数 学 プ ロ グ ラ ム 専門科目(午後)

受験番号 M

令和5年 8月 24日 13:30 ~ 16:30

注 意 事 項

1.以下の用紙が配布されている.

問題用紙(表紙を含む) 1 0 枚 解答用紙 2 枚 下書き用紙 2 枚

- 2. 問題は全部で 9 問ある. この中から 2 問選んで解答せよ.
- 3. 問題ごとに必ず一枚ずつ別々の解答用紙を用い、それぞれの解答 用紙に問題番号を記入して解答せよ. 紙面が不足した場合は裏面 を使用してよい.
- 4. 試験問題の表紙,解答用紙,および下書き用紙のすべてに受験番号を記入せよ.
- 5. 試験終了時には、すべての解答用紙および下書き用紙を提出すること.

数 学 プ ロ グ ラ ム 専門科目(午後) | 令和5年8月実施

選択問題:次の[4]~[12]の9問中の2問を選んで解答せよ.

- [4] 次の(A),(B),(C) のすべての問に答えよ.
- (A) G と G' を群とし, φ : $G \to G'$ を群の準同型とする. $g \in G$ を位数有限の元とし, その位数を n とする. このとき $\varphi(g) \in G'$ は位数有限であり, その位数は n の約数であることを示せ.
- (B) 以下の問に答えよ.
 - (1) G を群とし N を G の正規部分群とする. N の G における指数は有限であるとし, その指数を n とする. このとき任意の $g \in G$ に対し $g^n \in N$ であることを示せ.
 - (2) 実数全体のなす集合が加法に関してなす群を $\mathbb R$ とする. $\mathbb R$ の指数有限の部分群は $\mathbb R$ のみであることを示せ.
- (C) 体 K に対し, K の元を成分とする 2×2 の正則行列全体が行列の積に関してなす群を $\mathrm{GL}(2,K)$ と書く. 以下の間に答えよ.
 - (1) $\mathrm{GL}(2,\mathbb{Q})$ は $\mathrm{GL}(2,\mathbb{R})$ の部分群である. (この事実は証明する必要はない.) $\mathrm{GL}(2,\mathbb{Q})$ は $\mathrm{GL}(2,\mathbb{R})$ の正規部分群であるか. 理由とともに述べよ.
 - (2) $GL(2,\mathbb{Q})$ の元で位数が 3 の元を一つ挙げよ.
 - (3) GL(2, ℚ) に位数 5 の元は存在しないことを示せ.

数 学 プ ロ グ ラ ム 専門科目(午後) 令和5年8月実施

- [5] $R=\mathbb{Z}[x,y]$ は整数係数 2 変数の多項式環, $S=\mathbb{R}[t]$ は実数係数 1 変数の多項式環とする. 環準同型 $\Phi:R\to S$ は整数 n に対し $\Phi(n)=n$ を満たし, かつ $\Phi(x)=2t^2$, $\Phi(y)=3t^3$ が成り立つとする. 以下の問に答えよ.
- (1) $f = f(x,y) \in R$ に対し, $\Phi(f) = f(2t^2, 3t^3)$ となることを示せ.
- (2) R のイデアル $\operatorname{Ker}\Phi$ は素イデアルであることを示せ.
- (3) イデアル $\operatorname{Ker} \Phi$ に含まれる 0 でない元を一つ挙げよ.
- (4) 自然数 d および整数 a_0, a_1, \ldots, a_d に対し,

$$f(x,y) = a_0 x^{3d} + a_1 x^{3(d-1)} y^2 + a_2 x^{3(d-2)} y^4 + \dots + a_{d-1} x^3 y^{2(d-1)} + a_d y^{2d}$$

が $\operatorname{Ker}\Phi$ に含まれるならば, a_0 は 9 の倍数であることを示せ.

- (5) $\operatorname{Ker} \Phi$ は単項イデアルであることを示せ.
- (6) 剰余環 $R/\text{Ker}\,\Phi$ の極大でないイデアル J で、単項イデアルでないものを一つ挙げよ.

数 学 プ ロ グ ラ ム 専門科目(午後) 令和5年8月実施

[6] 2次元単位球面 $S^2=\{u=(u_1,u_2,u_3)\in\mathbb{R}^3\mid u_1^2+u_2^2+u_3^2=1\}$ 上に同値関係 \sim を $u\sim v\;(u,v\in S^2)\Longleftrightarrow u=v\;$ または u=-v

で定め、この同値関係による S^2 の商空間を $\mathbb{R}P^2$ とする. 写像 $f:\mathbb{R}P^2\to\mathbb{R}^5$ を次で定める.

$$f([(u_1, u_2, u_3)]) = \left(2u_1u_2, 2u_1u_3, 2u_2u_3, u_1^2 - u_2^2, \sqrt{3}u_3^2 - \frac{1}{\sqrt{3}}\right).$$

以下の問に答えよ.

- (1) f は well-defined であることを証明せよ.
- (2) f は単射であることを証明せよ.
- (3) f ははめ込みであることを証明せよ.
- (4) 正の実数 r に対して、

$$S^{4}(r) = \left\{ x = (x_{1}, x_{2}, x_{3}, x_{4}, x_{5}) \in \mathbb{R}^{5} \mid x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + x_{4}^{2} + x_{5}^{2} = r^{2} \right\}$$

を半径 r の 4 次元球面とする. このとき $f(\mathbb{R}P^2)$ はある $S^4(r)$ の部分集合であることを示し, そのときの半径 r を求めよ.

数 学 プ ロ グ ラ ム 専門科目(午後) | 令和5年8月実施

[7] 2次元ユークリッド空間 \mathbb{R}^2 の部分空間 S^1 , D^2 をそれぞれ次で定義する.

$$S^{1} = \{(x_{1}, x_{2}) \mid x_{1}^{2} + x_{2}^{2} = 1\},$$

$$D^{2} = \{(x_{1}, x_{2}) \mid x_{1}^{2} + x_{2}^{2} \le 1\}.$$

以下の問に答えよ.

- (1) D^2 が可縮であることを示せ.
- (2) 2 次元トーラス $T = S^1 \times S^1$ から一点を除いた空間の基本群を求めよ.
- (3) T と実射影平面 $\mathbb{R}P^2$ の連結和 $T\#\mathbb{R}P^2$ の基本群を求めよ.
- (4) $T#\mathbb{R}P^2$ の整数係数ホモロジー群を求めよ.
- (5) $T=S^1 \times S^1$ と D^2 を $S^1 \times \{(1,0)\}$ と D^2 の境界を同一視して貼り付けた空間 X の整数係数ホモロジー群を求めよ.
- (6) $f: D^2 \to S^1$ であり f を D^2 の境界に制限したとき恒等写像となるような連続写像が存在する か調べよ. 存在する場合は例を構成せよ. 存在しない場合は証明せよ.

数 学 プ ロ グ ラ ム 専門科目(午後) 令和5年8月実施

[8] 次の(A),(B)のすべての問に答えよ.

(A) 次の積分を考える.

$$I = \int_{-\infty}^{\infty} \frac{e^{ix}}{x^4 + 4} dx.$$

以下の問に答えよ.

(1) 広義積分 I は絶対収束することを示せ.

(2) $R \ge 2$ に対し γ_R を $z(t) = Re^{it}$ $(t \in [0,\pi])$ により定まる曲線とする. このとき、次が成り立つことを示せ.

$$\lim_{R\to\infty}\int_{\gamma_R}\frac{e^{iz}}{z^4+4}dz=0.$$

(3) I の値を求めよ.

(B) $D=\{z\in\mathbb{C}\mid |z|<1\}$ とし、D の閉包を \overline{D} , D の境界を ∂D と書くことにする. \mathbb{R} の開区間 $J=(-\delta,\delta)$ ($\delta>0$) に対し $E=\{e^{i\theta}\mid \theta\in J\}$ と定める. $f,g:\overline{D}\to\mathbb{C}$ は D 上で正則かつ \overline{D} 上で連続であり、E 上で f=g を満たすとする. 以下の問に答えよ.

(1) $\phi \in \mathbb{R}$ に対し, $E_{\phi} = \{e^{i(\theta+\phi)} \mid \theta \in J\}$ と定める. このとき, 有限個の $\phi_1, \dots, \phi_m \in \mathbb{R}$ が存在し, $\partial D = \bigcup_{j=1}^m E_{\phi_j}$ となることを示せ.

(2) (1) の ϕ_1, \ldots, ϕ_m に対し,

$$h(z) = \prod_{j=1}^{m} \left(f(e^{-i\phi_j}z) - g(e^{-i\phi_j}z) \right)$$

とおく. このとき, h(z) は ∂D 上で恒等的に 0 であることを示せ.

(3) (2) の h(z) は \overline{D} 上で恒等的に 0 であることを示せ.

(4) \overline{D} 上で f = g が成立することを示せ.

数 学 プ ロ グ ラ ム | 専門科目(午後) | 令和5年8月実施

- [9] 次の(A),(B)のすべての問に答えよ.
- (A) 関数 $f:[0,1] \to \mathbb{R}$ は連続であり, f(0)=f(1)=0 を満たし, 0 < c < 1 が存在して, [0,c] 上で 狭義に増加であり, [c,1] 上で狭義に減少であるとする. 関数 f を [0,c] 上に制限したときの逆関数 $g_1:[0,f(c)] \to \mathbb{R}$ と, 関数 f を [c,1] 上に制限したときの逆関数 $g_2:[0,f(c)] \to \mathbb{R}$ を考える. 以下の問に答えよ. なお関数 g_1 と関数 g_2 が連続であることは認めて解答して良い.
 - (1) 次が成り立つことを示せ.

$$\{(x,y) \in \mathbb{R}^2 \mid 0 < x < 1, \ 0 < y < f(x)\} = \{(x,y) \in \mathbb{R}^2 \mid 0 < y < f(c), \ g_1(y) < x < g_2(y)\}$$

(2) C^1 級関数 $\varphi: \mathbb{R} \to \mathbb{R}$ を考える. 導関数を φ' と表すとき, 次が成り立つことを示せ.

$$\int_0^1 (\varphi(f(x)) - \varphi(0)) \, dx = \int_0^{f(c)} (g_2(y) - g_1(y)) \varphi'(y) \, dy$$

(3) 関数 $f:[0,1] \to \mathbb{R}, x \mapsto x^3 - 3x^2 + 2x$ を考える. このとき関数 f は本問の条件を満たすことを確かめ、更に対応する c および関数 g_1 と g_2 に対して、次の積分の値を求めよ.

$$2\int_0^{f(c)} (g_2(y) - g_1(y))y \, dy$$

(B) 区間 [0,1] 上の実数値ルベーグ可測関数列 $\{f_n\}$ と, 区間 [0,1] 上の実数値ルベーグ可測関数 f を 考える. ルベーグ測度を μ と表すとき, 各 n に対して $f_n(x) \geq 0$ μ -a.e. $x \in [0,1]$ が成り立ち, ま た任意の $\varepsilon > 0$ に対して

$$\lim_{n \to \infty} \mu(\{x \in [0, 1] \mid |f_n(x) - f(x)| \ge \varepsilon\}) = 0$$

が成り立つとする. 以下の問に答えよ.

(1) $\varepsilon > 0$ とする. 各 n に対して次が成り立つことを示せ.

$$\mu(\{x \in [0,1] \mid f(x) \le -\varepsilon\}) \le \mu(\{x \in [0,1] \mid |f_n(x) - f(x)| \ge \varepsilon\})$$

- (2) $f(x) \ge 0$ μ -a.e. $x \in [0,1]$ が成り立つことを示せ.
- (3) 各 f_n はルベーグ可積分であり、

$$\liminf_{n \to \infty} \int_0^1 f_n(x) \, dx < +\infty$$

が成り立つならば、関数 f はルベーグ可積分であることを示せ.

数 学 プ ロ グ ラ ム 専門科目(午後) | 令和5年8月実施

[10] X_1,X_2,\ldots を独立に区間 (0,1) 上の一様分布に従う確率変数列とする. n を 2 以上の自然数とし, $Y_1^{(n)}=\min\{X_1,\ldots,X_n\},$ $Y_1^{(n)}=X_k$ となる k を K_n と表す. $K_n=k$ のとき

$$Y_2^{(n)} = \min(\{X_1, \dots, X_n\} \cap \{X_k\}^c)$$

とする. ただし A^c は A の補集合を表す. $Z_n = Y_2^{(n)} - Y_1^{(n)}$ とするとき, 以下の問に答えよ.

- (1) $Y_1^{(1)} = X_k$ となる k は確率 1 でただ一つ定まることを示せ.
- (2) $K_n=k$ が与えられたときの $Y_1^{(n)}$ の条件付き分布の分布関数を $F_n(y_1\mid k)$ と表す. $0\leq y_1\leq 1$ のとき $F_n(y_1\mid k)$ を求めよ.
- (3) $K_n = k$ が与えられたときの $(Y_1^{(n)}, Y_2^{(n)})$ の条件付き分布の同時分布関数を $F_n(y_1, y_2 \mid k)$ と表す. $0 \le y_1 < y_2 \le 1$ のとき, $F_n(y_1, y_2 \mid k)$ を求めよ.
- (4) Z_n の期待値を求めよ.
- (5) $n \to \infty$ のとき, Z_n は 0 に確率収束することを示せ.
- (6) $W_n = nZ_n$ の $n \to \infty$ のときの極限分布の分布関数を求めよ.

数 学 プログラム 専門科目(午後)

令和5年8月実施

[11] $t \ge 0$ で定義された正値連続関数 a(t) と実数 L > 0 に対して次の微分方程式を考える.

$$(\mathrm{H}) \qquad \left\{ \begin{array}{l} a(t)\frac{\partial u}{\partial t}(t,x) - \frac{\partial^2 u}{\partial x^2}(t,x) = 0 & (t > 0, x \in I), \\ u(t,0) = 0, u(t,L) = 0 & (t > 0), \\ u(0,x) = f(x) & (x \in I). \end{array} \right.$$

ただし, I = [0, L] であり, f は I 上の実数値連続関数で f(0) = f(L) = 0 を満たすとする. また, I上の実数値連続関数 g,h に対して

$$(g,h) = \int_0^L g(x)h(x)dx$$

と定める. 次の(A),(B)のすべての問に答えよ.

- (A) (1) 定数 $\omega \geq 0$ に対する微分方程式 $\varphi''(x) = \omega^2 \varphi(x)$ の一般解を求めよ.
 - (2) 閉区間 I 上の C^2 級関数 φ と実数 λ の組で

$$\begin{cases} \varphi''(x) = \lambda \varphi(x) & (x \in I), \\ \varphi(0) = 0, \ \varphi(L) = 0 \end{cases}$$

を満たし、 さらに $\varphi'(0) > 0$ かつ $(\varphi, \varphi) = 1$ となるものをすべて求めよ.

- (3) (2) で求めた関数 φ を I における零点(すなわち, $\varphi(x)=0$ を満たす $x\in I$)の個数の少な い順に $\varphi_1, \varphi_2, \varphi_3, \dots$ と並べる. このとき $m \neq n$ ならば $(\varphi_m, \varphi_n) = 0$ となることを示せ.
- (B) 関数 u(t,x) は $[0,\infty) \times I$ 上で連続, $(0,\infty) \times I$ 上で t について 1 回微分可能, x について 2 回 微分可能で, 各導関数は $(0,\infty) imes I$ 上で連続であり, さらに (H) を満たすとする. 関数 u(t,x) に 対して

$$c_n(t) = (u(t, \cdot), \varphi_n) \left(= \int_0^L u(t, x) \varphi_n(x) dx \right) \quad (n = 1, 2, 3, \dots)$$

とおく. ただし, φ_n (n=1,2,3,...) は (A) で求めた関数とする. 以下の問に答えよ.

- (1) 関数 c_n を求めよ.
- (2) $v(t,x) = \sum_{n=1}^{\infty} c_n(t) \varphi_n(x)$ とおく. このとき $\frac{\partial v}{\partial t}$ は $(0,\infty) \times I$ 上で存在し, $(0,\infty) \times I$ 上の連 続関数であることを示せ.
- (3) 関数 $\frac{1}{a(t)}$ は $[0,\infty)$ 上で可積分でないとすると任意の $x\in I$ に対して $\lim_{t\to\infty}u(t,x)=0$ が成り立つことを示せ. ただし, 必要であれば, 任意の I 上の 2 乗可積分関数 ψ に対し,

$$\left(\int_{I} |\psi(x)|^{2} dx\right)^{2} = \sum_{n=1}^{\infty} |(\psi, \varphi_{n})|^{2}$$

が成り立つことは証明なしに用いてもよい.

数 学 プ ロ グ ラ ム 専門科目(午後) 令和5年8月実施

[12] X_1, \ldots, X_n $(n \ge 1)$ を互いに独立にいずれもガンマ分布 $Ga(a, \theta)$ $(a > 0, \theta > 0)$ に従う確率変数列とし、 $\mathbf{X} = (X_1, \ldots, X_n)$ とおく、ここで、 $Ga(a, \theta)$ の確率密度関数は

$$f(x \mid \theta) = \begin{cases} \frac{1}{\Gamma(a)\theta^a} x^{a-1} e^{-x/\theta} & (x > 0) \\ 0 & (x \le 0) \end{cases}$$

で与えられる。ただし, Γ は $\Gamma(k)=\int_0^\infty t^{k-1}e^{-t}dt\ (k>0)$ により定義されるガンマ関数とする。このとき,a を既知とするときの, θ の推定問題を考える。本問において,ガンマ分布 $\mathrm{Ga}(a,\theta)$ に従う確率変数 X に関する次の性質は証明なしに用いてよいものとする。

$$\mathrm{E}(X) = a\theta$$
, $\mathrm{Var}(X) = a\theta^2$, $\mathrm{E}(e^{itX}) = \frac{1}{(1-it\theta)^a}$ (i は虚数単位).

以下の問に答えよ.

- (1) $\bar{X}_n=n^{-1}\sum_{i=1}^n X_i$ とおくとき, \bar{X}_n の従う確率分布を求め, $\mathrm{E}(\bar{X}_n^2)$ を求めよ.
- (2) θ の最尤推定量 $\delta_1(\boldsymbol{X})$ を \bar{X}_n を用いて表し、それが θ の不偏推定量になっていることを示せ.
- (3) X の θ に関するフィッシャー情報量を

$$I_{\boldsymbol{X}}(\boldsymbol{\theta}) = \mathrm{E}\left\{-\frac{\partial^2}{\partial \boldsymbol{\theta}^2} \log f(\boldsymbol{X} \mid \boldsymbol{\theta})\right\}$$

により定義する. (2) で求めた推定量 $\delta_1({m X})$ の分散 ${
m Var}\{\delta_1({m X})\}$ がクラメール・ラオの不等式

$$\operatorname{Var}\{\delta_1(\boldsymbol{X})\} \ge \frac{1}{I_{\boldsymbol{X}}(\theta)}, \quad \theta > 0$$

- の下限を達成することを示せ.
- (4) c を定数とし、 $\delta_2(\boldsymbol{X}) = c\bar{X}_n$ の形の推定量を考える。 θ の推定量 $\delta(\boldsymbol{X})$ の平均二乗誤差を $\mathrm{E}\left[\{\delta(\boldsymbol{X}) \theta\}^2\right]$ により定義するとき、 $\delta_2(\boldsymbol{X})$ の平均二乗誤差を最小にする c を求め、その最小値と $\delta_1(\boldsymbol{X})$ の平均二乗誤差の大小を比較せよ。