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Dynamics of Two Equivalent Lanes Traffic Flow Model:

Self-Organization of the Slow Lane and Fast Lane
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A simple two-lanes traffic flow model using cellular automaton is investigated. In this model,
if the car density is set within a certain range, the following characteristic behavior of traffic flow
is observed. i) The self-organization of the slow and fast lanes in spite of the symmetry between
these two lanes. ii) The appearance of several branches and hysteresis in the relation between
traffic flow and car density.
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n + V jn holds for some jth car.

Recently, several traffic flow models have been pro-
posed.1-18) They succeeded in investigating the phenom-
ena of one-lane traffic flow. However, the observed real
systems contain more than two lanes. Hence, in order
to investigate the multiple-lane effect, we simulate two-
lanes traffic flow models which include the effects of lane
changing.

We extend the one-lane model by Nagel and Schreck-
enberg4) to the model with two lanes. The system con-
sists of cars and lanes. The number of lanes is two and
that of cars is varied as a control parameter. We number
the cars in each lane in the order from the last to the
first. Let xin and vin be the position of the front edge
and the velocity of the ith car at time step n in one lane,
respectively, and Xj

n and V jn be the position of the front
edge and the velocity of the jth car in the other lane, re-
spectively. The quantity din is the gap between the front
edge of the ith car and the rear edge of the i + 1th car
i.e. din = xi+1

n − xin − 1 where 1 is the car length.
Velocity vin takes one of the five discrete values from

1 to 5, and the dynamical rules for each lane are equiv-
alent; additionally, the rules for changing lanes are set
symmetrical between two lanes. The dynamics of the
ith car from time step n to n + 1 is determined by the
set {xin, vin, vi+1

n , din, Xj
n, V jn }. Detailed rules are as

follows where I), II) and III) show the dynamical rule in
each lane and IV) shows the rule for lane changing;

I) When vin < din; xin+1 = xin + vin always holds, and
vin+1 = vin + 1 if vin < 5, vin+1 = vin if vin = 5.

II) When vin = din; xin+1 = xin + vin always holds. If
vi+1
n > vin, the car accelerates as vin+1 = vin + 1 with

probability P (accelerating probability), or does not ac-
celerate such that vin+1 = vin with probability (1 − P ).
For other cases vin+1 = vin.

III) When vin > din; xin+1 = xin + din always holds. If
vi+1
n > vin then vin+1 = vin and if vi+1

n = vin, vin+1 =
vin − 1. If vi+1

n < vin, vin+1 = vin − 1 when xi+1
n = Xj

n or
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IV) When vin > din and vi+1
n < vin; similar to the case

III), xin+1 = xin + din holds. If there is no jth car which
satisfies the relation xi+1

n = Xj
n or Xj

n ≤ xin < Xj
n +

V jn , then the ith car moves into the next lane without
changing velocity (vin+1 = vin).

We simulate the two cases, (1) P = 0 (deterministic
case) and (2) P = 0.5 (stochastic case). Here, we define
the car density ρ as (number of occupied sites)/(system
size) and flow f as (

∑
i v
i)/(system size) where system

size means the total length of the road (=number of sites
per lane)× 2 (=number of lanes).

First we discuss case (1). Due to the fact that the
characteristic relation between the flow and the density
and the non-trivial dynamics of the system appears for
0.1 ≤ ρ ≤ 0.2, we focus on these densities. The boundary
condition is set periodic and positions and velocities of
cars are set random at the initial condition. Figure 1 is
a typical spatio-temporal evolution for a stationary state
where dots represent individual cars which trauel from
the left to the right. Each stationary state is mainly com-
posed of a free-flow region and one type of clusters. Here
a free-flow region is a region in which every car has the
maximum velocity (vin = vf = 5). In contrast, a cluster
is a region throughout which the (spatial) gap between
two successive cars takes a constant value equivalent to
their velocity vc where 1 ≤ vc ≤ 4. Clusters are clas-
sified into 4 types according to vc. In more detail ‘ac-
celerating region’ (‘decelerating region’) exists between
a free flow region and the front (rear) end of a cluster.
In this region, cars accelerate from vc to vf (decelerate
from vf to vc) and vi+1

n > vin (vi+1
n < vin). Figure 2

shows the relation between density and flow for station-
ary states which are taken at the 50000th time step after
initial conditions with various car densities. In this di-
agram, some branches grow from the line f = 5ρ for
0.1 < ρ < 0.2. This means that flow is not determined
as a unique function of car density. This result contra-
dicts that of previous models,1-13) but agrees with the
observational reports of real systems.20, 21) The observa-
tional reports of real systems20, 21) show the time aver-
age of local flow and local density, contrary, we get the
spatial average of them at a time. However, since the
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system is in the stationary state, the time average of lo-
cal flow and local density is supposed to be equivalent to
their spatial average. Moreover each branch has its own
spatio-temporal evolution of the corresponding system.
For example, when the relationship between flow and
density belongs to the branch (a) in Fig. 2, the system
behaves like that in Fig. 1(a). This picture indicates that
clusters composed of cars which run with vin = vc = 1
exist in both lanes in a symmetric manner. However,
when the relation between flow and density belongs to
the branch (b) in Fig. 2, the system behaves like that in
Fig. 1(b). This picture indicates that one of these lanes
include one type of cluster with vc = 3, and the other
lane is completely occupied by the free-flow region. The
origin of the difference between the two systems, (a) and
(b), lies in the initial distribution of cars. In this respect,
even if the dynamical rules between two lanes are sym-
metrical, depending on the small difference in the initial
conditions, two types of stationary states may appear.
We call one of them ‘symmetric state’ (Fig. 1(a)) and
the other ‘asymmetric state’ (Fig. 1(b)). Figure 3 shows
the relationship between car densities and the average
velocity difference between two lanes. It is natural to
consider that the average velocity difference in the asym-
metric state is larger than that in the symmetric state.
Hence Fig. 3 indicates that symmetric and asymmetric

states coexist for densities 0.1 ≤ ρ ≤ 0.2.
On investigating our simulation results in further de-

tail, we obtain the following facts. In Fig. 1, each clus-
ter has a unique group velocity vg which is given as
vg = vc−1

2 , where the group velocity is defined as the av-
erage velocity of the front edge of a cluster. Similarly, if
a free-flow region steadily exists in front of a cluster, the
car gap d in the free-flow region is given by d = 2vf −vc.
For 0.1 ≤ ρ ≤ 0.2, the relationship between the density
ρ and the flow f for each state is nicely fitted by the
following experimental equations, (Fig. 4).

i) When the symmetric state is realized,

f =
1

2
+ vgρ. (1)

ii) When the asymmetric state is realized,

f =
3

4
−

1

2(vf + 1)
+ vg(ρ−

1

2(vf + 1)
). (2)

In both cases i) and ii), considering the fact that vg sen-
sitively depends on the initial configuration and is not
uniquely determined by ρ, f is a non-unique function of
ρ. Moreover, when we add cars one by one at random
positions such that the car density increases from 0.1 to
0.2, the flow changes along several branches except in the
lowest branch in Fig. 2. On the other hand, when we re-
move cars such that the car density decreases from 0.25
to 0.1, the ρ− f relation varies along the lowest branch
of Fig. 2. This means that hysteresis exists in the rela-
tionship between the flow and the density. (Fig. 5)

Next we discuss the manner in which the symmetric
state and the asymmetric state appear and which type
of clusters finally survives in the system. In order to
discuss these, we consider the dynamics of cluster in the
relaxation process of the system. Consider the situation
in which two isolated clusters named ‘the front cluster’
and ‘the rear cluster’ are in the same lane and a free-
flow region exist in-between, where vc of these clusters
are named vc(fr) and vc(re) respectively. In the free-flow
region in front of the front cluster the car gap is given
by df = 2vf − vc(fr). This means the number of cars
which pass a point in this free-flow region per unit time
is

vf
df+1 =

vf
2vf−vc(fr)+1 . This is equivalent to the escape

rate of cars from the front cluster. Similarly the escape

Fig. 1. Two typical spatio-temporal evolutions of the stationary
state for P=0 (ρ = 0.17) where dots indicate individual cars
which trauel from the left to the right. They are composed of a
free flow region and one type of clusters in which each car trauels
with vc. (a) A symmetric state with vc = 1. (b) An asymmetric
state with vc = 3.

Fig. 2. The relationship between flow and density for P=0. Some
branches exist for 0.1 ≤ ρ ≤ 0.2.

Fig. 3. The relationship between average velocity difference be-
tween two lanes and car density for P=0.
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rate of cars from the rear cluster is
vf

2vf−vc(re)+1 which is

equivalent to the joining rate of cars into the front clus-
ter. From these facts, if vc(fr) > vc(re), the number of
outgoing cars from the front cluster is larger than that
of cars joining the cluster per unit time. Consequently,
the length of the front cluster continues to decrease and
finally disappears. Similarly if vc(fr) < vc(re) the front
cluster increases, and if vc(fr) = vc(re) the length of the
front cluster remains unchanged. When vc(fr) < vc(re),
the rear cluster occasionally catches up with the front
cluster before it disappears. Then, from the dynamical
rule, the front-most car of the rear cluster must decel-
erate from vc(fr) to vc(re) when the car cannot change
lanes. Hence, the cars in the rear cluster will be incor-
porated into the front cluster and finally the rear cluster
disappears. Figure 6(a) indicates these processes. Sec-
ond, consider the situation where two clusters in different
lanes occupy regions neighboring each other. When vc
of these clusters are different, the front edge of the faster
cluster moves faster than that of the slower cluster. How-
ever, their rear edges tend to correspond with each other
as a results of lane changing of individual cars near the
rear-most of these clusters. This means that, due to the
contact of two clusters in different lanes, the car number
of the slower cluster decreases and that of the faster clus-
ter increases. Hence the slower cluster becomes shorter
and shorter and finally disappears (Fig. 6(b)). In this

which only one lane contains a type of clusters and the
other lane is filled with the free flow region.

Finally, we study the cases where stochastic effects are
introduced into the system. For P = 0.5, the behavior of
the system is qualitatively the same as that in the deter-
ministic case (P = 0) (Figs. 7 and 8). This means that

way asymmetric states are spontaneously formed. On
the other hand if vc of the final clusters in each lane are
identical, this state is the symmetric state and remains
stable.

Finally we consider the situation where a new cluster
spontaneously arises by one of the following mechanisms.
One is, when a cluster disappears, the accelerating region
and the decelerating region come into contact with one
another. Then, a seed of a new cluster is formed by the
cars in these regions which have velocities larger than the
car velocity of the cluster that just disappeared. From
this seed, a new cluster with a group velocity faster than
before is occasionally produced when the incoming flux
of cars is sufficient. The other mechanism is, when cars
enter a lane from the other lane which includes clusters,
the local car density of the former lane increases. Then
a seed of a new cluster is occasionally created in this po-
sition. This seed may not survive to grow up to a cluster
if the incoming flux of cars is not sufficient. Through
the above dynamics of clusters, the system is relaxed to
either the symmetric state in which both lanes include
the same type of cluster, or, to the asymmetric state in

Fig. 5. Hysteresis exists in the relation between flow and car den-
sity.

Fig. 6. Spatio-temporal evolutions of relaxation processes. (a)
The interactions of some clusters which appear in a lane (ρ =
0.22). (b) The interactions of two clusters which appear in dif-
ferent lanes occupy regions neighboring each other (ρ = 0.17).

Fig. 7. The relationship between flow and car density for P=0.5.
Similar to the case of P=0, the flow is not a unique function of

the density.

Fig. 4. The relationship between flow and density for P=0. Each
branch is fitted by either eq. (1) or (2) depending on its state
symmetry.
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Fig. 8. Two typical spatio-temporal evolutions of the stationary
states for P=0.5 (ρ = 0.16). (a) A symmetric state with vc = 1.

(b) An asymmetric state with vc = 3.

sity. Moreover, hysteresis exists in the relation between
flow and density.
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the deterministic model catches the intrinsic dynamics
of two-lane traffic flow. However several aspects need
further discussion with regard to the stochastic effects.
For example, if P = 0, vg has positive values (Fig. 1)
although the observation of real systems simulation of
P = 0.5 show vg has negative value (Fig. 8).

To summarize, the following novel properties for traf-
fic flow are realized using a two-lanes traffic flow model.
There are two types of stationary states, (a) symmetric
state composed of two lanes including same-type clusters
in a symmetric manner and (b) asymmetric state com-
posed of one lane containing clusters and the other lane
filled with the free flow region. Depending on the initial
condition, one of the above two states ((a) and (b)) ap-
pears for the density 0.1 ≤ ρ ≤ 0.2, which means the flow
of the stationary state is not a unique function of den-


