A generalization of elementary divisor theory

Satoshi Mochizuki

Contents

1 Main theorems and motivation 4
2 Spirit of elemetary divisor theory 9
3 What makes a multi-complex exact? 13
4 Weak absolute geometric presentation theorem 23
$5 \quad \mathbb{A}^{1}$-homotopy invariances, generic isomorphisms 28

Conventions.

Throughout the lecture, we utilize the letter $A, \mathcal{B}, \mathcal{C}, S$ and X to denote a commutative noetherian ring with unit, an essentially small abelian category, a category, a finite set and the affine sheme associated with A respectively.

For any non-negative integer m, let us denote the totally ordered set of integers k such that $0 \leq k \leq m$ with the usual order by $[m]$.

1 Main theorems and motivation

Main theorems.

1 Abstract Buchsbaum-Eisenbud theorem for multicomplexes.

2 Weak geometric presentation theorem

For any strictly regular closed immersion $Y \hookrightarrow X$, we have a derived equivalence

$$
X_{w \mathcal{M}}^{Y} \xrightarrow{\text { Tot }} X_{\text {Top }}^{Y} .
$$

3 (In progression work) Caborn-Fossum, Dutta chow groups problem

If A is regular local, then $\mathbf{C h}_{d}(X)=0$ for any $d<\operatorname{dim} X$.

The statement 1 is an assertion about objects and morphisms in \mathcal{B} involves a natural number n.

- $n=1$

If $b a$ is a monomorphism, then a is a monomorphism.

- $n=2$

If the big square $\mathbf{I}+\mathbf{I I}+\mathbf{I I I}+\mathbf{I V}$ is a Cartesian square and if all morphisms in the diagram above are monomorphisms, then the square I is Cartesian.

- The CDF problem is a variant of the following classical theorem.

Theorem.

If A is a unique factorization domain, then $\operatorname{Pic} X=0$.

- The CDF problem is known for various A by utilizing

structure theorems over a base

or
weight argument of Adams operations.

Ideally, the CDF problem should be proven from the following conjectural statement which I call

an absolute geometric presentation theorem.

If A is regular local, then the canonical map

$$
X_{\mathcal{M}}^{p} \rightarrow X_{\text {Top }}^{p}
$$

is a derived universally homeomorphism for any $0 \leq p \leq \operatorname{dim} X$.

Compare with the weak geometric presentation theorem with an absolute geometric presentation theorem.

2 Spirit of elemetary divisor theory

Sorting out modules

by Systems of matrices

with equivalence relations.

Syzygy.

Systems of matrices $=$ complexes of finitely generated free modules.

Equivalence relation = quasi-isomorphism.

Bourbaki-Iwasawa-Serre theory.

Equivalence relation $=$ pseudo-isomorphism.

Here a homomorphism of A-modules $f: M \rightarrow N$ is a pseudoisomorphism if Codim ker $f \geq 2$ and Codim Coker $f \geq 2$.

Today's lecture.

Modules= TT-pure weight modules.
Systems of matrices $=$ Koszul cubes.
Equivalence relation = totalized quasi-isomorphism. (\mathbb{A}^{1}-homotopy equivalence, generic isomorphism).

What makes a comlex exact?

Buchsbaum-Eisenbud theorem.

For a complex of free A-modules of finite rank.

$$
F_{\bullet}: 0 \rightarrow F_{s} \xrightarrow{\phi_{s}} F_{s-1} \xrightarrow{\phi_{s-1}} \rightarrow \cdots \rightarrow F_{1} \xrightarrow{\phi_{1}} F_{0} \rightarrow 0,
$$

set $r_{i}=\sum_{j=i}^{s}(-1)^{j-i} \operatorname{rank} F_{j}$. Then the following are equivalent:
(1) $F_{\boldsymbol{\bullet}}$ is a resolution of $\mathrm{H}_{0}\left(F_{\bullet}\right)$.
(2) grade $I_{r_{i}}\left(\phi_{i}\right) \geq i$ for any $1 \leq i \leq s$ where $I_{r_{i}}\left(\phi_{i}\right)$ is the r_{i}-th Fitting ideal of ϕ_{i}.

3 What makes a multi-complex exact?

Definitions.

An S-cube in \mathcal{C} is a contravariant functor

$$
\mathcal{P}(S)^{\mathrm{op}}\left(\xrightarrow{\sim}[1]^{S^{\mathrm{op}}}\right) \rightarrow \mathcal{C} .
$$

For any $U \in \mathcal{P}(S)$ and $k \in U$,

- $x_{U}(:=x(U))$ vertex of x at U.
- $d_{U}^{k, x}\left(=d_{U}^{k}\right):=x(U \backslash\{k\} \hookrightarrow U) k$-boundary map at U.

$$
S=\{1\} \quad S=\{1,2\} \quad S=\{1,2,3\}
$$

Example 1

For a family of morphisms $\mathfrak{x}:=\left\{x_{s} \xrightarrow{d_{s}} x\right\}_{s \in S}$ in \mathcal{B}, we put

$$
\text { Fib } \mathfrak{x}_{U}:= \begin{cases}x & \text { if } U=\emptyset \\ x_{s} & \text { if } U=\{s\} \\ x_{t_{1}} \times_{x} x_{t_{2}} \times_{x} \cdots \times_{x} x_{t_{r}} & \text { if } U=\left\{t_{1}, \cdots, t_{r}\right\}\end{cases}
$$

Definition.

An S-cube x in \mathcal{B} is fibered if the canonical map

$$
x \rightarrow \operatorname{Fib}\left\{x_{\{s\}} \xrightarrow{d_{\{s\}}^{s}} x_{\emptyset}\right\}_{s \in S}
$$

is an isomorphism.

Example 2

For a family of elements $\mathfrak{f}_{S}=\left\{f_{s}\right\}_{s \in S}$ in A, we put

$$
\operatorname{Typ}\left(\mathfrak{f}_{S}\right)_{U}:=A \text { and } d_{U}^{s}=f_{s}
$$

for any $U \in \mathcal{P}(S)$ and $s \in U$.
(Notice that $\operatorname{Tot} \operatorname{Typ}\left(\mathfrak{f}_{S}\right)$ is the Koszul complex associated with \mathfrak{f}_{S}.)

Faces and homology of cubes

Definitions.

$k \in S, x: S$-cube

$$
\begin{gathered}
B^{k}, F^{k}: \mathcal{P}(S \backslash\{k\}) \rightarrow \mathcal{P}(S) \\
F^{k}: U \mapsto U \\
B^{k}: U \mapsto U \sqcup\{k\}
\end{gathered}
$$

- $x B^{k}$: backside k-face of x.
- $x F^{k}$: frontside k-face of x.
- $\mathrm{H}_{0}^{k}(x):=\operatorname{Coker}\left(x B^{k} \rightarrow x F^{k}\right): k$-direction 0-th homology of x.

$$
S=\{1,2\}
$$

Admissibility

Definition.

We say that an S-cube x in \mathcal{B} is admissible if
(1) its boundary morphism(s) is (are) monomorphism(s) and
(2) if for every k in $S, \mathrm{H}_{0}^{k}(x)$ is admissible.

- We can prove that any admissible cube is fibered.
- We can prove that an S-cube x in \mathcal{B} is admissible iff
(1) all faces of the S-cube x are admissible and
(2) $\mathrm{H}_{k}(\operatorname{Tot} x)=0$ for any $k>0$.

Example 1.

For a commutative diagram of monomorphisms in \mathcal{B}

the diagram above is admissible iff it is Cartesian.

Example 2.

For any family of elements $\mathfrak{f}_{S}=\left\{f_{s}\right\}_{s \in S}$ in $A, \operatorname{Typ}\left(\mathfrak{f}_{S}\right)$ is admissible iff \mathfrak{f}_{S} is a regular sequence in any order.

Admissibility

= a higher analogue of the notion about Cartesian squares

= a categorical variant of the notion about regular sequences.

Double cubes

Definitions.

A double S-cube in \mathcal{C} is a contravariant functor

$$
x:[2]^{S \mathrm{op}} \rightarrow \mathcal{C} .
$$

For any $\mathfrak{i} \in[1]^{S}$, we put

$$
\begin{gathered}
e_{\mathfrak{i}}:[1]^{S} \rightarrow[2]^{S}, \mathfrak{j} \mapsto \mathfrak{i}+\mathfrak{j} \text { and } \\
\text { Out : }[1]^{S} \rightarrow[2]^{S}, \mathfrak{j} \mapsto 2 \mathfrak{j} .
\end{gathered}
$$

Example.

$\mathbf{I}=x e_{(1,1)}, \mathbf{I I}=x e_{(1,0)}, \mathbf{I I I}=x e_{(0,1)}, \mathbf{I V}=x e_{(0,0)}$ and
$\mathbf{I}+\mathbf{I}+\mathbf{I I I}+\mathbf{I V}=x$ Out.

ABE theorem

Theorem.

Let x be a double S-cube in \mathcal{B}. We assume that the following conditions hold.

- The S-cube x Out is admissible.
- All boundary morphisms of the double S-cube x are monomorphisms.
- If $\# S \geq 3$, all faces of the S-cube $x e_{T}$ are admissible for any proper subset T of S.

Then the S-cube $x e_{S}$ is also an admissible S-cube.

Adjugates of cubes

From now on, let \mathcal{B} be the category of A-modules.

Definitions.

An adjugate of an S-cube x in \mathcal{B} is a pair ($\mathfrak{a}, \mathfrak{d}^{*}$) consisting of a family of elements $\mathfrak{a}=\left\{a_{s}\right\}_{s \in S}$ in A and a family of morphisms $\mathfrak{d}^{*}=\left\{d_{T}^{t *}: x_{T \backslash\{t\}} \rightarrow x_{T}\right\}_{T \in \mathcal{P}(S), t \in T}$ in \mathcal{B} which satisfies the following two conditions.

- We have the equalities $d_{T}^{t} d_{T}^{t *}=\left(a_{t}\right)_{x_{T \backslash\{t\}}}$ and $d_{T}^{t *} d_{T}^{t}=\left(a_{t}\right)_{x_{T}}$ for any $T \in \mathcal{P}(S)$ and $t \in T$.
- For any $T \in \mathcal{P}(S)$ and any distinct elements a and $b \in T$, we have the equality $d_{T}^{b} d_{T}^{a *}=d_{T \backslash\{b\}}^{a *} d_{T \backslash\{a\}}^{b}$. Namely, the following diagram is commutative.

(2) An adjugate of an S-cube $\left(\mathfrak{a}, \mathfrak{d}^{*}\right)$ is regular if \mathfrak{a} forms $x_{T^{-}}$ regular sequence in any order for any $T \in \mathcal{P}(S)$.

Example.

$X: n \times n$ matrix whose coefficients are in $A, x:=\left[A^{\oplus n} \xrightarrow{X} A^{\oplus n}\right]$
Then a pair $(\operatorname{adj} X, \operatorname{det} X)$ is an adjugate of x.

BE theorem for cubes

Corollary.

If an S-cube x in \mathcal{B} admits a regular adjugate, then x is admissible.

Proof.

For $S=\{1,2\}$, we apply the ABE theorem to the double cube below.

4 Weak absolute geometric presentation theorem

Koszul cubes

In this section, let $\mathfrak{f}_{S}=\left\{f_{s}\right\}_{s \in S}$ be a family of elements in A which forms a regular sequence in any order and x an S-cube in \mathcal{B}.

Definition.

x is Koszul (associated with \mathfrak{f}_{S}) if for any $T \in \mathcal{P}(S)$ and any $k \in T$,
(1) x_{T} is a finitely generated projective A-module and
(2) d_{T}^{k} is injective and
(3) There exists a non-negative integer m_{k} such that $f_{k}^{m_{k}}$ Coker $d_{T}^{k}=0$.
We denote the category of Koszul cubes associated with \mathfrak{f}_{S} by $\operatorname{Kos}_{A}^{\mathrm{f}_{S}}$.

- We can prove that any Koszul cube is admissible by BE theorem for cubes.

A morphism between koszul cubes (associated with \mathfrak{f}_{S}) $a: x \rightarrow y$ is a totalized quasi-isomorphism if $\mathrm{H}_{0} \operatorname{Tot} a$ is an isomorphism.

Example.

$\operatorname{Typ}\left(\mathfrak{f}_{S}\right)$ is a Koszul cube.

Solid devices

Definition.

A solid device $\mathbf{E}=(\mathcal{E}, w)$ is a pair of a category \mathcal{E} and a class of morphisms w in \mathcal{E} which satisfies the following axioms.

- \mathcal{E} is an exact category.
- (\mathcal{E}, w) and $\left(\mathcal{E}^{\mathrm{Op}}, w^{\mathrm{op}}\right)$ are categories with cofibrations and weak equivalences.
- (Extensional axiom). For any commutative diagrams admissible exact sequences in \mathcal{E},

if a and c are in w, then b is also in w. Let us write \mathcal{E}^{w} for the full subcategory of \mathcal{E} consisting of those object x such that the canonical morphism $0 \rightarrow x$ is in w. Then \mathcal{E}^{w} naturally becomes an exact category.
- (Solid axiom). For any morphism $f: x \rightarrow y$ in w, the complex Cone $f=[x \xrightarrow{f} y]$ is connected to a bounded complexes on \mathcal{E}^{w} by a zig-zag of quasi-isomorphisms.
- (Fibrational axiom). The canonical inclusion functors $\mathcal{E}^{w} \rightarrow \mathcal{E}$ and $(\mathcal{E}, i) \rightarrow(\mathcal{E}, w)$ induce the sequence having a homotopy type of fibration sequence
$i \mathcal{S}_{\bullet} \mathcal{E}^{w} \rightarrow i \mathcal{S}_{\bullet} \mathcal{E} \rightarrow w \mathcal{S}_{\bullet} \mathcal{E}$
where i means the class of all isomorphisms and \mathcal{S} means the Segal-Waldhausen \mathcal{S}-construction.
- We will functorially associate a solid device \mathbf{E} with
(1) the non-connective K-spectrum $\mathbb{K}(\mathbf{E})$ and
(2) the bounded derived categories $\mathcal{D}_{b}(\mathbf{E})$ which is a triangulated category.

A morphism between solid devices $f: \mathbf{E} \rightarrow \mathbf{F}$ is a derived equivalence if it induces an equivalence of triangulated categories

$$
\mathcal{D}_{b}(\mathbf{E}) \rightarrow \mathcal{D}_{b}(\mathbf{F}) .
$$

Example 1.

$Y \hookrightarrow X$:closed subset. We put

$$
\begin{aligned}
X_{\text {Top }}^{Y} & :=\left(\operatorname{Perf}_{X}^{Y}, \text { qis }\right), \\
X_{\text {Top }}^{p} & :=\left(\operatorname{Perf}_{X}^{p}, \text { qis }\right)
\end{aligned}
$$

where $\operatorname{Perf}_{X}^{Y}$ is the category of perfect complexes whose cohomological support are in Y and $\operatorname{Perf}_{X}^{p}:=\bigcup_{\operatorname{Codim} Y \geq p} \operatorname{Perf}_{X}^{Y} . X_{\text {Top }}^{Y}$ and $X_{\text {Top }}^{p}$ are solid devices.

Example 2.

$Y \hookrightarrow X$:regular closed immersion of codimension r.
A perfect \mathcal{O}_{X}-module \mathcal{F} on X is a TT-weight r (supported on Y) if $\operatorname{Supp} \mathcal{F} \subset Y$ and Tor- $\operatorname{dim} \mathcal{F} \leqq r$.

Let us denote the exact category of TT-weight r modules supported on Y by $\mathbf{W t}_{X}^{Y}$.

We put

$$
X_{\mathrm{TT}}^{Y}:=\left(\mathbf{W t}_{X}^{Y}, \text { isom }\right) .
$$

X_{TT}^{Y} is a solid device.

Example 3.

$Y=V\left(\mathfrak{f}_{S}\right)$. We put

$$
X_{w \mathcal{M}}^{Y}:=\left(\operatorname{Kos}_{A}^{\mathrm{f}_{S}}, \mathrm{tq}\right)
$$

where tq is the class of totalized quasi-isomorphisms in $\operatorname{Kos}_{A}^{\mathrm{f}_{S}}$. $X_{w \mathcal{M}}^{Y}$ is a solid device.

WGP theorem

Theorem.

For $Y=V\left(\mathfrak{f}_{S}\right)$, the canonical map

$$
X_{w \mathcal{M}}^{Y} \xrightarrow{\text { Tot }} X_{\mathbf{T o p}}^{Y}
$$

is derived equivalence.

Proof.

In the derived commutative diagram above, the map I is a derived equivalence by Hiranouchi-M.

To prove that H_{0} Tot is a derived equivalence, one of the key ingredient is giving an algorithm about inductive resolution process of pure weight modules by Koszul cubes.
$5 \mathbb{A}^{1}$-homotopy invariances, generic isomorphisms

Regularity and \mathbb{A}^{1}-homotopy invariance

In this section, let A be a regular local ring.

Lemma.

Let $\mathfrak{f}_{S}=\left\{f_{s}\right\}_{s \in S}$ be a regular sequence in A and we put $Y=$ $V\left(\mathfrak{f}_{S}\right)$. Then the canonical map $A \rightarrow A[t]$ induces an isomorphism of K-groups

$$
K_{n}\left(X_{w \mathcal{M}}^{Y}\right) \xrightarrow{\sim} K_{n}\left(X[t]_{w \mathcal{M}}^{Y}\right) .
$$

- In particular, for any $z(t) \in X[t]_{w \mathcal{M}}^{Y},[z(0)]=[z(1)]$ in $K_{0}\left(X_{w \mathcal{M}}^{Y}\right)$.

Generic isomorphisms

Let $0 \leq p \leq \operatorname{dim} A$ be an integer. We propose the following assertions.
$\left(\alpha_{p}\right)$ For any regular sequence f_{1}, \cdots, f_{p} in A, the canonical inclusion functor

$$
X_{\text {Top }}^{V\left(f_{1}, \cdots, f_{p}\right)} \hookrightarrow X_{\text {Top }}^{V\left(f_{1}, \cdots, f_{p-1}\right)}
$$

induces the zero map on their Grothendieck groups.
$\left(\beta_{p}\right)$ For any regular sequence \mathfrak{f}_{S} such that $\# S=p$, the Grothendieck group $K_{0}\left(X_{w \mathcal{M}}^{\rho_{s}}\right)$ is generated by Koszul cubes of rank one.

Lemma.

(1) The assertion (β_{p}) implies (α_{p}).
(2) The assertions (α_{p}) $(0 \leq p \leq \operatorname{dim} A)$ imply the CDF problem.
(3) Let g be an element in A and $\mathfrak{f}_{S}:=\left\{f_{s}\right\}_{s \in S}$ a regular sequence of A such that \mathfrak{f}_{S} is still a regular sequence in A_{g} and we put $X_{g}:=\operatorname{Spec} A_{g}$ and $Y=V\left(\mathfrak{f}_{S}\right)$. Assume $\left(\alpha_{\# S+1}\right)$, then the canonical localization map $A \rightarrow A_{g}$ induces an isomorphism of Grotheindieck groups

$$
K_{0}\left(X_{w \mathcal{M}}^{Y}\right) \xrightarrow{\sim} K_{0}\left(X_{g_{w \mathcal{M}}}^{Y}\right) .
$$

- We will prove $\left(\beta_{p}\right)$ by descending induction of p.

How to prove $\left(\beta_{p}\right)$?

Notations.

- For an element λ in A, and for $1 \leq i \neq j \leq n, e_{i j}^{n}(\lambda)$ or simply $e_{i j}(\lambda)$ will denote the $n \times n$ matrix such that the diagonal entries are one, the (i, j) entry is λ and the other entries are zero.
- For elements a_{1}, \cdots, a_{n} in A, we write $\operatorname{diag}\left(a_{1}, \cdots, a_{n}\right)$ for the diagonal matrix whose (i, i) entry is a_{i}.

Let $x \in X_{w \mathcal{M}}^{Y}$. Let us put $n:=\operatorname{rank} x$. By fixing the bases of all vertexes of x, we write $A^{s}=\left(a_{i j}^{s}\right)$ for the matrix description of $d_{s}^{x}: x_{\{s\}} \rightarrow x_{\emptyset}$ for each $s \in S$. We put $d^{s}:=\operatorname{gcd}\left\{a_{1 j}^{s} ; 1 \leq j \leq n\right\}$ and $b_{1 j}^{s}=a_{1 j}^{s} / d^{s}$. Then for any s in S, there exists a subset $T_{s} \subset$ $\{2, \cdots, n-1, n\}$ such that $c_{11}^{s}=b_{11}^{s}+\sum_{j \in T_{s}} b_{1 j}^{s}$ is prime to f_{s}. Now we put $g:=\prod_{s \in S} c_{11}^{s}, c_{j 1}^{s}:=a_{j 1}^{s}+\sum_{l \in T_{s}} a_{j l}^{s}(2 \leq j \leq n)$ and
$B(t)^{s}=\operatorname{diag}\left(d^{s}, 1,1, \cdots, 1\right) \prod_{j=2}^{n} e_{1 j}\left(-\frac{c_{j 1}^{s}}{c_{11}^{s}} t\right)\left(\begin{array}{cccc}b_{11}^{s} & b_{12}^{s} & \cdots & b_{1 n}^{s} \\ a_{21}^{s} & a_{22}^{s} & \cdots & a_{2 n}^{s} \\ \vdots & \vdots & \cdots & \vdots \\ a_{n 1}^{s} & a_{n 2}^{s} & \cdots & a_{n n}^{s}\end{array}\right) \prod_{j \in T_{s}} e_{j 1}(t)$.
Notice that $B(0)^{s}=A^{s}$ and the first column of $B(1)^{s}$ is of the form $\left(\begin{array}{c}d^{s} c_{11}^{s} \\ 0 \\ \vdots \\ 0\end{array}\right)$. We use Fib $\left\{A[t]^{\oplus n} \xrightarrow{B(t)^{s}} A[t]^{\oplus n}\right\}_{s \in S}$.

