1, y_2)$ is rational over \mathbb{Q} (Shepherd-Barron).
- $\mathbb{Q}(C_{47})$ is not stably rational over \mathbb{Q} but retract rational over \mathbb{Q} .
- $\mathbb{Q}(C_8)$ is not retract rational over \mathbb{Q} but unirational over \mathbb{Q} .

Definition (Unramified Brauer group) Saltman (1984)

Let $k \subset K$ be an extension of fields. $\operatorname{Br}_{v,k}(K) = \bigcap_R \operatorname{Image} \{\operatorname{Br}(R) \to \operatorname{Br}(K)\}$ where $\operatorname{Br}(R) \to \operatorname{Br}(K)$ is the natural map of Brauer groups and R uns over all the discrete valuation rings R such that $k \subset R \subset K$ and K is the quotient field of R.

- ▶ If k is infinite field and K is retract rational over k, then natural map $Br(k) \rightarrow Br_{v,k}(K)$ is an isomorphism. In partidular, if k is an algebraically closed field and K is retract rational over k, then $Br_{v,k}(K) = 0$.
- "retract rational" $\implies B_0(G) = 0$ where $B_0(G) = \operatorname{Br}_{v,k}(k(G))$.

Theorem (Bogomolov 1988, Saltman 1990)

Let G be a finite group, k be an algebraically closed field with $gcd\{|G|, char k\} = 1$. Let μ denote the multiplicative subgroup of all roots of unity in k. Then $Br_{v,k}(k(G))$ is isomorphic

$$B_0(G) = \bigcap_A \operatorname{Ker} \{ \operatorname{res}_G^A : H^2(G, \mu) \to H^2(A, \mu) \}$$

where A runs over all the bicyclic subgroups of G (a group A is called bicyclic if A is either a cyclic group or a direct product of two cyclic groups).

- "retract rational" $\implies B_0(G) = 0$ where $B_0(G) = \operatorname{Br}_{v,k}(k(G))$. $B_0(G) \neq 0 \implies \text{not retract rational over } k \implies \text{not rational over } k$.
- ▶ $B_0(G)$ is a subgroup of the Schur multiplier $H_2(G, \mathbb{Z}) \simeq H^2(G, \mathbb{Q}/\mathbb{Z})$, which is called Bogomolov multiplier.

§4. Proof (Φ_{10}): $B_0(G) \neq 0$

We give a sketch of the proof of

Theorem 1 (the case Φ_{10})

Let p be an odd prime and G be a group of order p^5 belonging to the isoclinism family Φ_{10} . Then $B_0(G) \neq 0$.

We may obtain the following two lemmas:

Lemma 1

Let G be a finite group, N be a normal subgroup of G. Assume that (i) tr: $H^1(N, \mathbb{Q}/\mathbb{Z})^G \to H^2(G/N, \mathbb{Q}/\mathbb{Z})$ is not surjective where tr is the transgression map, and (ii) for any bicyclic subgroup A of G, the group AN/N is a cyclic subgroup of G/N. Then $B_0(G) \neq 0$.

Lemma 2

Let $p \ge 3$ and G be a p-group of order p^5 generated by f_i where $1 \le i \le 5$. Suppose that, besides other relations, the generators f_i satisfy the following conditions:

Then $B_0(G) \neq 0$.

Proof of Lemma 2.

Choose $N = \langle f_4, f_5 \rangle \simeq C_p \times C_p$. Then we may check that Lemma 1 is satisfied. Thus $B_0(G) \neq 0$.

Proof of Theorem 1.

All groups which belong to Φ_{10} satisfy the conditions as in Lemma 2.

Lemma 1

Let G be a finite group, N be a normal subgroup of G. Assume that (i) tr: $H^1(N, \mathbb{Q}/\mathbb{Z})^G \to H^2(G/N, \mathbb{Q}/\mathbb{Z})$ is not surjective where tr is the transgression map, and (ii) for any bicyclic subgroup A of G, the group AN/N is a cyclic subgroup of G/N. Then $B_0(G) \neq 0$.

Proof. Consider the Hochschild-Serre 5-term exact sequence

$$0 \to H^1(G/N, \mathbb{Q}/\mathbb{Z}) \to H^1(G, \mathbb{Q}/\mathbb{Z}) \to H^1(N, \mathbb{Q}/\mathbb{Z})^G$$
$$\xrightarrow{\mathrm{tr}} H^2(G/N, \mathbb{Q}/\mathbb{Z}) \xrightarrow{\psi} H^2(G, \mathbb{Q}/\mathbb{Z})$$

where ψ is the inflation map.

Since tr is not surjective (the first assumption (i)), we find that ψ is not the zero map. Thus $\text{Image}(\psi) \neq 0$.

We will show that $\operatorname{Image}(\psi) \subset B_0(G)$. By the definition, it suffices to show that, for any bicyclic subgroup A of G, the composite map $H^2(G/N, \mathbb{Q}/\mathbb{Z}) \xrightarrow{\psi} H^2(G, \mathbb{Q}/\mathbb{Z}) \xrightarrow{\operatorname{res}} H^2(A, \mathbb{Q}/\mathbb{Z})$ becomes the zero map.

Consider the following commutative diagram:

$$\begin{array}{c} H^{2}(G/N, \mathbb{Q}/\mathbb{Z}) \xrightarrow{\psi} H^{2}(G, \mathbb{Q}/\mathbb{Z}) \xrightarrow{\operatorname{res}} H^{2}(A, \mathbb{Q}/\mathbb{Z}) \\ & \psi_{0} \\ & & \uparrow^{\psi_{1}} \\ & & H^{2}(AN/N, \mathbb{Q}/\mathbb{Z}) \xrightarrow{\widetilde{\psi}} H^{2}(A/A \cap N, \mathbb{Q}/\mathbb{Z}) \end{array}$$

where ψ_0 is the restriction map, ψ_1 is the inflation map, ψ is the natural isomorphism.

Since AN/N is cyclic (the second assumption (ii)), write $AN/N \simeq C_m$ for some integer m.

It is well-known that $H^2(C_m, \mathbb{Q}/\mathbb{Z}) = 0$.

Hence ψ_0 is the zero map. Thus res $\circ \psi \colon H^2(G/N, \mathbb{Q}/\mathbb{Z}) \to H^2(A, \mathbb{Q}/\mathbb{Z})$ is also the zero map.

By $\text{Image}(\psi) \subset B_0(G)$ and $\text{Image}(\psi) \neq 0$, we get that $B_0(G) \neq 0$.

§5. Proof (Φ_6) : $B_0(G) = 0$

•
$$G = \Phi_6(211)a = \langle f_1, f_2, f_0, h_1, f_2 \rangle, f_1^p = h_1, f_2^p = h_2,$$

 $Z(G) = \langle h_1, h_2 \rangle, f_0^p = h_1^p = h_2^p = 1$
 $[f_1, f_2] = f_0, [f_0, f_1] = h_1, [f_0, f_2] = h_2$

 $0 \to H^1(G/N, \mathbb{Q}/\mathbb{Z}) \to H^1(G, \mathbb{Q}/\mathbb{Z}) \to H^1(N, \mathbb{Q}/\mathbb{Z})^G \xrightarrow{\mathrm{tr}} H^2(G/N, \mathbb{Q}/\mathbb{Z}) \xrightarrow{\psi} H^2(G, \mathbb{Q}/\mathbb{Z})$

§5. Proof (Φ_6): $B_0(G) = 0$

•
$$G = \Phi_6(211)a = \langle f_1, f_2, f_0, h_1, f_2 \rangle, f_1^p = h_1, f_2^p = h_2,$$

 $Z(G) = \langle h_1, h_2 \rangle, f_0^p = h_1^p = h_2^p = 1$
 $[f_1, f_2] = f_0, [f_0, f_1] = h_1, [f_0, f_2] = h_2$

 $0 \to H^{1}(G/N, \mathbb{Q}/\mathbb{Z}) \to H^{1}(G, \mathbb{Q}/\mathbb{Z}) \to H^{1}(N, \mathbb{Q}/\mathbb{Z})^{G} \xrightarrow{\operatorname{tr}} H^{2}(G/N, \mathbb{Q}/\mathbb{Z}) \xrightarrow{\psi} H^{2}(G, \mathbb{Q}/\mathbb{Z})$ \downarrow $\operatorname{Ker}\{H^{2}(G, \mathbb{Q}/\mathbb{Z}) \xrightarrow{\operatorname{res}} H^{2}(N, \mathbb{Q}/\mathbb{Z})\} =: H^{2}(G, \mathbb{Q}/\mathbb{Z})_{1}$ \downarrow $H^{1}(G/N, H^{1}(N, \mathbb{Q}/\mathbb{Z}))$

$$H^3(G/N, \mathbb{Q}/\mathbb{Z})$$

 Explicit formula for λ is given by Dekimpe-Hartl-Wauters (arXiv:1103.4052)

$$\blacktriangleright N := \langle f_1, f_0, h_1, h_2 \rangle \Longrightarrow G/N \simeq C_p \Longrightarrow H^2(G/N, \mathbb{Q}/\mathbb{Z}) = 0$$

- ► $B_0(G) \subset H^2(G, \mathbb{Q}/\mathbb{Z})_1$
- We should show $H^2(G, \mathbb{Q}/\mathbb{Z})_1 = 0$ ($\iff \lambda$: injective)