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Introduction

Request: Most scientific Monte-Carlo simulation requires
great deal of floating point pseudorandom numbers.
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Introduction

Request: Most scientific Monte-Carlo simulation requires
great deal of floating point pseudorandom numbers.

Answer: We propose a fast and high quality uniform double precision
floating point pseudorandom number generator (PNG).
There are some methods to generate floating point pseudorandom
numbers.

© generate an integer number and convert it into a floating point
number by dividing or multiplying a constant.

© generate an integer number and convert it into a bit pattern
which represent a floating point number using bit operations.

We propose a new method to generate floating point pseudorandom
numbers.
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Introduction

Our idea is simple:
@ generate pseudorandom 52-bit patterns
@ supply the most significant 12-bits with a special constant,

@ so that they represent floating point numbers in the range [1, 2)
obeying the IEEE 754 format in memory.

We also used 128-bit SIMD (Single Instruction Multiple Data) instruction
set for faster generation. In other words, our PNG generates two floating
point numbers at one time.

We have made a new generator, double precision SIMD-oriented Fast
Mersenne Twister (dSFMT), which is much faster than

@ Mersenne Twister (Matsumoto and Nishimura '98) (MT) and
@ SIMD-oriented Fast MT (Saito and Matsumoto '07) (SFMT)

in generating double precision numbers.
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IEEE 754

IEEE Standard for Binary Floating-Point Arithmetic
(ANSI/IEEE Std 754-1985) is the most widely-used standard
for floating-point.

The standard defines

@ single precision (32 bit)
@ extended single precision (more than 43 bit)
@ double precision (64 bit)

@ extended double precision (more than 79 bit)
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IEEE 754

IEEE Standard for Binary Floating-Point Arithmetic
(ANSI/IEEE Std 754-1985) is the most widely-used standard
for floating-point.

The standard defines
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IEEE 754 double precision format

sign
S | e:exponent xxxxx: fraction
1 bit 11 bit 52 bit
exponent | fraction | represented number

zero 0 0 +0
denormalized number 0 #0 +0.x00cx x 271022
o0 2047 0 Fo00
NaN 2047 #0 Not a Number
normalized number other any +100xxx x 261023

xxxx shows the bit pattern of fraction part.
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IEEE 754 double precision format

sign
S | e:exponent xxxxx: fraction
1 bit 11 bit 52 bit
exponent | fraction | represented number

zero 0 0 +0
denormalized number 0 #0 +0.x00cx x 271022
o0 2047 0 Fo00
NaN 2047 #0 Not a Number
normalized number other any +100xxx x 261023

xxxx shows the bit pattern of fraction part.
If s is 0 and e is 0x3ff, then the format represent a normalized number in
the range [1, 2).
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Linear Feedbacked Shift Register (LFSR)

o A bit {0,1} is identified with F5, the two element field.

o b-bit integers are identified with horizontal vectors in F5.
b is 64 or 128.

@ We consider an array of N b-bit in computer memory
as the vector space (F5)V.
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Linear Feedbacked Shift Register (LFSR)

@ A bit {0,1} is identified with 5, the two element field.

o b-bit integers are identified with horizontal vectors in F5.
b is 64 or 128.

@ We consider an array of N b-bit in computer memory
as the vector space (F5)V.

Linear Feedbacked Shift Register (LFSR) is defined by
a recursion formula of rank N:

W; = g(wi—N) ceey Wi—1)7

where g is an Fy-linear map (F2)N — F5 and w; € F5.
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Pulmonary LFSR

Definition
Pulmonary LFSR is a variant of LFSR, which is defined by
two recursion formulas:

wW;, = g(Wi—N+17~-~aWi—17Ui—1)a

ui = h(wi_ny1,...,Wi—1,u;-1).

where g and h are Fp-linear maps (F5)V — F5 and w;,u; € F5.
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LFSR and Pulmonary LFSR
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Detailed description of dSFMTv2

We released dSFMT based on this idea in 2007 from our web page.
Here we propose an improved version of dSFMT.
dSFMTV2 is a pulmonary LFSR, whose recursion formulas are:

up = Aw;_ni1+Wi_ngmy1 + Buig,
w; = Ww;_nt1+ Duj,

where wo, ...,wy_o € F12 A B, D € Mypg(F2). M is pick up position
O<M<N-2
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We released dSFMT based on this idea in 2007 from our web page.
Here we propose an improved version of dSFMT.
dSFMTV2 is a pulmonary LFSR, whose recursion formulas are:

up = Aw;_ni1+Wi_ngmy1 + Buig,
w; = Ww;_nt1+ Duj,

where wo, ...,wy_o € F12 A B, D € Mypg(F2). M is pick up position
O<M<N-2

Q wp,...,wy_p are set to the values in [1, 2) with the format IEEE 754
@ D is chosen appropriately,

so that the consecutive w;s are uniformly distributed in the range [1, 2).
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Detailed description of dSFMTv2

Because 24 bits of each w is fixed, we can consider above formula as an
affine recursion formula:

X; = Xji—n+1+ Hyi,

where yi,C € F%zg, X; € F%04, F, G e M1237104(IF2), H e M1047123(F2).

To assure the period and distriution property, we need to develop
algorithms to compute theses for affine transforation generalized those for
linear transformation. (we ommit)
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Diagram of dSFMTv2

[+~—— 128 bit ——| exponent: Ox3FF
[+— 64 bit ﬂ
WO
WM
WN-Z
u
.

output =

Diagram of dSFMTv2
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Diagram of dSFMTv2

— 128 bit ——

«~—  e4bit ﬂ

IEEE 754 double
1.2

July 6-11, MCQMC’'08

IEEE 754 double
1.2

is Ox3ff for number in the
range [1, 2)

SIMD instruction set can

operate 128 bit (two double)
at one time.
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Diagram of dSFMTv2
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Diagram of dSFMTv2

[+— 64 bit ﬁ

[+~—— 128 bit ——|

exponent: Ox3FF

=

small loop

output =

large loop
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Diagram of dSFMTv2
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[+ 64 bit
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Diagram of dSFMTv2
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Diagram of dSFMTv2
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Diagram of dSFMTv2
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Diagram of dSFMTv2
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Diagram of dSFMTv2
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dSFMTv2-19937

dSFMTv2-19937 has following specification.
@ the least period: 219937 — 1
size of array N: 192
state space of affine transition: F19992
shift value SL1: 19
pick up position M: 117
constant mask: 0x000ffafffffffb3f000ffdfffcO0fffd
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Dimension of equidistribution

Definition
A periodic sequence with period P
X0, X1,---5Xp—1,Xp = XQ, - - .

of v-bit integers is said to be k-dimensionally equidistributed if any kv-bit
pattern occurs equally often as a k-tuple

(X,’, Xit1,--- axi-‘rk—l)

for a period i =0,...,P —1.
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Dimension of equidistribution

Definition
A periodic sequence with period P
X0, X1,---5Xp—1,Xp = XQ, - - .

of v-bit integers is said to be k-dimensionally equidistributed if any kv-bit
pattern occurs equally often as a k-tuple

(X,’, Xit1,--- axi-‘rk—l)

for a period i =0,...,P —1.
(The all-zero pattern occurs once less often than the others.)
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Dimension of equidistribution

Definition

A periodic sequence of b-bit integers is said to be k-dimensionally
equidistributed with v-bit accuracy if the most significant v(< b) bits of
each integer are k-dimensionally equidistributed.

We denote by k(v) the maximum such k.
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Dimension of equidistribution

Definition

A periodic sequence of b-bit integers is said to be k-dimensionally
equidistributed with v-bit accuracy if the most significant v(< b) bits of
each integer are k-dimensionally equidistributed.

We denote by k(v) the maximum such k. We have an upper bound of the
sequence with period P

k(v) < [logo(P +1)/v],

and define the dimension defect d(v) at v as the gap between the bound
and the realized dimension of equidistribution:

d(v) := [logo(P +1)/v] — k(v),

and the total dimension defect A as the sum of these gaps.
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Dimension of equidistribution

k(v) and d(v) of 52-bit fraction part of dSFMTv2-19937.

v k(V)]dW)]] v[k(v)]d(v)]] v]k(v)[d(v)] v]k(v)]d(v)
1119937 01/ 1411423 1)27] 734 41140] 383| 115
2| 9967 1|15(1328 1([28| 702| 10|/41| 383| 103
3| 6644 1]/16|1245 129| 620 ©67|42] 383| 91
4| 4983 1||17|1172 0(/30| 538| 12643 | 383| 80
5| 3987 01| 181107 0(/31| 536| 10744 | 383| 70
6| 3322 01/ 191049 0(/32| 535| 88|/45| 383| 60
7| 2847 1|20 996 0(/33| 384| 220(/46| 383| 50
8| 2491 1][21| 949 0|34 384| 202 47| 383| 41
9| 2215 0|22 772| 134||35| 384 | 185|/48| 383| 32
10| 1993 0(/23] 772 94|/36| 384| 169|/49| 383| 23
11| 1812 0|24 772| 58| 37| 383| 155||50| 383| 15
12| 1661 0(/25| 772| 25|/38| 383| 141| 51| 383 7
13| 1533 0[/26] 766 0[/39] 383| 12852 383 0

c.f. A of MT19937 is 6750.
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Comparison of speed

Generators
@ dSFMTv2: dSFMT ver. 2, improved dSFMT, described in this talk.

@ dSFMTv1l: dSFMT unpublished, but the code is available
from our homepage.

@ MT mask: Mersenne Twister with bit mask to fit to IEEE 754.
@ MT 64 mask: 64-bit MT with bit mask to fit to IEEE 754.

@ SFMT mask: SFMT with bit mask to fit to IEEE 754.

@ SFMT x const: SFMT standard double generation.
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Comparison of speed

Generators
@ dSFMTv2: dSFMT ver. 2, improved dSFMT, described in this talk.

@ dSFMTv1l: dSFMT unpublished, but the code is available
from our homepage.

@ MT mask: Mersenne Twister with bit mask to fit to IEEE 754.
@ MT 64 mask: 64-bit MT with bit mask to fit to IEEE 754.
@ SFMT mask: SFMT with bit mask to fit to IEEE 754.
@ SFMT x const: SFMT standard double generation.
CPUs and compilers
@ Pentium M 1.4GHz and Intel C compiler (ICC)
@ Pentium 4 3GHz and ICC
@ core 2 duo 1.83GHz and ICC
@ Athlon 64 2.4GHz and GNU C Compiler (GCC)
@ Power PC G4 1.33GHz and GCC
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Comparison of speed

Output
@ blk: Generate 50000 of double precision floating point numbers

in an array, at one call.
This is iterated for 2000 times (10® generations).

@ seq: Generate 102 of double precision floating point numbers
sequentially, one by one.

All outputs are formatted in the range [0, 1).
(i.e. outputs of dSFMTs are subtracted by 1.0).
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Comparison of speed

Using SIMD instruction set.
The time (sec.) required for 108 of double float generations.

dSFMTv2 | dSFMTv1 MT | SFMT SFMT

(new) (old) | mask | mask | x const

Pentium M blk 0.626 0.867 | 1.526 | 0.928 2.636
1.4 Ghz seq 1.422 1.761 | 3.181 | 2.342 3.671
Pentium 4 blk 0.254 0.640 | 0.987 | 0.615 3.537
3 Ghz seq 0.692 1.148 | 3.339 | 3.040 3.746
core 2 duo blk 0.199 0.381 | 0.705 | 0.336 0.532
1.83GHz seq 0.380 0.457 | 1.817 | 1.317 2.161
Athlon 64 blk 0.362 0.637 | 1.117 | 0.623 1.278
2.4GHz seq 0.680 0.816 | 1.637 | 0.763 1.623
PowerPC G4 blk 0.887 1.151 | 2.175 | 1.657 8.897
1.33GHz seq 1.212 1.401 | 5.624 | 2.994 7.712
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Comparison of speed

without using SIMD instruction set.

The time (sec.) required for 108 of double float generations

dSFMTv2 [dSFMTvl |MT64| MT|SFMT| SFMT
(new) (old) | mask | mask| mask| x const

Pentium M blk 1.345 2.023| 2.031|3.002| 2.026| 3.355
1.4 Ghz seq 2.004 2.386| 2.579|3.308| 2.835| 3.910
Pentium 4 blk 1.079 1.128| 1.432]2.515| 1.929| 3.762
3 Ghz seq 1.431 1.673| 3.137|3.534| 3.485| 4.331
core 2 duo  blk 0.899 1.382| 1.3592.404| 1.883| 1.418
1.83GHz seq 0.777 1.368| 1.7941.997| 1.925| 2.716
Athlon 64  blk 0.334 0.765| 0.820|1.896| 1.157| 1.677
2.4GHz seq 0.567 0.970| 1.046|2.134| 1.129| 2.023
PowerPC G4 blk 1.834 3.567| 2.297|4.326 | 4.521| 12.685
1.33GHz seq 1.960 2.865| 4.090|5.489| 5.464| 9.110
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Comparison of speed

without using SIMD instruction set.

The time (sec.) required for 108 of double float generations

dSFMTv2 [dSFMTv1 |MT64| MT|SFMT| SFMT
(new) (old) | mask | mask| mask|x const

Pentium M blk 1.345 2.023| 2.031|3.002| 2.026| 3.355
1.4 Ghz seq 2.004 2.386| 2.579|3.308| 2.835| 3.910
Pentium 4 blk 1.079 1.128| 1.432]2.515| 1.929| 3.762
3 Ghz seq 1.431 1.673| 3.137|3.534| 3.485| 4.331
core 2 duo  blk 0.899 1.382] 1.359|2.404 | 1.883| 1.418
1.83GHz seq 0.777 1.368| 1.7941.997| 1.925| 2.716
Athlon 64  blk 0.334 0.765| 0.820|1.896| 1.157| 1.677
2.4GHz seq 0.567 0.970| 1.046|2.134| 1.129| 2.023
PowerPC G4 blk 1.834 3.567| 2.2974.326| 4.521| 12.685
1.33GHz seq 1.960 2.865| 4.090|5.489| 5.464| 9.110
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We proposed dSFMT pseudorandom number generator.
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Conclusion

We proposed dSFMT pseudorandom number generator.
@ dSFMTv2-19937 generates IEEE 754 floating point numbers directly.
@ It has a period at least 219937 — 1.
@ It has good equidistribution property.
@ It is much faster than MT and SFMT in double precision floating
point generation.
Remark:

Someone may think cancellation error will occur when we convert numbers
form the range [1, 2) to [0, 1).

This is negligible: The generated numbers in the range [0, 1) by our
method have the same accuracy as ones obtaind by dividing 52-bit integers
by a constant.
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Thank you for your kind attention.
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