数理科学 II: 微分方程式講義メモ 2 (2010 年 4 月 14 日: 松本 眞)

三つの基本的定理

定理 ${f 0.1.}$ (微積分学の基本定理) f(t) を閉区間 [a,b] 上連続な実数値関数とする。つまり $f\in C^0([a,b])$ 。

- 1. 不定積分 $f\mapsto F(x):\int_a^x f(t)dt$ は $C^0([a,b])$ から $C^1([a,b])$ への写像 I を与える。
- 2. 微分 $G(t) \mapsto G'(t)$ は $C^1([a,b])$ から $C^0[a,b]$ への写像 D を与える。
- 3. $D \circ I(f) = f$
- 4. $I \circ D(G) = G + C$, ここに C はある実定数。

証明は、「解析入門 I (杉浦光夫著)」定理 5.4 を参照。

定理 0.2. (陰関数定理、自由度 1 の場合) $f(x_1,\ldots,x_n,y)$ が \mathbb{R}^{n+1} の開集合 U で定義された実数値 C^1 級関数とする。点 (a_1,\ldots,a_n,b) において f=0 となるとする。このとき、この点の近傍において、方程式 f=0 を解いて $y=y(x_1,\ldots,x_n)$ の形にしたい。そのためには、

$$\frac{\partial f}{\partial u}(a_1,\ldots,a_n,b) \neq 0$$

となれば十分である。より厳密にいえば、この条件のもと次が成り立つ。

- $1.~(a_1,\ldots,a_n)$ の開近傍 $V\subset\mathbb{R}^n,b$ の開近傍 $W\subset\mathbb{R}$ であって、 $V\times W\subset U$ となるものがとれて、ある連続関数 $g:V\to W$ が所望の解を与える、すなわち
 - (a) $g(a_1,\ldots,a_n)=b$ (この点を通っていますよ)
 - (b) $f(x_1, \ldots, x_n, g(x_1, \ldots, x_n)) = 0$ が V 上成立 (解ですよ)
 - (c) $V \times W$ では、(a) の g の条件を満たす y が $f(x_1, \ldots, x_n, y) = 0$ ならば $y = g(x_1, \ldots, x_n)$ (解はただ一つユニークですよ)
- 2. f が C^r 級 $(r \le 1)$ なら g も C^r 級。

証明は、「解析入門 II (杉浦光夫著)」定理 1.1 などを参照。

定理 0.3. (微分方程式の解の存在と一意性)

 $f(t,x_1,\ldots,x_n)$ を「(t_0 中心の閉区間) × ((a_1,\ldots,a_n) を中心とする閉球)」で定義されたn 次元連続実ベクトル値関数とする。 $x:=(x_1,\ldots,x_n)$ と書く。このとき、 (t_0,a_1,\ldots,a_n) の近傍で、この点を初期値として与えられた(連立)常微分方程式

$$\frac{dx}{dt} = f(t,x), \quad x(t_0) = (a_1, \dots, a_n)$$

をこの近傍で解くことができる十分条件として、リプシッツ条件がある。 すなわち、ある定数 L が存在して上の近傍(の直積)で

$$||f(t,x) - f(t,y)|| \le L||x - y||$$

を満たすとする。このとき、ある $\delta>0$ がとれて $[t_0-\delta,t_0+\delta]$ 上で定義された (局所) 解 y(t) が一意に定まる。すなわち、

- 1. $\frac{dy}{dt} = f(t, y(t))$ が $[t_0 \delta, t_0 + \delta]$ で成立 (解ですよ)
- 2. $y(t_0) = (a_1, \ldots, a_n)$ (初期値条件満たしてますよ)
- 3. 上の二つを満たす y は $[t_0-\delta,t_0+\delta]$ 上でただ一通りにさだまる。

さらに、 δ は次のようにとれる。

$$\delta = \min\{r, R/M\},\$$

ここにrは「 t_0 中心の閉区間」の半径、Rは「 (a_1,\ldots,a_n) 中心の閉球」の半径、Mはこの直積上での|f|の最大値。

証明は「常微分方程式入門(高橋陽一郎著)基礎数学6東京大学出版会」定理 IV.A.1 を参照。