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Abstract

History dependence of the phase slippage is investigated using coupled oscillator systems containing two and three degrees
of freedom with repulsive interaction. In some situations, these systems possess two values of the minimal external force
needed to realize phase slip, with that actually realized being determined by the direction of the slippage relative to the
direction of the previous slippage. In particular, the minimal external force for the phase slip is smaller when the previous
slippage was in the same direction than when it was in the opposite direction. Owing to this property, a particle can continue
to move in a given direction even in the case that it is subject to an external force whose direction changes in time as in a
ratchet system which is regarded as one of the simplest model of molecular motors.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Many systems in physics, chemistry, and biology
can be described as populations of coupled oscillators
[1,2]. Examples are charge-density waves[3], Joseph-
son junction arrays[4], some chemical reaction sys-
tems[1], circadian rhythms, heart beat generation[2],
and so on. Therefore, understanding the cooperative
dynamical properties of such coupled oscillators sys-
tems is of considerable theoretical and experimental
interest. Recently, some remarkable features of such
oscillator systems, collective synchronization, phase
lock, phase slip and so on, have been extensively
studied[1–7].

In this paper, we investigate the existence and char-
acteristics of history dependence of the phase slip in
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coupled oscillator systems. First, a coupled oscillator
system containing only two degrees of freedom with
repulsive interaction and an external force is studied.
In this system, the minimum value of the external force
necessary to start the phase slippage depends on the
direction of the previous slippage. We show that this
property can cause the system to exhibit rectification
behavior (Sections 2 and 3). We also show that simi-
lar phenomena are observed in a similar system with
three degrees of freedom (Section 4).

2. Two oscillators model and simulation

We study a system containing two over-damped
pendulums with repulsive interactions in which both
pendulums are subject to a uniform field and one is
subject to an external forceFex (Fig. 1). The mo-
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Fig. 1. Schematic depiction of the system described by(2.1) and
(2.2), consisting of two pendulums in a uniform field.

tion of these two oscillators’ (pendulums’) phase are
described by the following equations:

ẋ1 = c1c2 sin(2π(x1 − x2))+c1cp sin(2πx1)+Fex,

(2.1)

ẋ2 = c1c2 sin(2π(x2 − x1)) + c2cp sin(2πx2), (2.2)

wherexi is the ith oscillator’s phase (xi . . . mod 1)
andci > 0.

In the following, we report the results of simulations
employing the above system. The purpose is to deter-
mine the relationships between phase slip behaviors
and observed microscopic states. We setc1 = cp = 1
and c2 = c, and useFex = (1 − cos(t/T ))/2 with
largeT so that the external force varies smoothly and
very slowly. (The initial value ofFex is 0.) The data
points ( ) in Fig. 2 indicate values of the critical force
R, plotted as a function ofc (0 ≤ c ≤ 1) for two
cases,xb

1 > xb
2 andxb

1 < xb
2. Here, the critical force

R is defined as the minimum value of|Fex| for which
the first oscillator starts the slippage as|Fex| increases,
andxb

i is theith oscillator’s phase at the most recent
time at whichFex = 0. Slippage is here defined as the
state where the oscillator repeatedly crosses the other
oscillator or the potential barrier formed by the uni-
form field. Thisc–R relationship is divided into three
regions: (I) forc < ĉcrit1 ≈ 0.59, R is a decreasing
function ofc for all xb

1, xb
2, (II) for ĉcrit1 < c < ĉcrit2 ≈

0.66,R has two possible values, one realized forxb
1 >

Fig. 2. The ( ) points and dotted lines represent the critical forceR

as a function ofc for two conditions,xb
1 > xb

2 andxb
1 < xb

2, before
slippage. The ( ) points are the results of our simulation, and
dotted lines were obtained analytically. The () points represent
Rstop as a function ofc in case III.

xb
2 and one forxb

1 < xb
2, and (III) for c > ĉcrit2, R is

an increasing function ofc for all xb
1, xb

2.
When |Fex(t)| decreases from some initial value

greater thanR, the first oscillator ceases slipping at a
value of|Fex|. Through our simulations, we found re-
lations between such|Fex| andR for each of the above
described cases: The slippage is stopped at|Fex| < R

in case I, at|Fex| < Rstop < R in case III as shown
in Fig. 2, and at|Fex| < Rsmaller in case II, where
Rsmaller is the smaller of the two values ofR.

Fig. 3 displays typical temporal evolutions of each
oscillator’s velocity and phase for cases I and III, with
Fex as given above. Here, in (a)c = 0.2 andxb

1 < xb
2,

in (b) c = 0.2 andxb
1 > xb

2, in (c) c = 0.8 andxb
1 <

xb
2, and in (d)c = 0.8 andxb

1 > xb
2. In this figure,

the gray curves represent phase and velocity of the
first oscillator, and the black curves represent those of
the second. In the situation depicted inFig. 3(a) and
(b), x1 > x2 always holds just before the slippage of
the first oscillator, independently ofxb

1 andxb
2. Con-

trastingly, inFigs. 3(c) and (d),x1 < x2 always holds
just before the slippage of the first oscillator, indepen-
dently ofxb

1 andxb
2. Due to these facts,R takes only

a single value for eachc value in cases I and III.
In case II, the critical forceR is determined by

the history. It depends on the direction of the first
oscillator’s previous slip. This can be understood as
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Fig. 3. Typical temporal evolutions of the velocity and phase of
each oscillator for case I in (a) and (b) and case III in (c) and
(d) with slowly changing ofFex. In (a) c = 0.2 andxb

1 < xb
2, in

(b) c = 0.2 andxb
1 > xb

2, in (c) c = 0.8 andxb
1 < xb

2, and in (d)
c = 0.8 andxb

1 > xb
2. The gray curves represent the first oscillator,

and the black curves represent the second oscillator. The thickness
of each curve is proportional to the value ofci for the oscillator
to which it corresponds. The thin sinusoidal curve representsFex.
The numbers at the right of the figures are the oscillator label.

follows. Fig. 4displays typical temporal evolutions of
each oscillator’s velocity and phase for case II. Here,
c = 0.63 and in (a)xb

1 < xb
2 and in (b)xb

1 > xb
2. In

contrast to cases I and III, the arrangement of oscil-
lators is kept fixed asFex is increased until the first
oscillator starts to slip. We also found that slippage
begins at a later time forxb

1 < xb
2 than forxb

1 > xb
2.

This means thatR depends on the oscillator config-
uration: R for xb

1 < xb
2 is larger than that forxb

1 >

xb
2. Moreover, the state withx1 > x2 is realized af-

ter slippage of the first oscillator whetherxb
1 > xb

2 or
xb

1 < xb
2. Fig. 4(c) plots the temporal evolutions of

each oscillator’s velocity and phase forc = 0.63 with
Fex = 0.583, which is slightly larger thanRsmaller.

Fig. 4. Typical temporal evolutions of the velocity and phase of
each oscillator for case II with a slowly changingFex in (a) and
(b), a staticFex with the value 0.583 which is just larger than
Rsmaller in (c), and a slowly changingFex = 0.61 sin(t/T ) and
a perturbation in (d). In (a)c = 0.63 andxb

1 < xb
2, and in (b),

(c) and (d) c = 0.63 and xb
1 > xb

2. Shades and widths of the
curves, and the numbers at the right of the figures have the same
meanings as inFig. 3.

If Fex is constant with|Fex| > R, the first oscillator
slips and the second oscillator oscillates periodically.
As shown inFig. 4(c), the time required to switch
from x1 > x2 to x1 < x2 is much longer than that to
switch fromx1 < x2 to x1 > x2 whenFex is slightly
larger thanRsmaller. This supports the fact that the
state withx1 > x2 is realized after slippage. (Because
of the symmetry of this system,x1 < x2 is neces-
sarily realized after slippage of the first oscillator if
Fex < 0.)

The above fact means that, in case II,R in the
same direction as the direction of previous slippage
is smaller than that in the opposite direction. Because
of this fact, this system exhibits rectification behavior
in this case. Now, to demonstrate this behavior, we
consider the casec = 0.63 andFex = 0.61 sin(t/T ),
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with sufficiently largeT . Thus, in this case, the ex-
ternal force acts symmetrically in both positive and
negative directions. Here, we choose the value 0.61
because it is halfway between the two values ofR for
c = 0.63. For this system, as shown in the left-hand
side of Fig. 4(d), the first oscillator can move only
in one direction, even thoughFex alternates between
positive and negative values. However, if a sufficiently
strong force is applied instantaneously to the first
oscillator in the direction opposite to its motion, its
motion can reverse direction (see the right-hand side
of Fig. 4(d)). This means we can control the slippage
direction in the system.

3. Mechanism of the simulation results

In the following, we try to understand the mecha-
nism for the occurrence of behaviors like I, II and III.
We consider only the case thatFex > 0 andFex varies
smoothly and very slowly.

By considering the balance equations obtained by
settingẋ1 = 0 andẋ2 = 0 in Eqs. (2.1) and (2.2)and
choosing the oscillator configuration before the slip-
page, we can obtainc–R curves plotted inFig. 2. First,
we consider the case withx1 > x2. With this condi-
tion with ẋ2 = 0, we obtainx1 = 2x2. TheR curve is
obtained as the maximum values ofFex with ẋ1 = 0
and ẋ2 = 0 under the conditionx1 > x2. By setting
X = 2πx2, the curve is given byR = −[ sin (2X) +
c sin(X)] with X = arccos [(−c − (c2 + 32)1/2)/8].
We name this curveRa . This curve is consistent with
the numerical result forR for c < ĉcrit2. Second, we
consider the casex1 < x2. Then, the lineR = c is
consistent with the numerical results ofR for c >

ĉcrit1, which is obtained fromR = −[c sin(2π(x1 −
x2)) + sin(2πx1)]|x1=0.5,x2=0.75. Herex1 = 0.5 and
x2 = 0.75 correspond to the values for which the
force from the second to the first oscillator is maximal
under the conditionx1 < x2. We name this lineRb.
These curves,Ra andRb, give the thresholds that de-
termine the stability of stationary states withx1 > x2

andx1 < x2, respectively, asFex is increased, where
the stationary state means the state with no slippage.
If |Fex| > Ra and |Fex| > Rb are satisfied, the first
oscillator shows slippage without exception.

Now, we consider the dynamical aspects of the first
and second oscillators in the case wherec is so large
that Ra < Rb holds. The previous results obtained
from the balance equation give the following two facts
for this case: (i) the first oscillator moves when|Fex| >

Rb. (ii) When |Fex| decreases toRb, the slippage of
the first oscillator stops with the conditionx1 < x2

if the situation withx1 = 0.5 andx2 = 0.75 can be
realized. If the first oscillator moves quasi-statically,
situation (ii) can be realized. However, if|Fex| de-
creases from|Fex| > Rb, each oscillator has a finite
velocity from the beginning at|Fex| = Rb. Thus in the
following, we consider the effect of a finite velocity
of each oscillator at|Fex| = Rb. BecauseFex works
only on the first oscillator, the first oscillator moves
faster than the second most of the time. Then, it is ex-
pected that the first oscillator tends to reach the posi-
tion x = 0.5 before the second oscillator reaches the
positionx = 0.75. In such a case, the first oscillator
continues to move with a finite velocity because this
situation does not satisfy the previous balance equa-
tions. This means that the slippage of the first oscillator
does not stop withx1 < x2 even when|Fex| = Rb. If
|Fex| becomes smaller, the motion of the first oscilla-
tor becomes slower. Then,x2 can reach such a position
where the force from the second to the first oscillator
is large enough to balanceFex at x1 < x2. From these
facts, in this case, the first oscillator moves with a finite
velocity, we need to decrease|Fex| to |Fex| = Rstop <

Rb in order to stop the first oscillator’s movement with
x1 < x2.

In the case with smallc region (c → 0), Ra > Rb

holds. In such a smallc, the system is approximated
by a system with one degree of freedom, which means
the system’s state is determined by only the relation
between|Fex| andRa . Then, the curveRa gives the
critical force.

On the other hand, for the case with largec (c → 1),
Ra is smaller thanRstop. Then, whenFex increases
from Fex < Ra to Fex > Ra , the first oscillator can-
not cross the second oscillator, while it can cross the
potential barrier like inFig. 3(c) and (d). This means
that the lineRb gives the critical force.

In the region with smallerc, Rstop is expected to
become smaller than a value on the curveRa . Then,
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the situation withRstop < Ra < Rb can be realized for
intermediate value ofc. This means that as soon asFex

exceedsRa , the first oscillator starts the slippage if the
stationary state withx1 > x2 is realized. On the other
hand, the stationary state withx1 < x2 remains until
|Fex| exceedsRb. Thus, the critical force possesses
two values depending on the relation betweenx1 and
x2 at the stationary state, which is obtained as the case
II in our simulation. Moreover, the relationRstop <

Ra means that the slippage of first oscillator cannot be
stopped withx1 < x2 when|Fex| > Ra . On the other
hand, with the decrease of|Fex|, the time when the first
oscillator crosses the potential barrier becomes long,
which means the motion of the first oscillator during
the crossing of the potential barrier approaches the
quasi-static motion. From these facts, the time required
to switch fromx1 > x2 to x1 < x2 becomes longer
than that to switch fromx1 < x2 to x1 > x2 with the
decrease ofFex like in Fig. 4(c). Thus, the slippage of
the first oscillator is stopped atFex < Ra with x1 > x2

in the case II.

4. Three oscillators model

The phenomena discussed above can also be ob-
served in systems with a larger number of degrees of
freedom. As an example, we consider a system that
consists of three oscillators in a spatially periodic field,
with the motions of each oscillator’s phase obeying
the equation

ẋi =
∑

i 
=j

cicj

1 + cos(2π(xi − xj ))

2
sin(2π(xi − xj ))

+ cicp

1 + cos(2πxi)

2
sin(2πxi) + δi,1Fex

(4.1)

(xi . . . mod 1). The characteristic length of the interac-
tions between the oscillators in this system is shorter
than that of the system described byEqs. (2.1) and
(2.2). In the case withc1 = c2 = 1 andc3 = cp =
c > 0, behavior similar to that exhibited in case II
for the two-oscillator system is observed over a wide

Fig. 5. The solid curves represent typical critical forceR as the
function of c in the system consisting of three oscillators for two
configurations, the(1, 2, 3) configuration (lower curve) and the
(1, 3, 2) configuration (upper curve) before slippage. The dotted
curve represents the critical values ofFex, for which the(1, 3, 2)

is preserved under slippage.

range of values ofc with Fex = F(1− cos(t/T ))/2,
for F > 0 and sufficiently largeT .

The solid curves inFig. 5 representR as a function
of c (0.1 ≤ c ≤ 1). As shown,R takes two values
for each value ofc, depending on the relationships
among thexb

i . Fig. 6(a)–(c) displays typical temporal
evolutions of each oscillator’s velocity and phase with
c = 0.5 for two oscillator configurations before slip-
page: the(1, 2, 3) configuration in which the oscilla-
tors are arranged in the order 1, 2, 3 with respect to
the direction ofFex (the direction of increasingx in
this case), as in (a), and the(1, 3, 2) configuration,
as in (b) and (c). Here,F = 0.5 in (a) and (b), and
F = 0.36 in (c). By comparing (a) and (b), we find
thatR for the(1, 3, 2) configuration is larger than that
for the (1, 2, 3) configuration. Also it is seen that the
(1, 2, 3) configuration is always realized after slippage
in both cases considered in (a) and (b). We are thus
led to the conclusion that, as in the system with two
oscillators, under a certain condition,R for the direc-
tion of the previous slippage is always smaller thanR

for the direction opposite to the previous slippage. For
the three-oscillator system, this condition is thatF be
larger than a particular value, which we discuss below.

As stated above, the(1, 2, 3) configuration is appar-
ently always realized after slippage in the situations
considered inFigs. 5(a) and (b). IfF is not too large,
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Fig. 6. Typical temporal evolutions of the velocity and phase
of each oscillator in the three-oscillator system withc = 0.5.
The shades and widths of the curves have the same mean-
ings as in Fig. 3. The external forcesFex used here are
Fex = F(1− cos(t/T ))/2 in (a), (b), and (c). The oscillator con-
figuration before slippage is(1, 2, 3) in (a) and (1, 3, 2) in (b)
and (c).

however, the(1, 3, 2) configuration can be preserved
upon slippage. In fact, this is the case for the situation
considered inFig. 6(c). The dotted curve inFig. 5rep-
resents critical values ofFex, below which the oscil-
lator configuration is preserved upon slippage. Thus,
in this system, the maximum strength of the external
force at the slippage determines whether or not there
is a direction dependence ofR. We found that with a
properly chosenFex, this system too can exhibit rec-
tification behavior.

5. Summary and discussion

In this paper, we have investigated the history de-
pendence of phase slippages using simple systems
consisting of two and three oscillators with external
forces. In these systems, we found that, in some cases,
the magnitude of the minimal external force needed to
start the phase slippage can depend on the direction of
the slippage. In particular, the minimal external force
needed for the phase slip is smaller when the previous

slippage was in the same direction than when it was in
the opposite direction. By this property, a oscillator in
this system can continue to slip along a single direc-
tion even in the case that the direction of the external
force change in time.

Recently, such a rectification behavior has been
studied, for example, in some ratchet systems[8–10]
that are simple models of molecular motors. In these
models, with an external force that favors neither
direction, particles can move in only one direction,
which is completely determined by the shape of the
potential. Our simulation results cannot be compared
directly with a ratchet nor molecular motors because
the external force is not noisy, unlike such systems.
However, we expect that the obtained rectifier mecha-
nism can give a hint to understand complex behaviors
observed in some molecular motors[11].

Further analytical study of systems is necessary to
clarify the behavior presented, while the study of sys-
tems with three or more oscillators will be reported.
The present model can also be regarded as a simple ex-
tension of a model of the static and dynamic frictions
investigated previously[12,13]. Thus, further exten-
sion of the present model that can realize some types of
memory effects of friction[12–14]and charge density
wave systems[3], is also an important future problem.
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