
.

.

. ..

.

.

A deviation of CURAND: standard pseudorandom
number generator in CUDA for GPGPU

Mutsuo Saito1, Makoto Matsumoto2

1Hiroshima University, 2University of Tokyo

February 13, 2012

This study is granted in part by JSPS Grant-In-Aid #23244002,
#21654004, #21654017.

February 13, 2012 1/21

Introduction

CUDA, CURAND, xorwow

CUDA is a developing environment for General Purpose computation
by Graphic Processing Units (GPGPU).

In 2010 August, CUDA released CURAND, a library for
pseudorandom number generation.

There, xorwow generator (xor-shift added with Weyl sequence,
introduced by Marsaglia in 2003) was selected as the standard.

Deviation of xorwow

It was reported (in the web) that xorwow is rejected by one of the
tests in BigCrush test-suite in TESTU01 (L’Ecuyer-Simard).

We analyze some weakness of xorwow.

The six dimensional distribution has an observable deviation.

Its difference sequence is more clearly rejected by BigCrush.

February 13, 2012 2/21

Introduction

CUDA, CURAND, xorwow

CUDA is a developing environment for General Purpose computation
by Graphic Processing Units (GPGPU).

In 2010 August, CUDA released CURAND, a library for
pseudorandom number generation.

There, xorwow generator (xor-shift added with Weyl sequence,
introduced by Marsaglia in 2003) was selected as the standard.

Deviation of xorwow

It was reported (in the web) that xorwow is rejected by one of the
tests in BigCrush test-suite in TESTU01 (L’Ecuyer-Simard).

We analyze some weakness of xorwow.

The six dimensional distribution has an observable deviation.

Its difference sequence is more clearly rejected by BigCrush.

February 13, 2012 2/21

xorwow generator: xorshift-part

xorwow = xorshift+Weyl generator.

xorshift generator:
Let x0, x1, . . . , xn, . . . be a sequence of 32-bit integers.
xorshift generator (by Marsaglia) generate such a sequence by the
following recursion formula:

xn+5 = xn+4 ⊕ (xn+4 << 4) ⊕
xn ⊕ (xn << 1) ⊕ ((xn >> 2) << 1) ⊕ (xn >> 2).

Here,

⊕ denotes bit-wise XOR,
(x << m) denotes m-bit shift-left,
(x >> m) denotes m-bit shift-right.

F2-linear generator, period 25×32 − 1 = 2160 − 1.

February 13, 2012 3/21

xorwow generator: Weyl part

Weyl generator: (Marsaglia)
Generate a sequence of 32-bit integers y0, y1, . . . , yn, . . . by

yn+1 = yn + 362437 mod 232,

period 232.

The output sequence z0, z1, . . . of xorwow is the sum of the two sequences:

zn := xn + yn mod 232.

Its period is (2160 − 1)232.

February 13, 2012 4/21

Three tests in TESTU01 reject xorwow

TESTU01 statistical test suit (Simard-L’Ecuyer) clearly reject both
xorshift and Weyl generators.

Among the 106 tests in BigCrush, the following three tests
systematically reject xorwow:

Test 7: Collision Over test on the 7-dimensional distribution (each axis
is partitioned into 64 equal length interval, hence 7-dimensional unit
cube is partitioned into 647 small cells, and count the number of
collisions among 2 × 107 points generated by overlapping 7 tuples from
the generator; 30 times iterated).
p-value: around 10−4 ∼ 10−6

Test 27: Simplified Poker Test for the five least significant bits (on the
8 dimensional distribution).
p-value: around 10−16 ∼ 10−300

Test 81: Linear Complexity Test for the three least significant bits.
p-value: around 1 − 10−15

February 13, 2012 5/21

Three tests in TESTU01 reject xorwow

These results show that some flaw is hidden in xorwow generator. In
particular, rejection by Test 7 is serious for MonteCarlo simulations, since
it is about the six most significant bits (the rest two are on the least
significant bits, and the latter one is on the F2-linearity, which seems not
very significant for Usual MonteCarlo).

February 13, 2012 6/21

Analysis of defects of xorwow

By mathematical analysis, we found that xorwow has a significant
deviation on 6-dimensional distribution of the most significant 5 bits.

Recall that xorwow sequence is zn = xn + yn mod 232, where xn is
from xorshift and yn is from Weyl generator.

February 13, 2012 7/21

Analysis of defects of xorwow (continued)

xorshift is generated by

xn+5 = xn+4 ⊕ (xn+4 << 4) ⊕
xn ⊕ (xn << 1) ⊕ ((xn >> 2) << 1) ⊕ (xn >> 2).

Let xn(i) denote the i-th bit from the MSB. One sees that there is a
simple relation among seven bits in every consecutive 6-tuples for
every i (except i = 32) :

xn+5(i) = xn+4(i) ⊕ xn+4(i + 4)

xn(i − 2) ⊕ xn(i − 1) ⊕ xn(i) ⊕ xn(i + 1).

In particular, the 5 MSBs have a simpler relation

xn+5(1) = xn+4(1) ⊕ xn+4(5) ⊕
xn(1) ⊕ xn(2).

February 13, 2012 8/21

Analysis of defects of xorwow (continued 2)

Thus, 6-dimensional distribution of the 5 MSBs of (xn) is rather
deviated.

xn+5(1) = xn+4(1) ⊕ xn+4(5) ⊕
xn(1) ⊕ xn(2).

E.g. if xn < 232−2 and xn+4 < 232−5 hold, then xn+5 < 232−1.
When the 32-bit integers are normalized into [0,1]-interval, xn < 1/4
and xn+4 < 1/32 imply xn+5 < 1/2.

The choice of 362437 in the Weyl generator

yn+1 = yn + 362437 mod 232,

is too small compared to 232. Namely, the most significant 6 bits in
yn change seldomly when n is incremented. The change occurs once
in every 232−6/362437 = 185.16 times generation of yn.

February 13, 2012 9/21

Analysis of defects of xorwow (continued 3)

Thus, the value of the following formula from the output zn of xorwow

zn+5(1) ⊕ zn+4(1) ⊕ zn+4(5) ⊕ zn(1) ⊕ zn(2) (∗ ∗ ∗)

is 0 when yn, . . . , yn+5 are smaller than 232−6 (Since then adding yn’s
does not change the 5 MSBs).
More generally, if yn, . . . , yn+5 share the same 6 MSBs of type
?00??0, then the value of (***) depends only the the pattern ?00??0.
(Since such 32-bit integers do not cause a carry to the 1st, 2nd and
5th.) Thus, the value of (***) is 0 for a while (or 1 for a while).

February 13, 2012 10/21

The xor (***) of the five bits for 1000 generations

012345678901234567890123456789012345678901234567890
000
000000000000000100000000000001000101100000010110000
001100000011000000101100000001010010010100101000011
001100111110000100011010110000001100000110111111000
111001111000111010111110110101000111011101001011011
110100110101011111011011111111111100111110111101000
111110111110111111111010110101101111110001111111111
111111100111111111100011111111111111111111111111001
111111111011111011100000111101010111000011110111110
111001011011111111100111011101010010010010000000010
110110011100110101101001110101110101101011101100100
010111010100101000100100101001011001100110100001111
001110000010000101000001101110000000100011010001000
011100110100000001110000000111111100101000010000111
010001001010000000011000000110000000000000101011100
000011000011111100011100000010000010000010000100000
001000100011000010101010001111000011011010010110100
101101001010100011111000101110011001001111110000111
011110010101100001011000010101000110011101011101110
001110010011001110001011010011110110000111110010110

February 13, 2012 11/21

The xor (***) of the five bits for 1000 generations

012345678901234567890123456789012345678901234567890
010000010111000000111000010100111111001010011110001
000011010111001101100100111010110001010101111111000
101010010111101010001110110110010101110101110111111
110100100011101000011111110100110101011110111111010
011101111110110111111111111111110111111111111111111
011
110111111011111110111111101111111111101111101110110
111110111111111111110110011110111111110001000110111
110111111110111100011011110001001101111001111100000
110110111101111000101100110100000100010000110110000
010101000111101110001001100000001001000010010000110
001101001010000110100000000001110000010000001010000
000011001000000000101100110001011000001000000000110
000010000011001001100000010001000100000000010000000
000001100010100000010100000010101000100010000010011
011001001000100100101000100000101011001000101001001
100011010010011101010011010110101000100011000100101
001111110111110101101100100101101000010111000101001
011101111011000001011111011000110111000110100110010
010100010111101101111101111110011110011101001110111
110001111111001011101000111111111111110000110111101
110100000111101100100110011011100101111000111011101
101110100111011010111111010110011011011001110110000
000100110001010010011100010010001010010110011110011
000000001110101110011100101001010111001001001001111

February 13, 2012 12/21

Toy experiments: volume of a part W

We identify 32-bit integers with 232 intervals in [0, 1]. Define W ⊂ [0, 1]6

as the set of (z0, z1, . . . , z5) such that
z5(1) ⊕ z4(1) ⊕ z4(5) ⊕ z0(1) ⊕ z0(2) = 0 holds. (W for Walsh.)
6-tuples from (xn) always fall in W .
6-tuples from (zn) falls in W⇔ the value of (***)= 0.

February 13, 2012 13/21

Toy experiments: volume of a part W

This is the projection of W to the three dimensional cube by
(z1, z2, z3, z4, z5, z6) 7→ (z1, z5, z6). W is the inverse image. The above

picture denotes the region where z6(1)⊕ z5(1)⊕ z5(5)⊕ z1(1)⊕ z1(2) = 0.
Its volume is the half of the volume of the unit cube).

February 13, 2012 14/21

Toy experiments: volume of a part W

Use xorwow to estimate the volume of W , by generating 100 points in
[0, 1]6 (use non-overlapped 6-tuples).
hit dev p-value hit dev p-value

60 2.0 0.999968328758167 41 -1.8 0.000159108590158
51 0.2 0.655421741610324 51 0.2 0.655421741610324
45 -1.0 0.022750131948179 47 -0.6 0.115069670221708
44 -1.2 0.008197535924596 55 1.0 0.977249868051821
57 1.4 0.997444869669572 47 -0.6 0.115069670221708
44 -1.2 0.008197535924596 47 -0.6 0.115069670221708
52 0.4 0.788144601416603 52 0.4 0.788144601416603
58 1.6 0.999312862062084 36 -2.8 0.000000010717590
57 1.4 0.997444869669572 45 -1.0 0.022750131948179
49 -0.2 0.344578258389676 43 -1.4 0.002555130330428
58 1.6 0.999312862062084 52 0.4 0.788144601416603
42 -1.6 0.000687137937916 52 0.4 0.788144601416603
55 1.0 0.977249868051821 46 -0.8 0.054799291699558

February 13, 2012 15/21

Toy experiments: volume of a part W (continued)

hit dev p-value hit dev p-value

54 0.8 0.945200708300442 50 0.0 0.500000000000000
46 -0.8 0.054799291699558 63 2.6 0.999999900355737
44 -1.2 0.008197535924596 46 -0.8 0.054799291699558
55 1.0 0.977249868051821 49 -0.2 0.344578258389676
59 1.8 0.999840891409842 56 1.2 0.991802464075404
53 0.6 0.884930329778292 47 -0.6 0.115069670221708
45 -1.0 0.022750131948179 31 -3.8 0.000000000000015
56 1.2 0.991802464075404 62 2.4 0.999999206671848
49 -0.2 0.344578258389676 62 2.4 0.999999206671848
49 -0.2 0.344578258389676 55 1.0 0.977249868051821
52 0.4 0.788144601416603 46 -0.8 0.054799291699558
44 -1.2 0.008197535924596 57 1.4 0.997444869669572
58 1.6 0.999312862062084 45 -1.0 0.022750131948179
52 0.4 0.788144601416603 55 1.0 0.977249868051821
46 -0.8 0.054799291699558 57 1.4 0.997444869669572

February 13, 2012 16/21

CollisionOver test revisited

In BigCrush, 7-dimensional Collision Over Test deals with the 6 MSBs.
When we test the 5 MSBs in the same manner, then the p-values become
far smaller: < 10−60 (too many collisions).

February 13, 2012 17/21

Another defect: difference sequence

Let (zn) be the output of xorwow. Define its difference sequence (dn) by

dn := zn+1 − zn mod 232.

The results of 106 tests in BigCrush on dn (eps means a value < 10−300):
Test p-value

7 CollisionOver, t = 7 6.0e-74
8 CollisionOver, t = 7 1.6e-45
10 CollisionOver, t = 14 6.1e-36
36 Gap, r = 0 1.7e-13
38 Run, r = 0 1.7e-4
75 RandomWalk1 H (L=50, r=25) eps
75 RandomWalk1 M (L=50, r=25) eps
96 HammingIndep, L=30, r=27 2.4e-157
101 Run of bits, r = 0 2.6e-5
102 Run of bits, r = 27 7.8e-16

February 13, 2012 18/21

A reason why dn := zn+1 − zn fails clearer

zn := xn + yn mod 232.

dn = (xn+1 + yn+1) − (xn + yn)

= (xn+1 − xn) + (yn+1 − yn) mod 232

= xn+1 − xn + 362437 mod 232.

yn elliminated.

As we saw, the output (xn) of xorshift has obvious relations among a
few number of bits in consecutive 6 tuples, and dn inherits the
deviation.

February 13, 2012 19/21

Conclusion

xorwow is not suitable for serious MonteCarlo. (Note:
Panneton-L’Ecuyer analyzed xorshift and warned on its deviation in
2004).

A choice of small value 362437 in the Weyl generator caused serious
deviation in 6-dimensional distribution of the 5 MSBs.

Deviation persist for the LSBs, when 362437 is repaced to a large
number: We did not mention, but LSBs have more serious deviations.
Note that k LSBs of Weyl generator has period ≤ 2k , for any choice
of d in yn+1 := yn + d .

Anyway, ad-hoc modification of xorwow seems potentially dangerous.
Why not use generators having assurance on high dimensional
equidistribution property?

February 13, 2012 20/21

Conclusion-Advertise

We have Mersenne Twister for GPGPU (MTGP, 2010) with period
211213 − 1 and 175-dimensional equidistribution property, passing
BigCrush (except those on F2-linearity). This MTGP and
Multiplicative Recursive Generator were included in CURAND (Jan.
2012) as other choices (than the STANDARD xorwow).

We developped and released “tiny Mersenne Twister” (tinyMT, 2011)
with period 2127 − 1 whose MSBs and LSBs have high dimensional
equidistribution property, passing all tests in BigCrush. (Some
non-linearity introduced.)

Many distinct parameters and Dynamic Creators to generate them for
these generators are also released.

Downloadable from “Mersenne Twister Homepage”.

Thank you for listening.

February 13, 2012 21/21

Conclusion-Advertise

We have Mersenne Twister for GPGPU (MTGP, 2010) with period
211213 − 1 and 175-dimensional equidistribution property, passing
BigCrush (except those on F2-linearity). This MTGP and
Multiplicative Recursive Generator were included in CURAND (Jan.
2012) as other choices (than the STANDARD xorwow).

We developped and released “tiny Mersenne Twister” (tinyMT, 2011)
with period 2127 − 1 whose MSBs and LSBs have high dimensional
equidistribution property, passing all tests in BigCrush. (Some
non-linearity introduced.)

Many distinct parameters and Dynamic Creators to generate them for
these generators are also released.

Downloadable from “Mersenne Twister Homepage”.

Thank you for listening.

February 13, 2012 21/21

