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Abstract

We introduce a non-empirical test on pseudorandom number generators (prng),
named sum-discrepancy test. We compute the distribution of the sum of consecu-
tive m outputs of a prng to be tested, under the assumption that the initial state is
uniformly randomly chosen. We measure its discrepancy from the ideal distribution,
and then estimate the sample size which is necessary to reject the generator. These
tests are effective to detect the structure of the outputs of multiple recursive gener-
ators with small coefficients, in particular that of lagged Fibonacci generators such
as random() in BSD-C library, as well as add-with-carry and subtract-with-borrow
generators like RCARRY. The tests show that these generators will be rejected if
the sample size is of order 106.

We tailor the test to generators with a discarding procedure, such as ran array
and RANLUX, and exhibit empirical results. It is shown that ran array with half
of the output discarded is rejected if the sample size is of the order of 4 × 1010.
RANLUX with luxury level 1 (i.e. half of the output discarded) is rejected if the
sample size is of the order of 2×108, and RANLUX with luxury level 2 (i.e. roughly
3/4 is discarded) will be rejected for the sample size of the order of 2.4 × 1018.

In our previous work, we have dealt with the distribution of the Hamming weight
function using discrete Fourier analysis. In this work we replace the Hamming weight
with the continuous sum, using a classical Fourier analysis, i.e., Poisson’s summation
formula and Levy’s inversion formula.
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1 Discrepancy test

A pseudorandom number generator (prng) generates a sequence of numbers
in an interval I , mimicking a sequence of random variables having uniform
identical independent distribution (i.i.d.). Usually I is one of: the unit interval
[0, 1) with uniform measure, a finite set {0, 1, 2, . . . ,M−1}, or the two-element
field F2 := {0, 1} when we consider a random bit.

A deterministic prng has a state space S. If we specify an initial state, then
it produces a virtually infinite sequence of elements in I . Suppose that m
outputs are used for every simulation. Then a prng may be considered as a
function

G : S → Im,

where S is the state space (G for Generator). Consider the case where the
simulation is iterated several times. We make a further assumption that S
is a probability space, and that for every simulation the initial state is inde-
pendently randomly chosen from S with respect to the probability measure
(mostly S is In for some n, and the measure is the uniform measure). Usu-
ally we initialize the generator only once at the first simulation, so the above
assumption is not satisfied. However, for most generators, the state after one
simulation has almost no correlation with the initial state, and seems as if
it was randomly chosen from S. Thus, the above assumption is a reasonable
approximation.

Under these assumptions, the distribution of consecutive m-tuples is given by
the m-dimensional random variable G defined over S. We want to see whether
this m-dimensional random variable has a distribution close to the ideal one
or not. To compare m-dimensional distributions is not very easy, so we make
them one-dimensional. We fix a test function t : Im → R, and study the
discrepancy of the distribution of t. The ideal distribution of t, denoted by T ,
is the distribution of the random variable

t : Im → R

when Im is equipped with the uniform measure. This comes from the null
hypothesis that the generated sequence is uniform i.i.d. The distribution of t
generated by G, denoted by TG, is the distribution of the random variable

t ◦G : S → Im → R

when S is considered as a probability space as assumed.

A t-discrepancy test 1 on G measures the discrepancy between T and TG. We
need to do the following. First, we choose a simple meaningful t for which the

1 The term discrepancy is a little confusing with the notion of low discrepancy
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ideal and actual distributions T and TG are both explicitly computable. Then,
we give a suitable measure on the discrepancy between two distributions. Here
we adopt the χ2-discrepancy defined in the next section.

We may obtain TG by an exhaustive enumeration over S, if the cardinality of
S is small. But for modern generators, the cardinality of S is often greater
than 2100, so such a brute-force approach is not possible.

We know two cases where S is large but TG is computable. One is the case
when G is an F2-linear generator and t is the Hamming weight function, which
was treated in the previous paper[11]. The other case is when G is based on
a linear recursion with modulo-N -arithmetic and t is the sum function, which
we shall treat in this paper.

2 χ2-discrepancy

Consider a set of events X := {0, 1, 2, 3, . . . , ν}. Let (pk)k=0,1,...,ν be a proba-
bility distribution on X , i.e.,

0 < pk ≤ 1 and
ν∑

k=0

pk = 1.

Let (qk)k=0,1,...,ν be another probability distribution.

Definition 1 We define the χ2-discrepancy δ between the two distributions
(pk) and (qk) by

δ :=
ν∑

k=0

(qk − pk)
2/pk.

This value is known as the noncentrality parameter ([14]) appearing in the
χ2-test when the null hypothesis is not true.

Suppose that we make a null hypothesis that one trial of a probabilistic event
conforms to the distribution pk, and the different trials are i.i.d. To test this
null hypothesis, we perform N trials, and count the number Yk of occurrences
of each event k ∈ {0, 1, . . . , ν}. The χ2-value X of this experiment is defined
as

X :=
ν∑

k=0

(Yk −Npk)
2/Npk .

It is known that X has approximately the χ2-distribution with ν degrees of
freedom under the null hypothesis, if Npk is large enough for each k. Let X
be a random variable having the χ2-distribution with ν degrees of freedom.

sequences, but is standard in the model selection theory, cf. [7].
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Recall that the (left) p-value p corresponding to the observed χ2-value X is
defined by

p = Prob(X < X ).

If the p-value is too high like > 0.99, then we reject the null hypothesis with
significance level > 0.99.

Suppose that the above null hypothesis is not correct, and the different trials
have independent identical distribution (qk)k=0,...,ν . Then it is known [14] that
X approximately has the non-central χ2-distribution with ν degrees of freedom
with noncentrality parameter δ. As a consequence, the expectation of X is
approximated by

E(X ) ∼ ν +Nδ

(for an elementary proof and the error estimate, see [11]).

We shall define the risky sample size with significance level p to be the sample
size N such that

Prob(X < ν +Nδ) = p.

Thus, if we apply the χ2-test with the sample size N , then the average of
the observed χ2-value corresponds to the p-value p. When p = 0.99, we call
the corresponding N the risky sample size, simply, and when p = 0.75, call
the corresponding N the safe sample size. Approximation formulae for these
values are given in [11].

Remark 2 The idea of finding general approximation formulae for the sample
size where a class of generators start failing a given test was introduced and
implemented in [3] and developed in [4].

3 Sum discrepancy test.

Assume that I = [0, 1), and that the test function is the sum:

t : Im → R, (w1, w2, . . . , wm) �→ t =
m∑

j=1

wj.

Then T and TG in §1 are random variables with values in [0,m). We fix a
suitable categorization of this interval [0,m) into ν+1 intervals. We discreticize
T and TG by letting pk (qk) be the probability that T (TG) falls in the k-th
interval, respectively. Then we compute the χ2-discrepancy between the two
discrete distributions, and then obtain the safe and risky sample sizes as in
§2.

The only non-trivial step is to compute the distribution functions of T and
TG. For general generators this seems intractable, as we have stated at the
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end of §1, but it is possible for the following class of generators when m − n
is small (here n is the dimension of internal state, see below).

Assume that I is [0, 1) identified with the 1-dimensional torus R/Z, i.e., real
numbers considered modulo 1 with the usual additive group structure. Assume
moreover that S = In and G is a continuous group homomorphism S = In →
Im. Then, the distribution function FT of the ideal distribution T is obtained
by

FT (α) := Prob(T < α) =∫
0≤w1 ,...,wm≤1,t<α

dw1dw2 · · · dwm,

whereas the distribution function FTG
of TG is obtained by

FTG
(α) := Prob(TG < α) =∫

{0≤w1,...,wm≤1,t<α}∩G(S)

(dw1dw2 · · · dwm)|G(S),

where (dw1dw2 · · · dwm)|G(S) is the restriction of the uniform measure on Im

to the subgroup G(S) normalized so that Vol(G(S)) = 1. (For the latter, we
used the fact that the above measure on G(S) is the image measure induced
from that of S.)

A problem is that the dimension m is often as large as 30, so this integration
seems intractable. A possible solution might be Monte Carlo integration, but
this is nothing but the test of randomness of the underlying random number
generators, and takes a lot of time to obtain the required precision. A more
practical solution is to use the characteristic function and Fourier inversion. We
recall the definition of characteristic functions, and Levy’s inversion formula
[1, Sect.26, Theorem 26.2].

Definition 3 Let FT (α) be the distribution function of a random variable T .
Then, its characteristic function is the Fourier transformation

ψT (θ) :=

α=∞∫
α=−∞

e2πiθαdFT (α).

Theorem 4 (Levy inversion)

Prob(a ≤ T ≤ b) = FT (b) − FT (a) =

∞∫
−∞

e−2πiθb − e−2πiθa

−2πiθ
ψT (θ)dθ.

Thus, one can reconstruct the distribution function from its characteristic
function. Next, we recall another Fourier inversion formula, known as Poisson’s
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summation formula. Define the orthogonal group pairing

(R/Z)m × Zm → C

w , n �→ e(w|n) := e
2πi
∑

j
wjnj .

For
f : (R/Z)m → C,

we define its Fourier transformation as usual:

f̂ : Zm → C,

f̂(n) :=
∫

w∈(�/�)m

f(w)e(w|n)dw.

Let C ⊂ (R/Z)m be a Lie subgroup, and C⊥ ⊂ Zm be its orthogonal compli-
ment.

Theorem 5 (Poisson’s summation formula) It holds that

∫
w∈C

f(w)dw|C =
∑

n∈C⊥
f̂(n)

if the right hand side is absolutely convergent.

For a proof, see [12, Theorem 5.5.2]. Use Remark 5.5.11 there for G = Z
m. As

an application of this theorem, put C = G(S), f(w) = e2πiθ
∑

j
wj . Then

∫
w∈C

f(w)dw|C =

∞∫
−∞




∫
{w∈C}∩

∑
j

wj=α

e2πiθαdw′


 dα

=

∞∫
−∞

e2πiθα




∫
{w∈C}∩∑

j
wj=α

dw′


 dα =

∞∫
−∞

e2πiθαdFTG
(α) = ψTG

(θ).

Here, the restricted measure is the product of two measures dw|C = dw′dα,
where dw′ is the measure on the cut C ∩ {w|∑j wj = α} for each fixed α,
and dα is the standard measure of real line. The first equality follows from
Fubini’s Theorem.

Since

f̂(n) =

(
e2πiθ − 1

2πiθ

)m m∏
j=1

θ

θ + nj

,

we have an explicit formula:
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FTG
(b) − FTG

(a) =

∑
n∈G(S)⊥

∞∫
−∞

e−2πiθb − e−2πiθa

−2πiθ

(
e2πiθ − 1

2πiθ

)m m∏
j=1

θ

θ + nj

dθ. (1)

Note that the pole 1
θ+nj

is absorbed in (e2πiθ−1). If m ≥ 2 then the right hand

side is absolutely convergent, and this gives FTG
. As in the F2-case (see [11]),

we choose m so that the rank of G(S)⊥ is small. A difference from the F2-case
is that we approximate

∑
n∈G(S)⊥ by a finite sum. Experimentally, summands

decrease rapidly for n → ∞.

Remark 6 If we put G(S)⊥ = {0} in this formula, we obtain the ideal dis-
tribution function FT . It is well known that FT is approximated by a normal
distribution, but in the following experiments, we experienced that the ap-
proximation error ruins the test result. We need a more precise value of FT

obtained from this integration.

The formula (1) implies that the deviation from the ideal distribution is given
as

∞∫
−∞

e−2πiθb − e−2πiθa

−2πiθ

(
e2πiθ − 1

2πiθ

)m

{ ∑
n∈G(S)⊥−{0}

m∏
j=1

θ

θ + nj

}dθ.

Thus, the existence of vectors in G(S)⊥ whose components have small absolute
values affects the distribution.

In this point, our test is similar to the spectral test,

in which the length of the shortest vector in the dual lattice L∗ gives the
criterion on the uniformity of the output. (We refer to [6] for the spectral test,
including the definition of L∗.) The larger this length, the more uniformly the
points are distributed in the m-dimensional cube Im. It is easy to show that
L∗ ⊃ G(S)⊥, but L∗ is m-dimensional and the dimension of G(S)⊥ may be
much smaller. The existence of a short vector in G(S)⊥ implies that in L∗,
which shows that the spectral test detects a finer structure than our test does.

Conceptually, the difference between the two tests is “local versus global.” In
our test, we consider the distribution of a function f(w1, . . . , wm) (=

∑m
j=1 wj),

which depends only on each of the m-consecutive outputs, and neglects the
relation between them. On the contrary, the spectral test detects the structure
of the set of points in the m-dimensional cube, hence considers the relation
among the m-tuples.
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4 Test Results

4.1 lagged Fibonacci generators

A multiple recursive generator is to generate a sequence {xi} of elements of
Z/N := {0, 1, 2, . . . , N − 1} by a linear recursion

xn+i = an−1xn−1+i + an−2xn−2+i + · · · + a1x1+i + a0xi, i = 0, 1, 2, . . .(2)

where a0, a1, . . . , an−1 are suitably chosen integers. If we look at the m con-
secutive outputs, this generator maps the initial seeds (x0, x1, . . . , xn−1) to
(Z/N)m.

We identify (Z/N) with the N -torsion points in I = R/Z, i.e., rational num-
bers with denominator dividing N . If N is large, we may approximate Z/N
by I , through the embedding

Z/N → I, x �→ x/N,

where x is considered to be a real number in the computation of x/N .

Then G : S = In → Im given by (x0, x1, . . . , xn−1) �→ (x0, x1, . . . , xm−1) under
the recursion (2) will approximate the multiple recursive generators, under
the assumption that ai 
 N for all i. Thus, we may apply the methodology
stated in §3. In the case that a0 = ±1 and exactly one of a1, a2, . . . , an−1 is ±1
and all the rest are zero, the generator is called a lagged Fibonacci generator.
In this case, the approximation is fairly good.

Essentially same approximation is also valid for add-with-carry or subtract-
with-borrow generators like RCARRY introduced in [9]. We refer to Lüscher’s
work [8] about the approximation of these discrete recursions by continuous
recursions, and do not discuss here.

4.2 Results on a lagged Fibonacci generator random().

A new standard random number generator random() is recommended in the
manual on BSD-C. In Linux, the standard rand() function is replaced with
this. If you type “man random” in Unix machine, it will tell “The random()

function uses a nonlinear additive feedback random-number generator,” but
actually random() is a simple lagged Fibonacci generator, defined by the re-
cursion

xi+31 = xi+28 + xi mod 232 (i = 1, 2, . . .).
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We choosem = 34, soG(S)⊥ is of rank 3. We categorize [0,m) into 10 intervals,
so that each pk is almost same with each other.

The space G(S) is the solution space

wi+31 = wi+28 + wi (i = 1, 2, . . . , 34), wi ∈ R/Z, (3)

and thus a basis b1,b2,b3,∈ Z34 of G(S)⊥ is given by

b1 = (1, 0, 0, 0, . . . , 0, 1, 0, 0,−1, 0, 0),

b2 = (0, 1, 0, 0, . . . , 0, 0, 1, 0, 0,−1, 0),

b3 = (0, 0, 1, 0, . . . , 0, 0, 0, 1, 0, 0,−1).

It is easy to show that these vectors are shortest in G(S)⊥. Consider the set

Bs := {n1b1 + n2b2 + n3b3 | |n1| + |n2| + |n3| ≤ s},
and let δs be the approximation of χ2-distance obtained by replacing the infi-
nite sum

∑
n∈G(S)⊥ in (1) with the finite sum

∑
n∈Bs

.

With the help of Mathematica, we obtain δ1 = 1.37601×10−6 , δ2 = 1.55475×
10−6, δ3 = 1.59015×10−6 , δ4 = 1.60127×10−6 , and δ5 = 1.60581×10−6 . We did
not estimate the error between δs and δ, but adopted δ2 as an approximation
of δ here and in the following tests (note that B2 consists of 24 vectors).
The choice s = 2 is not the best, but makes the tests faster and easier. The
cardinality of B1, B2, . . . , B5 is 6,24,63,128,230, respectively.

Computation using δ2 gives a safe sample size of the order of 1.6 × 106, and
a risky sample size of the order of 8.3 × 106. The next table shows a confir-
mation of these forecast by five independent replications of the corresponding
empirical χ2-tests with sample sizes near the safe/risky ones.

N 1st 2nd 3rd 4th 5th

1.6 × 106 73.1% 77.9% 88.5% 75.3% 99.8%

8.3 × 106 100% 99.5% 69.5% 98.8% 99.1%

Table 1: random(): χ2-Tests for five different initial values

4.3 Test on RCARRY

RCARRY, one of subtract-with-borrow generators proposed by Marsaglia and
Zaman[9], can be tested in the same scheme. RCARRY generates an integer
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sequence xj by the recursion

xj+24 := xj+14 − xj − Cj mod 224,

Cj+1 := [xj+14 < xj + Cj],

where Cj = 0, 1 and [ ] is the indicator function, i.e., it is 1 or 0 ac-
cording to the predicate inside is true or not. For the distribution of m-
tuples with small m (e.g. < 1000), we may neglect Cj (see [2] and [13]),
so this is approximated by the lagged Fibonacci generator with parameters
xj+24 := xj+14 − xj mod 224.

We choosem = 27. ThenG(S) is 24-dimensional andG(S)⊥ is a 3-dimensional
lattice. Similarly to the previous case, the infinite sum

∑
n∈G(S)⊥ , is approxi-

mated by the sum over B2. As a result, we have δ of the order of 4.0×10−6 , a
safe sample size of the order of 620, 000, and a risky sample size ∼ 3, 200, 000.

N 1st 2nd 3rd 4th 5th

630, 000 20.5% 100.0% 40.8% 14.3% 94.3%

3, 300, 000 99.6% 100.0% 99.0% 98.9% 89.1%

Table 2: RCARRY: χ2-Tests for five different initial values.

5 Generators with discarding procedures

Lüscher[8] proposed an improvement of low-quality pseudorandom number
generators, by discarding a part of the output sequence. For simplicity, we
assume that the original generator is given by (2). We fix an integer p ≥ n
called the luxury index. We generate p pseudorandom real numbers using the
recursion (2), use the first n, discard the next p− n, then generate p, use n,
discard the next p− n, and iterate this procedure. If p = n, then the output
is identical with the original one.

We shall design a model for such generators to apply the sum-discrepancy
test. Let

G : In → IM , b �→ G(b) = (G(b)1, . . . , G(b)M)

be the original generator, where M is chosen to be M = m+ p−n. Then, the
improved generator G′ with luxury index p is a function

G′ : In × {0, 1, 2, . . . , n− 1} → Im.

obtained from G as follows. The state space is S′ = In × {0, 1, 2, . . . , n − 1}.
Here, the first In shows the state of the original generator, and the second
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{0, 1, 2, . . . , n− 1} shows the position of the present state with respect to the
discarding procedure. Namely, the state (b, j) ∈ S′ shows that, in the generator
G′, the original generator has the state b and we are going to use the next
n− j outputs and then discard p− n after.

At first we have j = 0, and using the recursion (2) we generate one pseudo-
random number, and output it. Then we increment j to 1, which is a counter
showing that after n− j generations, we need to discard p−n numbers. Again
generate one number, output it, and increment j to 2. Iterate this until j = n.
When j = n holds, we have used the n consecutive output of the original
generator, and hence we discard p− n numbers from G, set j = 0, and return
to the first step.

Thus, explicitly we have

G′(b, j) = (G(b)1, G(b)2, . . . , G(b)n−j, G(b)p−j+1, G(b)p−j+2, . . . , G(b)p+m−n).

From this we see that, for fixed j, G′(b, j) is a linear function In → Im and
hence the technique of Fourier analysis is applicable.

Let TG′ denote the random variable obtained as the summation of the m com-
ponents inG′(b, j) under the condition that both b ∈ S and j ∈ {0, 1, 2, . . . , n−
1} are uniformly distributed. Let TG′(−,j) denote the random variable obtained
as the summation of the m components in G′(b, j) under the condition that j
is fixed and b is uniformly distributed in S. Then, we have

FTG′ (α) =
1

n

n−1∑
j=0

FTG′(−,j)
(α).

Once FTG′ is obtained, the rest of the sum-discrepancy test goes in the same
way, and gives the safe and risky sample sizes. To compute FTG′(−,j)

(α), we

need to compute a basis of G′(S, j)⊥. For simplicity, we explain in the case of
j = 0, since other cases are similar. We have

G′(b, 0) = (G(b)1, G(b)2, . . . , G(b)n, G(b)p+1, G(b)p+2, . . . , G(b)p+m−n).

This is the projection of G(S) ⊂ (R/Z)M to (R/Z)J , where J denotes the
set {1, 2, . . . , n, p + 1, p+ 2, . . . , p+m− n}. By duality, G′(b, 0)⊥ = G(S)⊥ ∩
ZJ ⊂ ZM . A basis {b1, b2, . . . , bM−n} of G(S)⊥ is obtained in the previous way.
Then a basis of G(S)⊥ ∩ Z

J is obtained by the integer-version of Gaussian
elimination, i.e. it is the basis of the solution of the system of equations

proji(
M∑

j=1

njbj) = 0 (∀i /∈ J),

where proji denotes the i-th component.
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5.1 Sum-discrepancy test on RANLUX

RANLUX is a pseudorandom number generator proposed by Lüscher[8] and
implemented in Fortran by James[5]. RANLUX generator is obtained from
RCARRY (see §4.3) by a discarding procedure described above, with n =
24 and p ≥ 24. In [5], five standard luxury indices p = 24, 48, 97, 223, 389
are chosen, and each of them is called RANLUX with luxury level 0, 1, 2, 3, 4,
respectively. The level 3, i.e., p = 223 is defined as the default level. Let G be
the RCARRY generator. As formulated in §5, G is a mapping from I24 to IM ,
where M = m + p − n. Let G′ be RANLUX generator. We consider G′ as a
function

G′ : I24 × {0, 1, . . . , 23} → Im.

We choose m = 27 and the luxury p = 48, i.e., what James called luxury level
1 . In this case, G′(S, j) is 24-dimensional and its orthogonal complement
G′(S, j)⊥ is a 3-dimensional lattice. We consider the distribution of the sum
of consecutive 27 outputs. We categorize the range [0, 27) into 10 intervals, so
that the probability that the random variable T obeying the ideal distribution
falls into each category is almost the same. In this case, a computation gives
a basis of G′(S, 0)⊥:

b1 = (−1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0,−1, 0, 0, 0, 0, 0, 1, 0, 0),

b2 = (0,−1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0,−1, 0, 0, 0, 0, 0, 1, 0),

b3 = (0, 0,−1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0,−1, 0, 0, 0, 0, 0, 1).

A hand computation shows that these are the shortest. We define B2 as in §4,
and take the sum over the 24 vectors in G′(S, 0)⊥ as an approximation. We
compute the basis of G′(s, j)⊥ in the same way for j = 1, 2, . . . , 24. With the
help of Mathematica, we obtained an approximation of χ2-discrepancy δ of
the order of 6.3 × 10−8, a safe sample size of the order 3.9 × 107, and a risky
sample size of the order 2.0 × 108. We carried out these χ2-tests five times
with different initial values for safe and sample sizes respectively. In Table 3,
we list the p-values of these empirical χ2-tests.

sample size 1st 2nd 3rd 4th 5th

4.0 × 107 39.0% 83.5% 86.3% 54.9% 70.6%

2.0 × 108 98.0% 71.8% 99.8% 91.0% 99.0%

Table 3: RANLUX: χ2-Tests with p = 48, for five different initial values

Next we show the result for luxury p = 97, i.e., luxury level 2 according to
James. We choose m = 27 and categorize the range [0, 27) into 10 intervals as
in the previous case. We compute a basis of G′(S, j)⊥ in the previous way. For
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example, in the case j = 0, each vector in the basis has 10 nonzero components,
with maximum absolute value 10. Again define B2 as in the previous case, and
approximate δ.

We have obtained a χ2-discrepancy δ of the order 5.4 × 10−18, a safe sample
size of the order 4.6 × 1017, and a risky sample size of the order 2.4 × 1018.
In this case, both safe and risky sample sizes are too large to carry out the
χ2-tests. For higher luxury levels, we could not compute δ, since it appears to
be very small and the approximation error seems to exceed its value.

5.2 Sum-discrepancy test on ran array

ran array is a pseudorandom number generator proposed by Knuth[6]. It is
an improvement, by discarding strategy, of the following lagged Fibonacci
generator:

xj+100 := −xj+63 + xj mod 230 (j = 1, 2, . . .).

For a given luxury index p ≥ 100, ran array generates by iterating the follow-
ing procedure: generate p numbers by the above lagged Fibonacci generator,
use the first 100 numbers, discard the remaining p− 100 numbers.

We choose m = 103 and p = 100. In this case, the generator is identical to the
original generator. The subgroup G(S) is 100-dimensional and its orthogonal
complement G(S)⊥ is a 3-dimensional lattice. We categorize the range [0, 103)
into 10 intervals, so that the probability that the random variable T obeying
the ideal distribution falls into each category is almost the same. To compute
FTG

(α), we used the dominating 24 vectors in G(S)⊥ as in the previous cases.
Then, we obtained a χ2-discrepancy δ of the order of 1.74753 × 10−8, a safe
sample size of the order of 1.43 × 108 and a risky sample size of the order of
7.35 × 108. In Table 4, we show the results of the corresponding χ2-tests.

sample size 1st 2nd 3rd 4th 5th

1.43 × 108 75.6% 52.4% 13.6% 73.9% 93.9%

7.35 × 108 98.5% 100% 92.1% 94.9% 99.7%

Table 4: ran array: χ2-Tests with p = 100, for five different initial values

We now study the luxury index to p = 200. The other conditions are the
same as those of the previous case. We obtain a χ2-discrepancy δ of the order
of 3.07818 × 10−10, a safe sample size of the order of 8.1 × 109 and a risky
sample size of the order of 4.2 × 1010. In Table 5, we show the results of the
corresponding χ2-tests.
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sample size 1st 2nd 3rd 4th 5th

8.1 × 109 61.0% 50.8% 56.8% 30.4% 67.2%

4.2 × 1010 96.3% 99.8% 95.0% 100% 99.8%

Table 5: ran array: χ2-Tests with p = 200, for five different initial values

We change the luxury index to p = 300. Other conditions are the same as
those of the previous cases. Then, we obtained a χ2-discrepancy δ of the order
of 2.8× 10−15, a safe sample size of the order of 9.0× 1014 and a risky sample
size of the order of 4.6 × 1015. In this case, safe and risky sample sizes are
too large to carry out the χ2-tests. For higher luxury indices, we could not
compute δ by the same reason as for RANLUX.

6 Conclusion

We have shown by sum-discrepancy tests that RANLUX and ran array gen-
erators have deviations from the ideal probability distribution if the discarded
portion is 3/4 or less. If we discard more, then the generator would be safer,
but is slower. We would like to point out that there are other generators which
discard nothing but seem to have at least same quality in randomness, like
Mersenne Twister MT19937 [10]. The table below gives a comparison of its
speed with various luxury values of RANLUX. It exhibits the time required
to generate 107 random numbers for MT19937 and RANLUX with luxury
value L = 24, 48, 97, 223, 389. We measured the time on FreeBSD4.2R with
PentiumIII 1GHz processor.

The generator ran array shows similar tendency. For the recommended luxury
index p = 1000, it is more than three times slower than MT19937.

MT19937 RANLUX(L = 24) L = 48 L = 97 L = 223 L = 389

0.311 0.273 0.638 1.169 2.618 4.316

(sec.)

Table 6: Speed Comparison between MT19937 and RANLUX

We conclude that in a serious simulation RANLUX should be used with lux-
ury level at least 3, as recommended by Lüscher[8]. From the viewpoint of
efficiency, there are better alternatives, like Mersenne Twister, available at
the website http://www.math.keio.ac.jp/matumoto/emt.html .
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