平成25年度 広島大学大学院理学研究科入学試験問題

数 学 専 攻 専門科目(午前)

次の[1],[2],[3]の全問に解答せよ.

- [1] 平面 \mathbb{R}^2 について次の問いに答えよ.
 - (1) \mathbb{R}^2 上の標準的な距離を d とする. また, 各 $p \in \mathbb{R}^2$ に対して, d に関する ε -近傍

$$\{x \in \mathbb{R}^2 | d(p, x) < \varepsilon\}$$

を $U(p;\varepsilon)$ で表す. このとき, $U(p;\varepsilon)$ が距離空間 (\mathbb{R}^2,d) の開集合であることを, 定義に従って示せ.

(2) \mathbb{R}^2 上の距離 d_{\max} を次で定義する.

このとき, $U(p;\varepsilon)$ が距離空間 (\mathbb{R}^2,d_{\max}) の開集合であることを, 定義に従って示せ.

- (3) $(X,d_X),$ (Y,d_Y) を距離空間とする. 写像 $f:X\to Y$ について次の $(\mathcal{P}),$ (\mathcal{I}) が同値であることを示せ.
 - (\mathcal{P}) f は連続である. すなわち (Y,d_Y) の任意の開集合 U に対してその逆像 $f^{-1}(U)$ は (X,d_X) の開集合である.
 - (イ) (Y,d_Y) の任意の点 q の任意の ε -近傍 $V=\{y\in Y|d_Y(q,y)<\varepsilon\}$ に対してその逆像 $f^{-1}(V)$ は (X,d_X) の開集合である.
- (4) 距離空間 (\mathbb{R}^2, d) と $(\mathbb{R}^2, d_{\text{max}})$ が同相であることを示せ.
- (5) \mathbb{R}^2 上の距離 d_{∞} を次で定義する.

$$d_{\infty}(x, x') := \begin{cases} 0 & (x = x'), \\ 1 & (x \neq x'). \end{cases}$$

このとき、距離空間 (\mathbb{R}^2,d) と (\mathbb{R}^2,d_∞) は同相でない、その理由を簡潔に説明せよ、

(6) 次で定義される点列 $\{x_n\}$ は、距離 d_∞ に関して収束しないことを示せ.

$$x_n := \left(\frac{1}{n}, 0\right).$$

平成25年度 広島大学大学院理学研究科入学試験問題

数 学 専 攻 専門科目(午前)

- [2] 次の(A),(B),(C) にある問いすべてに答えよ.
- (A) $I \subset \mathbb{R}$ は開区間とし、f は I 上の関数とする. $a \in I$ に対し、次の問いに答えよ.
 - (1) $\lim_{x \to a-0} f(x) = \lim_{x \to a+0} f(x) = f(a)$ を満たすとき f は x=a で連続であることを ε - δ 論法を用いて示せ.
 - (2) f は I 上連続, $I\setminus\{a\}$ 上で C^1 級で, $I\setminus\{a\}$ における導関数 f' は $\lim_{x\to a-0}f'(x)=\lim_{x\to a+0}f'(x)$ を満たすとする. この極限の値を A と表す. このとき f は I 上で C^1 級で, f'(a)=A となることを示せ (必要なら平均値の定理を用いても良い). ただし, 関数 h が開集合 J 上で C^1 級とは h は J の各点で微分可能で、導関数 h' が J 上の連続関数になることをいう.
- (B) $\alpha > 0$ と $p, q \in \mathbb{R}$ に対し関数 g を

$$g(x) = \begin{cases} \cos(x^{\alpha}) & (x \ge 0), \\ px + q & (x < 0) \end{cases}$$

で定める. 次の問いに答えよ. 必要ならば(A)の結果を用いてもよい.

- (1) g が \mathbb{R} 上で連続であるとき g を求めよ. さらに x > 0 における g の導関数 g' を求めよ.
- (2) q が \mathbb{R} 上で C^1 級となるような p が存在するための α の条件を求めよ.
- (C) a > 0 は定数とする. 次の問いに答えよ.
 - $(1) \ 0<\varepsilon < a に対し \int_0^{a-\varepsilon} \frac{1}{a^2-x^2} dx \ {\bf を求めよ}.$
- (2) $\varepsilon > 0$ に対し、広義積分 $\int_{a+\varepsilon}^{\infty} \frac{1}{a^2-x^2} dx$ を求めよ.
- (3) 広義積分 $\int_0^\infty \frac{1}{a^2-x^2} dx$ は収束するかどうか調べよ.

平成25年度 広島大学大学院理学研究科入学試験問題

数 学 専 攻 専門科目(午前)

 $\left[m{3}\,\right]\,V$ を 複素数を成分とする 2 imes 2 行列全体のなす複素線形空間とし,行列

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in V$$

に対して,写像 $f_A:V\to V$ を

$$f_A(X) = AX - XA$$

により定義する.

- (1) f_A は線形写像であることを示せ.
- (2) f_A の核 $\operatorname{Ker} f_A$ が E, A を含むことを示せ. ただし, E は 2 次の単位行列とする.
- (3) V の基底 $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, に関する f_A の表現行列 M を求めよ.
- (4) f_A が零写像であることと, A が単位行列 E の定数倍であることとが同値であることを示せ.
- (5) f_A が零写像でなければ, E, A は $\operatorname{Ker} f_A$ の基底をなすことを示せ.
- (6) A の固有値を α , β とすると M の固有値は 0, 0, $\alpha-\beta$, $\beta-\alpha$ であることを示せ. ただし, 固有値は重複も含めて並べるものとする.
- (7) M が対角化可能であることと, A が対角化可能であることは, 同値であることを示せ.