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Abstract We propose a pseudorandom number generator specialized to
generate double precision floating point numbers. It generates 52-bit pseudo-
random patterns supplemented by a constant most significant 12 bits (sign
and exponent), so that the concatenated 64 bits represents a floating point
number obeying the IEEE 754 format. To keep the constant part, we adopt
an affine transition function instead of the usual F2-linear transition, and ex-
tend algorithms computing the period and the dimensions of equidistribution
to the affine case. The resulted generator generates double precision floating
point numbers faster than the Mersenne Twister, whose output numbers only
have 32-bit precision.

1 Introduction

In [19], we proposed a fast version of the Mersenne twister (MT) of [14], that
exploits the single instruction multiple data (SIMD) feature of some recent
CPUs, which processes 128 bits at a time [20]. This new pseudorandom num-
ber generator (PRNG), named SFMT (which stands for SIMD-oriented fast
Mersenne twister), is faster than the original MT and also has better equidis-
tribution. The proposal of [19] also features a block generation procedure,
which returns a large array of pseudorandom numbers at each call.

Mutsuo Saito
Department of Mathematics, Graduate School of Science, Hiroshima University, Hiroshima,
Japan, e-mail: saito@math.sci.hiroshima-u.ac.jp

Makoto Matsumoto
Department of Mathematics, Graduate School of Science, Hiroshima University, Hiroshima,
Japan, e-mail: m-mat@math.sci.hiroshima-u.ac.jp

1



2 Mutsuo Saito and Makoto Matsumoto

In this article, we propose PRNGs specialized in generating floating point
numbers, which we call dSFMT (double precision floating point SFMT). It
generates a sequence of 64-bit patterns with constant 12 most significant bits
(MSBs), so that each of 64-bit patterns represents a double precision floating
point numbers in a fixed interval in the standard IEEE 754 format. Instead
of the usual F2-linear transition function, we adopt an F2-affine transition
function to keep the fixed constant in the 64 bits (§4). We extended to the
affine case some of the existing algorithms to compute the period and distri-
bution. As a result, we implemented this type of generators whose periods are
multiples of 6 Mersenne primes from 2521−1 to 219937−1, respectively. These
generators are shown to be faster than MT, SFMT and WELL generators,
and have satisfactorily high dimensions of equidistribution (much higher than
MT, but lower than WELL, which attains the theoretical bounds).

2 Generating floating point numbers

Usually, floating point pseudorandom numbers are obtained by converting in-
teger pseudorandom numbers. One may consider recursion in floating point
numbers for PRNG, but it may accumulate approximation errors. Since the
rounding-off is not standardized, the generated sequence often depends on
CPUs. Consequently, usual PRNGs generate integer random numbers by in-
teger recursion, and converts them to floating point numbers by multiplying
by a constant. However, this method requires a conversion from an integer
to a floating point number, which consumes about 50% of the CPU time in
the generation, according to our experiments using the 64-bit MT [15].

A faster conversion is given by bit operations fitting a standard floating
point format. We recall the most widely-used standard, IEEE Standard for
Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-2008) [6], which we
shall refer as IEEE 754. The standard was defined in 1985 and revised in
2008, and here we treat the 64-bit binary format valid for both. The 64 bits
are separated in to the sign bit (the most significant bit, MSB), the exponent
(the next 11 most significant bits, representing an integer between 0 to 2047,
denoted by e) and the remaining 52 bits (representing a real number in the
interval [1, 2). This 52-bit pattern xxx. . . is interpreted as a binary floating
number 1.xxx. . ., denoted by f). When 0 < e < 2047, the 64 bits represents
a floating point number ±f × 2e−1023 with the sign determined by the sign
bit. Thus, if the sign bit is 0 and e = 1023 (or equivalently the 12 MSBs
are 0x3ff in hexadecimal form), then the represented number is in [1, 2). If
the 52-bit fraction part is uniformly randomly chosen, then the represented
number is uniformly randomly distributed over [1, 2) with 52-bit precision. In
the C language, this conversion of a 64-bit integer x is described as follows:

x = (x >> 12) | 0x3FF0000000000000ULL;
y = *((double *)&x);
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where the first line shifts x to the right by 12 bits and set the 12 MSBs to the
constant 0x3ff, and the second line regards the 64-bit pattern as an IEEE 754
format. This method is less portable than the conversion by multiplication,
because it depends on a particular format, but consumes only 5% to 10%
of the CPU time for the conversion, according to our experiments with the
64-bit MT. This method goes back to at least 1997: Agner Fog used this
method in his open source library [4], and others seemed to have invented it
independently, too.

A pseudorandom number r in [1, 2) can be converted into [0, 1) (respec-
tively (0, 1]) by taking r−1 (respectively 1−r). In practice, it is often the case
that random numbers r in the range [1, 2) can be used without converting
into [0, 1): for example, the Box-Muller transformation converts two uniform
random numbers s1, s2 in [0, 1) into two normally distributed numbers√

−2 log(1 − s1) sin(2πs2),
√
−2 log(1 − s1) cos(2πs2).

If r1, r2 are two uniform random numbers in [1, 2), then the conversion can
be done by√

−2 log(2 − r1) sin(2πr2),
√
−2 log(2 − r1) cos(2πr2).

3 LFSR with lung

Our proposal is to use a linear recursion over F2 to generate a sequence of 64-
bit patterns with the 12 MSBs being 0x3ff as above, by a Linear Feedback
Shift Register (LFSR) with additional memory called the ‘lung.’ We identify
the set of bits {0, 1} with the two element field F2. This means that every
arithmetic operation is done modulo 2. A b-bit register or memory is identified
with a horizontal vector in Fb

2, and + denotes the sum as vectors (i.e., bit-wise
exclusive or). We consider an array of b-bit integers of size N in computer
memory as the vector space (Fb

2)
N .

An LFSR generates a sequence w0,w1, w2, ... of elements Fb
2 by a recursion

wi+N = g(wi, ...,wi+N−1), (i = 0, 1, 2, . . .)

where g is an F2-linear map (Fb
2)

N → Fb
2. In a naive implementation, this

recursion is computed by using an array W[0..N-1] of N words of b-bit size,
by the simultaneous substitutions

W[0] ← W[1], W[1] ← W[2], . . . , W[N-2] ← W[N-1],

W[N-1] ← g(W[0], . . . , W[N-1]).
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The first N − 1 substitutions shift the content of the array, hence the
name of LFSR. Note that in the implementation we may use an indexing
technique to avoid computing these substitutions, see [7, P.28 Algorithm A].
Before starting the generation, we need to set the (array) state to some initial
values; this is the initialization. Mersenne Twister [14] (MT) is an example
of such an LFSR.

An LFSR with lung generates a sequence w0,w1, w2, ... of elements Fb
2 by

a recursion

wi = g(wi−N+1, ...,wi−1,ui−1), (1)
ui = h(wi−N+1, ...,wi−1,ui−1). (2)

where g and h are F2-linear maps (Fb
2)

N → Fb
2 and wi,ui ∈ Fb

2. In the
implementation, the wi’s are kept in an array W[0..N-1], and ui is (expected
to be) kept in a register of the CPU, which is called the lung. We denote the
register by U. We consider the union of the array and the register as the state
space of this generator. The first line (1) renews the array W[0..N-1], and
the second line (2) renews the register (lung) U. The idea of LFSR with lung
appeared in the talk of Hiroshi Haramoto the MCM 2005 conference, and is
also used in the WELL PRNG [17]. The lung realizes a short feedback loop,
which improves some measures of randomness such as higher dimensional
equidistributions and the density of nonzero coefficients in the characteristic
polynomial.

4 Affinity introduced by the constant part

Our idea is to design the functions g and h in the recursion (1) (2) for the
LFSR with lung, so that if the initial values w0, . . . ,wN−1 are set to have
0x3ff at their 12 MSBs, then the following wi have the same property,
regardlessly of the value of u0. According to our experiments, this method is
5% to 10% faster than the bit-masking conversion explained in §2.

A new difficulty in this approach is that the state transition is far from
having maximal period. A linear state transition function is said to have
maximal period, if every non-zero state lies on the same orbit. If the initial
state is chosen as above, then the 12 MSBs of each member of the array
of W[0..N-1] are constant in the orbit, and consequently transition can not
have maximal period. This makes it difficult to apply standard techniques to
compute the period and high-dimensional equidistribution property.

A natural solution to this problem is to redefine the state space by ex-
cluding the constant part, and consider the transition function as an affine
function. More concretely, let w′

i denote the lower 52-bit of wi. Since the
upper 12 bits is a constant, the recursion formula (1), (2) can be described
by
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w′
i = g′(w′

i−N+1, ...,w
′
i−1,ui−1), (3)

ui = h′(w′
i−N+1, ...,w

′
i−1,ui−1). (4)

Here, it is easy to see that the linearity of g (resp. h) implies the affinity of
g′ (resp. h′). (Here affine means linear plus a constant.)

Let bw denote the number of variable bits in each W[i] (52 in the above
case), and bu denote the number of bits in the lung U. This LFSR with lung
(not linear but affine) is considered as an automaton, with the state space
S = Fbu+bw×(N−1)

2 . The state transition function F : S → S is given by

(w′
0, . . . ,w

′
N−2,u0)

7→ (w′
1, . . . ,w

′
N−2, g

′(w′
0, . . . ,w

′
N−2,u0), h′(w′

0, . . . ,w
′
N−2,u0)).

As a bw-bit vector generator (i.e., removing the constant bits), the output
function is

o : S → F2
bw ; (w′

0, . . . ,w
′
N−2,u0) 7→ w′

0.

Now, both F and o are not linear but affine. Namely, they have the form
x 7→ Ax+c where x is a vector, A is an F2 matrix, and c is a constant vector.
(If c = 0, it is linear.)

5 Reduction from affine to linear: fixed points

Let f denote the linear part of F , namely, put c := F (0) and

F (x) = f(x) + c (5)

with linear f : S → S. If F has a fixed point F (z) = z, then F (x − z) =
f(x − z) + c = f(x) − z, and consequently Fn(x − z) = fn(x) − z. Thus, for
the state transition x0, x1, x2, . . . by F , its translation x0+z, x1+z, . . . by the
constant z is obtained by the linear state transition f , hence can be analyzed
by the existing methods. Since the period and the distribution property of
the sequence is unchanged by a parallel translation, computation of those for
the affine F is reduced to those for the linear f . If f has the maximal period,
then the equidistribution property can be computed as usual.

The equation F (z) = z is equivalent to (f − Id)(z) = c, where Id denotes
the identity transformation on S. Thus, a fixed point exists if the charac-
teristic polynomial χf of f does not have 1 as a root, in particular if it is
irreducible with degree ≥ 2.
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6 Reducible transition function in affine case

Usually, to make sure that the period is maximal, we need to check the
primitivity of χf . This is often computationally difficult, since we need the
integer factorization of 2deg(χ(t)) − 1, which is hard if the degree is high (say,
> 10000). There are two methods to avoid this: (1) to tune the size of the
state space to be a Mersenne exponent (i.e. a prime number p such that 2p−1
is also prime) where 2deg(χ(t)) − 1 is a prime, and (2) to use f such that χf

has an irreducible factor of a Mersenne prime degree denoted by p. We here
adopt the latter method, named reducible transition method (RTM) in [19].
This is advantageous over the former in the generation speed, because of no
need for discarding a part of the state array (as was required in MT [14] and
WELL [17]). Note that this idea appeared in somewhat different purposes
previously in [5][1][2].

We here recall RTM very briefly. Let f : S → S be an F2-linear transition
function, o : S → O be an F2-linear output function. Assume that a linear
transition function f : S → S has a decomposition S = Vp ⊕ Vr, f = fp ⊕ fr

with fp : Vp → Vp, fr : Vr → Vr. In other words, f is the combined generator
obtained from the two generators (fp, Vp, op) and (fr, Vr, or), in the sense
of §2.3 of [10]. A linear output function o : S → O is then the sum of the
restrictions op : Vp → O and or : Vr → O. The output of the combined
generator is obtained by taking the xor of the outputs of each generator. The
period of the combined generator (f, S, o) is the least common multiple of
the periods of the two generators. Thus, once we know that (fp, Vp, op) has
a large period, then the combined generator has at least that period.

Our strategy is to fix a Mersenne prime p, to determine the size N of
the state array so that p ≤ dimS, and then search for parameters with a
factorization χf = φpφr, where φp is irreducible of degree p and φr has
degree r with r < p. Then, it is automatic to have a decomposition S =
Vp⊕Vr into p-dimensional and r-dimensional subspaces, so that the restriction
fp (respectively fr) of f to Vp (respectively to Vr) has the characteristic
polynomial φp (respectively φr). Once we have such decomposition, then the
component fp : Vp → Vp has the Mersenne exponent dimension p, and hence
an existing method searches for the parameters that assure the period of
2p − 1. Then we can assure 2p − 1 as the lower bound on the period of the
combined generator, provided that the initial state s = sp ⊕sr ∈ S = Vp ⊕Vr

has the non zero component sp 6= 0.
In the case of affine transition F (x) = f(x) + c, we assume that its linear

part f satisfies the above factorizing condition χf = φpφr. Let us decompose
c = cp ⊕ cr and x = xp ⊕ xr along Vp ⊕ Vr, then

F (x) = f(x) + c = (fp(xp) + cp) ⊕ (fr(xr) + cr) =: Fp(xp) ⊕ Fr(xr). (6)

This implies that the affine generator (F, S, o) is obtained by combining two
affine generators (Fp, Vp, op) and (Fr, Vr, or). Now fp is irreducible, and the
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fixed point argument in §5 reduce the computation of the periods and the
high-dimensional equidistribution property for Fp to those for fp.

7 Period certification

We explain how to choose parameters realizing the period 2p − 1, for a given
Mersenne exponent p. For the linear transition function, the method is de-
scribed in [19], which we briefly recall. Let N be the smallest length of the
array such that the dimension of the state space S = Fbu+bw×(N−1)

2 is greater
than or equal to p. Thus, r := dim S − p < bw holds.

We randomly choose parameters for the recursion (3) and (4). Let F : S →
S be the corresponding affine transition function, and f : S → S be its linear
part. We compute the characteristic polynomial χf (t) by using Berlekamp-
Massey algorithm, and check whether it decomposes to

χf = φpφr

where φp is a primitive polynomial of degree p and φr is a polynomial of
degree r := dim S − p < bw. We assume r < p, which is natural in our
context where p is large, and also bw ≤ bu, since bw is the number of the non-
constant part in a bu-bit word. We continue the random search of parameters,
until we obtain a primitive φp.

Once we found such a set of parameter, then we have S = Vp ⊕Vr and the
projector Pp : S → Vp. To assure the period of a multiple of 2p − 1 for the
initial state s ∈ S, it suffices to assure sp := Pp(s) 6= 0. In the implementation,
to compute Pp(s) is a time-consuming procedure in the initialization. Instead,
we propose the following method, named period certification vector (PCV)
method, by which the period is certified by looking at one word in the state.

Let VU denote the bu-dimensional vector space corresponding to the lung U
in (4). To certify the period for the initial state s ∈ S, it suffices to show that
s /∈ Vr. Let π : S → VU be the projection obtained by extracting the lung
from the state space S. Since we assumed bu = dim(VU ) > r, the image π(Vr)
is a proper subspace of VU . Hence, there is a nonzero vector q in VU which is
orthogonal to every vector in π(Vr). We call such a vector PCV. For a given
initial state s, if the inner product π(s) · q is nonzero, then π(s) /∈ π(Vr) and
hence s /∈ Vr, and the period is certified. If the inner product is zero, then
we can make the inner product nonzero by reversing one bit in π(s).

The period certification for affine case easily reduces to the linear case.
Let zp ∈ Vp be a fixed point of Fp. For the initial state s ∈ S, it suffices to
show that s−zp /∈ Vr to assure the period. This can be done by precomputing
π(zp), and check that (π(s)−π(zp)) ·q 6= 0. In this method, only two constant
bu-bit words π(zp) and q need to be precomputed and stored, and at the
initialization stage, only the last inner product need to be computed.
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8 Computation of the dimension of equidistribution

We briefly recall the definition of dimension of equidistribution (cf. [3][8][19]).

Definition 1. Let F : S → S be an affine transition function over F2. Let v
be an integer, and o : S → Fv

2 be a v-bit affine output function. The generator
(S, F, o) is said to be k-dimensionally equidistributed, if the map

S → (Fv
2)

k, s 7→ (o(s), o(F (s)), o(F 2(s)), . . . , o(F k−1(s)))

is surjective. The largest value of such k is called the dimension of equidis-
tribution (DE).

For a b-bit integer generator, its dimension of equidistribution at v-bit accu-
racy k(v) is defined as the DE of the v-bit sequence, obtained by extracting
the v MSBs from each of the b-bit integers.

Let P = 2p − 1 be the period of the generated sequence. Then, there is an
upper bound k(v) ≤ bp/vc, and their gap d(v) is called the dimension defect
at v of the sequence, and their sum ∆ over v = 1, . . . , b is called the total
dimension defect, namely:

d(v) := bp/vc − k(v) and ∆ :=
b∑

v=1

d(v). (7)

We adopt RTM as in §6, and the dimensions of the equidistribution of the
larger component (Fp, Vp, op) gives the lower bound of these dimensions [9]
[19]. Accordingly, we define k(v) and d(v) of RTM to be those for this larger
component. Let fp be the linear part of Fp. Since χfp is irreducible, there is
a fixed point of Fp as explained in §5. Thus, computation of k(v) for Fp is
reduced to that for the linear part fp, which was done in [19].

9 Implementation of dSFMT

As a result of the preceding discussion, we propose a generator using SIMD
features, an affine transition function to keep the MSBs constant, and re-
ducible characteristic polynomial. The generator is named dSFMT (double
precision floating point SIMD-oriented Fast Mersenne Twister).

Remark 1. In the homepage [18], we released “dSFMT” in 2007, but no corre-
sponding article exists. The generator proposed here is its improved version,
by adopting the lung and a more efficient recursion, and is referred to as
dSFMT version 2 in the homepage. In this manuscript, we call the former
dSFMT-old, and the latter simply dSFMT.

The dSFMT generator is an LFSR with lung, whose recursion formulas
are (1) and (2) with
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h(w0, . . . ,wN−2,u0) = w0A + wM + u0B, (8)
g(w0, . . . ,wN−2,u0) = w0 + h(w0, . . . ,wN−2,u0)C, (9)

where wi’s and u are 128-bit integers regarded as horizontal vectors in F128
2 ,

and A, B, C are linear transformations described below, computable by a
few SIMD operations. The number bw of variable bits is 128 − 12 × 2 = 104,
while bu = 128. It generates two 52-bit precision floating point numbers at
each step.

• wA := w
64

<< SL1
This notation means that w is regarded as two 64-bit memories, and wA is
the result of the left-shift of each 64 bits by SL1 bits. There is such a SIMD
operation in the Pentium SSE2, and can be emulated in the PowerPC
AltiVec SIMD. SL1 is a parameter with 12 ≤ SL1 < 64.

• uB := u perm(4, 3, 2, 1)
This notation means that u is regarded as four 32-bit memories and
u perm(4, 3, 2, 1) is the result of reversing the order of the 32-bit blocks
in the 128 bits. The permutation can be done by one SIMD operation.

• uC := (u
64

>> 12) + (u& MASK)

The notation u
64

>> 12 means that u is regarded as two 64-bit memories
and each right-shifted by 12 bit. The notation & means a 128-bit bit-
wise logical ‘AND’ with a 128-bit constant vector MASK, defined as the
concatenation of two 64-bit vectors with 0s in the 12 MSBs for both.

w
0

w
M

w
N-2

u: Lung

64
<< SL1

perm(4,3,2,1)

128 bits
64 bits

exponent: 0x3FF

& MASK

output

+ +64
>> 12

Fig. 1 Diagram of dSFMT

Fig. 1 shows the recursion in a circuit-like diagram. Note that the recursion
(8) and (9) is linear, and the constant 0x3ff (in hexadecimal) of the IEEE



10 Mutsuo Saito and Makoto Matsumoto

754 exponent part does not appear. The recursion is carefully selected so that
once the initial values w0, . . . , wN−2 have 0x3ff in their 12 MSBs, then these
constant parts are preserved through the recursion. This trick contributes to
the generation speed, by avoiding constant-setting.

Table 1 lists the parameters for dSFMTs with various sizes. Table 2 lists
the corresponding fixed points and PCVs, as discussed in §7.

Table 1 Parameter sets. MEXP denotes the Mersenne exponents. The column

MASK(HIGH) shows the higher 64 bits of the constant mask, and the column
MASK(LOW) shows the lower 64 bits in hexadecimal.

MEXP N M SL1 MASK(LOW) MASK(HIGH)

521 5 3 25 0x000fbfefff77efff 0x000ffeebfbdfbfdf

1279 13 9 19 0x000efff7ffddffee 0x000fbffffff77fff

2203 21 7 19 0x000fdffff5edbfff 0x000f77fffffffbfe

4253 41 19 19 0x0007b7fffef5feff 0x000ffdffeffefbfc

11213 108 37 19 0x000ffffffdf7fffd 0x000dfffffff6bfff

19937 192 117 19 0x000ffafffffffb3f 0x000ffdfffc90fffd

Table 2 Fixed points and PCVs. Two 64-bit integers (in hexadecimal) piled in one
place represent one 128-bit integer with higher (respectively lower) 64-bit being the
upper (respectively lower) piled integer. For example, the PCV in the first row is
0xccaa5880000000000000000000000001.

MEXP Fixed Point PCV

0xcfb393d661638469 0xccaa588000000000

521 0xc166867883ae2adb 0x0000000000000001

0xb66627623d1a31be 0x7049f2da382a6aeb

1279 0x04b6c51147b6109b 0xde4ca84a40000001

0xb14e907a39338485 0x8000000000000000

2203 0xf98f0735c637ef90 0x0000000000000001

0x80901b5fd7a11c65 0x1ad277be12000000

4253 0x5a63ff0e7cb0ba74 0x0000000000000001

0xd0ef7b7c75b06793 0x8234c51207c80000

11213 0x9c50ff4caae0a641 0x0000000000000001

0x90014964b32f4329 0x3d84e1ac0dc82880

19937 0x3b8d12ac548a7c7a 0x0000000000000001

10 Comparison of speed

We compared generators MT19937, 64-bit MT19937, SFMT19937, dSFMT-
old19937 and dSFMT19937, with and without SIMD instructions. For MT
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and SFMT, ‘mask’ means the conversion by bit operation described in §2 from
64-bit integers, and ‘× const’ means the conversion by multiplying 2−64. Note
that the original MT and SFMT do not use ‘mask’ conversion.

We measured the speeds for five different CPUs: Pentium M 1.4GHz, Pen-
tium IV 3GHz, core 2 duo 1.83GHz (32-bit mode, using one core), AMD
Athlon 64 3800+ (64-bit mode), and PowerPC G4 1.33GHz. In returning
the random values, we used two different methods. One is sequential gener-
ation, where one double floating point random number is returned per call.
The other is block generation, where an array of random double floating point
numbers is generated per call. We used Intel C Compiler for intel CPUs (Pen-
tium M, Pentium IV, core 2 duo) and GNU C Compiler for others (AMD
Athlon, Power PC G4).

We measured the consumed CPU time in second, for generating 108 float-
ing point numbers in the range [0, 1) to compare with other generators. In
case of the block generation, we generate 105 floating point numbers per call,
and this is iterated 103 times. For sequential generation, the same 108 float-
ing point numbers are generated, one per call. We used the inline declaration
inline to avoid the function call. Implementations without SIMD are writ-
ten in ISO/IEC 9899 : 1999(E) C Programming Language, Second Edition
(which we shall refer to as C99 in the rest of this article), whereas those with
SIMD use some standard SIMD extension of C99 supported by the Intel C
compiler and GNU C Compiler.

Table 3 summarizes the speed comparison using SIMD and Table 4 shows
the speed comparison without SIMD. The 64-bit MT is not listed in Ta-
ble 3, because we do not have the SIMD version. The first two lines list the
CPU time (in seconds) needed to generate 108 floating point numbers, for
a Pentium-M CPU. The first line lists the timings for the block-generation
scheme, and the second line lists those for the sequential generation scheme.
The result is that dSFMT is the fastest for all CPUs, all returning methods,
using SIMD and without using SIMD. Table 5 shows the speed of other gener-
ators. Although dSFMT has 52-bit precision while the others have only 32-bit
precision, dSFMT’s sequential generation using standard C (i.e. the slowest
case) is faster than the other generators, except xorshift128 [13], whose qual-
ity is reported to be questionable in [16].

11 Dimension of equidistribution

We calculated d(v)s for our generators, by using the method described in §8.
Table 6 lists the dimension defects d(v) of dSFMT, for Mersenne exponent
(mexp) = 521, 1279, 2203, 4253, 11213, 19937 and v = 1, 2, . . . , 52. The d(v)
for 1 ≤ v ≤ 22 are very small. The larger mexp seems to lead to the larger d(v)
for v > 22. Still, the case mexp=19937 has total dimension defect ∆ = 2608,
which is smaller than the defect of the 32-bit SFMT19937’ and the 32-bit
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Table 3 The CPU time (sec.) for 108 generations using SIMD.

dSFMT dSFMT-old MT SFMT SFMT

(new) (old) mask mask × const

Pentium M blk 0.626 0.867 1.526 0.928 2.636
1.4 Ghz seq 1.422 1.761 3.181 2.342 3.671

Pentium 4 blk 0.254 0.640 0.987 0.615 3.537
3 Ghz seq 0.692 1.148 3.339 3.040 3.746

core 2 duo blk 0.199 0.381 0.705 0.336 0.532
1.83GHz seq 0.380 0.457 1.817 1.317 2.161

Athlon 64 blk 0.362 0.637 1.117 0.623 1.278
2.4GHz seq 0.680 0.816 1.637 0.763 1.623

PowerPC G4 blk 0.887 1.151 2.175 1.657 8.897
1.33GHz seq 1.212 1.401 5.624 2.994 7.712

Table 4 The CPU time (sec.) for 108 generations (without SIMD).

dSFMT dSFMTold MT 64 MT SFMT SFMT

(new) (old) mask mask mask × const

Pentium M blk 1.345 2.023 2.031 3.002 2.026 3.355
1.4 Ghz seq 2.004 2.386 2.579 3.308 2.835 3.910

Pentium 4 blk 1.079 1.128 1.432 2.515 1.929 3.762
3 Ghz seq 1.431 1.673 3.137 3.534 3.485 4.331

core 2 duo blk 0.899 1.382 1.359 2.404 1.883 1.418
1.83GHz seq 0.777 1.368 1.794 1.997 1.925 2.716

Athlon 64 blk 0.334 0.765 0.820 1.896 1.157 1.677
2.4GHz seq 0.567 0.970 1.046 2.134 1.129 2.023

PowerPC G4 blk 1.834 3.567 2.297 4.326 4.521 12.685
1.33GHz seq 1.960 2.865 4.090 5.489 5.464 9.110

Table 5 The CPU time (sec.) for 108 generations for other generators, where conversion

to floating point numbers uses constant multiplication.

WELL1024 WELL19937 MT19937 XORSHIFT128

Pentium M 2.076 2.876 2.028 1.233

Pentium 4 1.626 2.031 1.232 1.023
core 2 duo 1.165 1.913 1.032 0.653
Athlon 64 0.804 1.191 0.971 0.975
Power PC G4 2.947 7.524 3.082 2.267

MT19937, which are ∆ = 4188 and ∆ = 6750, respectively. Note that it is
natural to guess that ∆ increases at least proportionally to the word size b,
by its definition (7).

Remark 2. The number of non-zero terms in χf (t) is an index measuring the
amount of bit-mixing. The column “weight” in Table 7 shows these num-
bers: dSFMT19937 has the ratio 9756/19992 = 0.488 which is higher than
those of MT (135/19937=0.00677), WELL19937a (8585/19937 = 0.431) and
WELL19937b (9679/19937 = 0.485).
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Table 6 d(v) (1 ≤ v ≤ 52) of 52-bit fraction part of dSFMT.

521 1279 2203 4253 11213 19937 521 1279 2203 4253 11213 19937

d(1) 0 1 0 0 4 0 d(27) 0 0 1 1 33 4

d(2) 0 1 1 0 0 1 d(28) 0 6 7 28 33 10
d(3) 0 2 1 0 0 1 d(29) 1 5 7 23 28 67
d(4) 0 0 0 0 1 1 d(30) 3 3 15 18 80 126
d(5) 0 0 0 0 0 0 d(31) 2 6 13 15 68 107

d(6) 0 1 1 0 1 0 d(32) 4 4 10 10 58 88
d(7) 0 0 0 0 0 1 d(33) 6 12 25 43 120 220
d(8) 0 0 0 0 0 1 d(34) 6 12 23 44 114 202
d(9) 0 1 0 0 0 0 d(35) 5 11 21 40 105 185

d(10) 1 0 0 0 0 0 d(36) 5 10 20 37 96 169
d(11) 0 0 0 0 0 0 d(37) 5 9 18 33 88 155
d(12) 0 0 0 0 0 0 d(38) 4 8 16 30 80 141
d(13) 0 0 0 0 0 0 d(39) 4 7 15 28 72 128

d(14) 0 0 0 0 0 1 d(40) 4 6 14 25 65 115
d(15) 0 0 0 0 0 1 d(41) 3 6 12 22 58 103
d(16) 0 0 0 0 0 1 d(42) 3 5 11 20 51 91

d(17) 0 0 0 0 0 0 d(43) 3 4 10 17 45 80
d(18) 0 0 0 0 0 0 d(44) 2 4 9 15 39 70
d(19) 0 0 0 0 0 0 d(45) 2 3 7 13 34 60
d(20) 1 0 0 0 0 0 d(46) 2 2 6 11 28 50

d(21) 0 0 0 0 7 0 d(47) 2 2 5 9 23 41
d(22) 0 0 0 0 0 134 d(48) 1 1 4 7 18 32
d(23) 0 0 7 16 22 94 d(49) 1 1 3 5 13 23
d(24) 0 1 3 9 19 58 d(50) 1 0 3 4 9 15

d(25) 0 1 0 6 7 25 d(51) 1 0 2 2 4 7
d(26) 0 0 0 0 0 0 d(52) 1 0 1 0 0 0

total dimension defect ∆ 73 135 291 531 1423 2608

Table 7 The number of non-zero terms in χf (t)

mexp 521 1279 2203 4253 11213 19937
degree of χf (t) 544 1376 2208 4288 11256 19992

weight 273 673 1076 2233 5684 9756
ratio 0.50 0.49 0.49 0.52 0.50 0.49

The dSFMT generators passed the DIEHARD statistical tests [12]. They
also passed TestU01 [11] consisting of 144 different tests, except for LinearComp
(fail unconditionally) and MatrixRANK tests (fail if the size of dSFMT
is smaller then the matrix size). These tests measure the F2-linear depen-
dency of the outputs, and reject F2-linear generators, such as MT, SFMT
and WELL.

We shall keep the latest version of the codes in the web page [18].
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