A generalization of elementary divisor theory

Satoshi Mochizuki

Contents

1	Main theorems and motivation	4
2	Spirit of elemetary divisor theory	9
3	What makes a multi-complex exact?	13
4	Weak absolute geometric presentation theorem	23
5	\mathbb{A}^1 -homotopy invariances, generic isomorphisms	28

Conventions.

Throughout the lecture, we utilize the letter A, B, C, S and X to denote a commutative noetherian ring with unit, an essentially small abelian category, a category, a finite set and the affine sheme associated with A respectively.

For any non-negative integer m, let us denote the totally ordered set of integers k such that $0 \le k \le m$ with the usual order by [m].

1 Main theorems and motivation

Main theorems.

1 Abstract Buchsbaum-Eisenbud theorem for multicomplexes.

2 Weak geometric presentation theorem

For any strictly regular closed immersion $Y \hookrightarrow X$, we have a derived equivalence

$$X_{w\mathcal{M}}^Y \xrightarrow{\mathrm{Tot}} X_{\mathrm{Top}}^Y$$

3 (In progression work) **Caborn-Fossum, Dutta chow groups** problem

If A is regular local, then $Ch_d(X) = 0$ for any $d < \dim X$.

The statement 1 is an assertion about objects and morphisms in \mathcal{B} involves a natural number n.

 $\bullet \ n=1$

If *ba* is a monomorphism, then *a* is a monomorphism.

 $\bullet \ n=2$

If the big square I+II+III+IV is a Cartesian square and if all morphisms in the diagram above are monomorphisms, then the square I is Cartesian. • The CDF problem is a variant of the following classical theorem.

Theorem.

If A is a unique factorization domain, then $\operatorname{Pic} X = 0$.

• The CDF problem is known for various *A* by utilizing

structure theorems over a base

or

weight argument of Adams operations.

Ideally, the CDF problem should be proven from the following conjectural statement which I call

an absolute geometric presentation theorem.

If A is regular local, then the canonical map

$$X^p_{\mathcal{M}} \to X^p_{\mathbf{Top}}$$

is a derived universally homeomorphism for any $0 \le p \le \dim X$.

Compare with the weak geometric presentation theorem with an absolute geometric presentation theorem.

2 Spirit of elemetary divisor theory

Sorting out modules

by Systems of matrices

with equivalence relations.

Systems of matrices = complexes of finitely generated free modules.

Equivalence relation = quasi-isomorphism.

Bourbaki-Iwasawa-Serre theory.

Equivalence relation = pseudo-isomorphism.

Here a homomorphism of A-modules $f : M \to N$ is a **pseudo**isomorphism if $\operatorname{Codim} \ker f \ge 2$ and $\operatorname{Codim} \operatorname{Coker} f \ge 2$.

Today's lecture.

Modules= TT-pure weight modules.

Systems of matrices = Koszul cubes.

Equivalence relation = totalized quasi-isomorphism. (\mathbb{A}^1 -homotopy equivalence, generic isomorphism).

What makes a comlex exact?

Buchsbaum-Eisenbud theorem.

For a complex of free *A*-modules of finite rank.

$$F_{\bullet}: 0 \to F_s \xrightarrow{\phi_s} F_{s-1} \xrightarrow{\phi_{s-1}} \to \cdots \to F_1 \xrightarrow{\phi_1} F_0 \to 0,$$

set $r_i = \sum_{j=i}^{s} (-1)^{j-i} \operatorname{rank} F_j$. Then the following are equivalent:

(1) F_{\bullet} is a resolution of $H_0(F_{\bullet})$.

(2) grade $I_{r_i}(\phi_i) \ge i$ for any $1 \le i \le s$ where $I_{r_i}(\phi_i)$ is the r_i -th Fitting ideal of ϕ_i .

3 What makes a multi-complex exact?

Definitions.

An S-cube in C is a contravariant functor

 $\mathcal{P}(S)^{\mathrm{op}}(\overset{\sim}{\to} [1]^{S^{\mathrm{op}}}) \to \mathcal{C}.$

For any $U \in \mathcal{P}(S)$ and $k \in U$,

- $x_U(:=x(U))$ vertex of x at U.
- $d_U^{k,x}(=d_U^k) := x(U \smallsetminus \{k\} \hookrightarrow U) \ k$ -boundary map at U.

Example 1

For a family of morphisms $\mathfrak{x} := \{x_s \xrightarrow{d_s} x\}_{s \in S}$ in \mathcal{B} , we put

$$\operatorname{Fib} \mathfrak{x}_U := \begin{cases} x & \text{if } U = \emptyset \\ x_s & \text{if } U = \{s\} \\ x_{t_1} \times_x x_{t_2} \times_x \cdots \times_x x_{t_r} & \text{if } U = \{t_1, \cdots, t_r\} \end{cases}$$

Definition.

An S-cube x in \mathcal{B} is **fibered** if the canonical map

$$x \to \operatorname{Fib}\{x_{\{s\}} \stackrel{d_{\{s\}}^s}{\to} x_{\emptyset}\}_{s \in S}$$

is an isomorphism.

Example 2

For a family of elements $\mathfrak{f}_S = \{f_s\}_{s \in S}$ in A, we put

 $\operatorname{Typ}(\mathfrak{f}_S)_U := A$ and $d_U^s = f_s$

for any $U \in \mathcal{P}(S)$ and $s \in U$.

(Notice that $\operatorname{Tot}\operatorname{Typ}(\mathfrak{f}_S)$ is the Koszul complex associated with $\mathfrak{f}_S.)$

Faces and homology of cubes

Definitions.

 $k \in S, x: S$ -cube $B^k, \ F^k: \mathcal{P}(S \smallsetminus \{k\}) \to \mathcal{P}(S)$ $F^k: U \mapsto U$ $B^k: U \mapsto U \sqcup \{k\}$

• xB^k : backside k-face of x.

- xF^k : frontside k-face of x.
- $H_0^k(x) := \operatorname{Coker}(xB^k \to xF^k)$: k-direction 0-th homology of x.

$$\begin{cases} S = \{1, 2\} \\ & x_S \longrightarrow x_{\{1\}} \\ & \downarrow \\ & \chi_{\{2\}} \end{pmatrix} \Rightarrow \downarrow \\ & x_{\{2\}} \longrightarrow x_{\emptyset} \\ & H_0^2(x)_{\emptyset} \\ & H_0^1(x)_{\{2\}} \longrightarrow H_0^2(x)_{\emptyset} \end{cases}$$

Admissibility

Definition.

We say that an S-cube x in \mathcal{B} is **admissible** if

- (1) its boundary morphism(s) is (are) monomorphism(s) and
- (2) if for every k in S, $H_0^k(x)$ is admissible.
- We can prove that any admissible cube is fibered.
- We can prove that an S-cube x in \mathcal{B} is admissible iff
- (1) all faces of the S-cube x are admissible and
- (2) $H_k(Tot x) = 0$ for any k > 0.

Example 1.

For a commutative diagram of monomorphisms in $\ensuremath{\mathcal{B}}$

the diagram above is admissible iff it is Cartesian.

Example 2.

For any family of elements $\mathfrak{f}_S = \{f_s\}_{s \in S}$ in A, $\operatorname{Typ}(\mathfrak{f}_S)$ is admissible iff \mathfrak{f}_S is a regular sequence in any order.

Admissibility

= a higher analogue of the notion about Cartesian squares

= a categorical variant of the notion about regular sequences.

Double cubes

Definitions.

A double S-cube in C is a contravariant functor

 $x: [2]^{S^{\mathrm{op}}} \to \mathcal{C}$.

For any $i \in [1]^S$, we put

 $e_{\mathfrak{i}}: [1]^S \to [2]^S, \ \mathfrak{j} \mapsto \mathfrak{i} + \mathfrak{j}$ and $\operatorname{Out}: [1]^S \to [2]^S, \ \mathfrak{j} \mapsto 2\mathfrak{j}.$

Example.

 $I = xe_{(1,1)}, II = xe_{(1,0)}, III = xe_{(0,1)}, IV = xe_{(0,0)}$ and I + II + III + IV = x Out.

ABE theorem

Theorem.

Let x be a double S-cube in \mathcal{B} . We assume that the following conditions hold.

- The *S*-cube *x* Out is admissible.
- \bullet All boundary morphisms of the double $S\mbox{-}cube\ x$ are monomorphisms.
- If $\#S \ge 3$, all faces of the *S*-cube xe_T are admissible for any proper subset *T* of *S*.

Then the *S*-cube xe_S is also an admissible *S*-cube.

Adjugates of cubes

From now on, let \mathcal{B} be the category of A-modules.

Definitions.

An **adjugate of an** *S*-cube x in \mathcal{B} is a pair $(\mathfrak{a}, \mathfrak{d}^*)$ consisting of a family of elements $\mathfrak{a} = \{a_s\}_{s \in S}$ in A and a family of morphisms $\mathfrak{d}^* = \{d_T^{t*} : x_{T \setminus \{t\}} \to x_T\}_{T \in \mathcal{P}(S), t \in T}$ in \mathcal{B} which satisfies the following two conditions.

• We have the equalities $d_T^t d_T^{t*} = (a_t)_{x_{T \setminus \{t\}}}$ and $d_T^{t*} d_T^t = (a_t)_{x_T}$ for any $T \in \mathcal{P}(S)$ and $t \in T$.

• For any $T \in \mathcal{P}(S)$ and any distinct elements a and $b \in T$, we have the equality $d_T^b d_T^{a*} = d_{T \smallsetminus \{b\}}^{a*} d_{T \smallsetminus \{a\}}^b$. Namely, the following diagram is commutative.

(2) An adjugate of an *S*-cube $(\mathfrak{a}, \mathfrak{d}^*)$ is **regular** if \mathfrak{a} forms x_T -regular sequence in any order for any $T \in \mathcal{P}(S)$.

Example.

X: $n \times n$ matrix whose coefficients are in *A*, $x := [A^{\oplus n} \xrightarrow{X} A^{\oplus n}]$ Then a pair $(\operatorname{adj} X, \det X)$ is an adjugate of *x*.

BE theorem for cubes

Corollary.

If an *S*-cube x in \mathcal{B} admits a regular adjugate, then x is admissible.

Proof.

For $S=\{1,2\},$ we apply the ABE theorem to the double cube below.

4 Weak absolute geometric presentation theorem

Koszul cubes

In this section, let $\mathfrak{f}_S = \{f_s\}_{s \in S}$ be a family of elements in A which forms a regular sequence in any order and x an S-cube in \mathcal{B} .

Definition.

x is **Koszul** (associated with \mathfrak{f}_S) if for any $T \in \mathcal{P}(S)$ and any $k \in T$,

(1) x_T is a finitely generated projective A-module and

(2) d_T^k is injective and

(3) There exists a non-negative integer m_k such that $f_k^{m_k} \operatorname{Coker} d_T^k = 0.$

We denote the category of Koszul cubes associated with \mathfrak{f}_S by $\mathbf{Kos}_A^{\mathfrak{f}_S}$.

• We can prove that any Koszul cube is admissible by BE theorem for cubes.

A morphism between koszul cubes (associated with \mathfrak{f}_S) $a: x \to y$ is a **totalized quasi-isomorphism** if H_0 Tot a is an isomorphism.

Example.

 $\operatorname{Typ}(\mathfrak{f}_S)$ is a Koszul cube.

Solid devices

Definition.

A **solid device** $\mathbf{E} = (\mathcal{E}, w)$ is a pair of a category \mathcal{E} and a class of morphisms w in \mathcal{E} which satisfies the following axioms.

E is an exact category.
(*E*, *w*) and (*E*^{OP}, *w*^{OP}) are categories with cofibrations and weak equivalences.
(Extensional axiom). For any commutative diagrams admissible exact sequences in *E*. *x* → *w* → *y* → *z* / *x* / *b* → *z* / *z* / *x* / *y* → *z* / *z* / *x* / *y* → *y* / *y* / *y* / *z* / *z* / *x* / *y* / *y* / *y* / *y* / *z* / *z* / *x* / *y* / *y* / *y* / *y* / *y* / *z* / *z* / *x* / *y* /

 \bullet We will functorially associate a solid device ${\bf E}$ with

(1) the non-connective K-spectrum $\mathbb{K}(\mathbf{E})$ and

(2) the *bounded derived categories* $\mathcal{D}_b(\mathbf{E})$ which is a triangulated category.

A morphism between solid devices $f : \mathbf{E} \to \mathbf{F}$ is a **derived equiv**alence if it induces an equivalence of triangulated categories

 $\mathcal{D}_b(\mathbf{E}) \to \mathcal{D}_b(\mathbf{F}).$

Example 1.

 $Y \hookrightarrow X$:closed subset. We put

 $X_{\mathbf{Top}}^{Y} := (\operatorname{Perf}_{X}^{Y}, \operatorname{qis}),$ $X_{\mathbf{Top}}^{p} := (\operatorname{Perf}_{X}^{p}, \operatorname{qis})$

where Perf_X^Y is the category of perfect complexes whose cohomological support are in Y and $\operatorname{Perf}_X^p := \bigcup_{\operatorname{Codim} Y \ge p} \operatorname{Perf}_X^Y$. X_{Top}^Y and

 $X_{\mathbf{Top}}^{p}$ are solid devices.

Example 2.

 $Y \hookrightarrow X$:regular closed immersion of codimension r.

A perfect \mathcal{O}_X -module \mathcal{F} on X is a **TT-weight** r (supported on Y) if $\operatorname{Supp} \mathcal{F} \subset Y$ and $\operatorname{Tor-dim} \mathcal{F} \leq r$.

Let us denote the exact category of TT-weight r modules supported on Y by \mathbf{Wt}_X^Y .

We put

 $X_{\mathrm{TT}}^Y := (\mathbf{W}\mathbf{t}_X^Y, \mathrm{isom}).$

 X_{TT}^{Y} is a solid device.

Example 3.

 $Y = V(\mathfrak{f}_S)$. We put

$$X_{w\mathcal{M}}^Y := (\mathbf{Kos}_A^{\mathfrak{f}_S}, \mathrm{tq})$$

where tq is the class of totalized quasi-isomorphisms in $\mathbf{Kos}_{A}^{f_{S}}$. X_{wM}^{Y} is a solid device.

WGP theorem

Theorem.

For $Y = V(\mathfrak{f}_S)$, the canonical map

 $X_{w\mathcal{M}}^Y \xrightarrow{\mathrm{Tot}} X_{\mathbf{Top}}^Y$

is derived equivalence.

Proof.

In the derived commutative diagram above, the map **I** is a derived equivalence by Hiranouchi-M.

To prove that H_0 Tot is a derived equivalence, one of the key ingredient is giving an algorithm about inductive resolution process of pure weight modules by Koszul cubes. **5** \mathbb{A}^1 -homotopy invariances, generic isomorphisms

Regularity and \mathbb{A}^1 -homotopy invariance

In this section, let A be a regular local ring.

Lemma.

Let $\mathfrak{f}_S = \{f_s\}_{s \in S}$ be a regular sequence in A and we put $Y = V(\mathfrak{f}_S)$. Then the canonical map $A \to A[t]$ induces an isomorphism of K-groups

 $K_n(X_{w\mathcal{M}}^Y) \xrightarrow{\sim} K_n(X[t]_{w\mathcal{M}}^Y).$

• In particular, for any $z(t) \in X[t]_{w\mathcal{M}}^{Y}$, [z(0)] = [z(1)] in $K_0(X_{w\mathcal{M}}^{Y})$.

Generic isomorphisms

Let $0 \le p \le \dim A$ be an integer. We propose the following assertions.

 (α_p) For any regular sequence f_1, \dots, f_p in A, the canonical inclusion functor

$$X^{V(f_1,\cdots,f_p)}_{\mathbf{Top}} \hookrightarrow X^{V(f_1,\cdots,f_{p-1})}_{\mathbf{Top}}$$

induces the zero map on their Grothendieck groups.

 (β_p) For any regular sequence \mathfrak{f}_S such that #S = p, the Grothendieck group $K_0(X_{wM}^{\mathfrak{f}_S})$ is generated by Koszul cubes of rank one.

Lemma.

(1) The assertion (β_p) implies (α_p) .

(2) The assertions (α_p) ($0 \le p \le \dim A$) imply the CDF problem.

(3) Let *g* be an element in *A* and $\mathfrak{f}_S := \{f_s\}_{s \in S}$ a regular sequence of *A* such that \mathfrak{f}_S is still a regular sequence in A_g and we put $X_g := \operatorname{Spec} A_g$ and $Y = V(\mathfrak{f}_S)$. Assume $(\alpha_{\#S+1})$, then the canonical localization map $A \to A_g$ induces an isomorphism of Grotheindieck groups

$$K_0(X^Y_{w\mathcal{M}}) \xrightarrow{\sim} K_0(X^Y_{g_w\mathcal{M}}).$$

• We will prove (β_p) by descending induction of p.

Notations.

• For an element λ in A, and for $1 \le i \ne j \le n$, $e_{ij}^n(\lambda)$ or simply $e_{ij}(\lambda)$ will denote the $n \times n$ matrix such that the diagonal entries are one, the (i, j) entry is λ and the other entries are zero.

• For elements a_1, \dots, a_n in A, we write $diag(a_1, \dots, a_n)$ for the diagonal matrix whose (i, i) entry is a_i .

Let $x \in X_{w\mathcal{M}}^Y$. Let us put $n := \operatorname{rank} x$. By fixing the bases of all vertexes of x, we write $A^s = (a_{ij}^s)$ for the matrix description of $d_s^x : x_{\{s\}} \to x_{\emptyset}$ for each $s \in S$. We put $d^s := \gcd\{a_{1j}^s; 1 \le j \le n\}$ and $b_{1j}^s = a_{1j}^s/d^s$. Then for any s in S, there exists a subset $T_s \subset$ $\{2, \dots, n-1, n\}$ such that $c_{11}^s = b_{11}^s + \sum_{j \in T_s} b_{1j}^s$ is prime to f_s . Now we put $g := \prod_{s \in S} c_{11}^s, c_{j1}^s := a_{j1}^s + \sum_{l \in T_s} a_{jl}^s (2 \le j \le n)$ and $B(t)^s = \operatorname{diag}(d^s, 1, 1, \dots, 1) \prod_{j=2}^n e_{1j}(-\frac{c_{j1}^s}{c_{11}^s}t) \begin{pmatrix} b_{11}^s & b_{12}^s & \dots & b_{1n}^s \\ a_{21}^s & a_{22}^s & \dots & a_{2n}^s \\ \vdots & \vdots & \dots & \vdots \\ a_{n1}^s & a_{n2}^s & \dots & a_{nn}^s \end{pmatrix} \prod_{j \in T_s} e_{j1}(t).$

Notice that $B(0)^s = A^s$ and the first column of $B(1)^s$ is of the form $\begin{pmatrix} d^s c_{11}^s \\ 0 \\ \vdots \\ 0 \end{pmatrix}$. We use $\operatorname{Fib}\{A[t]^{\oplus n} \xrightarrow{B(t)^s} A[t]^{\oplus n}\}_{s \in S}$.