
Branched coverings and three manifolds
An exposition. I

José María Montesinos-Amilibia

Universidad Complutense

Hiroshima, March 2009

J.M.Montesinos (Institute) Branched coverings Hiroshima, March 2009 1 / 123



Some history

The origins of Branched Covering Theory are closely related to the
history of the �uniformization�of functions.
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Given a multivalued function

f : X ! C,

Riemann constructed:
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A new domain Σ (the Riemann surface):

A map (the branched cover):

p : Σ ! X ,

and
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A new univalued function g :

Σ
p # & g
X f�! C

such that g = p�1 � f .
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Abstraction
At the beginning, the three objects were inseparable. But soon they gave
rise to two theories.
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The concept of (abstract) Riemann surface Σ was de�ned and
isolated from the functions f , p and g : the de�nition by Weyl of
abstract Riemann surface soon gave rise to a complete theory of
topological manifolds.

Σ
p # & g
X f�! C
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The functions p and g were the prototype of branched covering: the
pair (Σ, p) being constructed by �cuts�performed in the original
domain and the function g by lifting f .
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Holomorphic map between Riemann surfaces

If we take a non-constant holomorphic map

f : S ! T

between two Riemann surfaces.
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Then
f : S ! T

is always open and the only singularities are coning-points
(around isolated points where the derivative of f is zero).
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If the image of the set of cone-points is a discrete subset of T
then

f : S ! T

is a "branched covering". (For instance, if S is compact.)
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But this is not always the case. Tesselate H2 by regular pentagons,
10 around each vertex. Holomorph one pentagon onto an euclidean
regular pentagon (angle 3( 210π)). Extend by Schwarz principle. Each
vertex of the hyperbolic tessellation has branch index 3. But their
images are dense in E 2.
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Generalization

It was discovered that the singularities of algebraic curves were
essentially cones over classical tame knots.

This forced the generalization of branched coverings to other
dimensions.
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Soon, branched coverings became an important instrument in the
study of knots and manifolds (Reidemeister book, Tietze article).

�Folded coverings�were investigated by Tucker and they were put to
good use much later to place the concept of orbifold, discovered by
Satake and rediscovered by Thurston, on solid ground.
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Foundation
However the theory of branched coverings lacked a �rm topological
basis.
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At those early times it was unknown if all topological
(metrizable) manifolds were polyhedrons�The
Haupvermutung was the key to establish the topological nature of
certain knot invariants that were de�ned starting from a polyhedron
(combinatorial invariants).

J.M.Montesinos (Institute) Branched coverings Hiroshima, March 2009 16 / 123



The de�nition process of these invariants consisted in constructing
branched coverings (überlagerungen, revêtements) over these
knots, de�ned in a canonical way, and then obtaining the ordinary
invariants of these covering manifolds: homology groups, linking form,
etc.
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The di¢ culty of knowing if these invariants were topological resided
in that the construction of the branched coverings
depended essentially on the polyhedral structure of the
base space.
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Solution by Fox

How to complete the part of the total space that covers what is
outside of the singular set?

How to build topologically and in a unique way the part of the total
space lying over the singular set?

How to remove all additional structure that is not topological?
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These were formidable challenges. Indeed, the singular set can now
be a wild knot or a Cantor set.

How to de�ne the cover over the knot if it doesn�t have a tubular
neighborhood?
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Fox solved all these problems by generalizing the concept (until
then, non topological) of branched covering.
The main Theorem of Fox is in:

R.H.Fox, Covering spaces with singularities. In Algebraic Geometry
and Topology. A Symposium in honor of S. Lefschetz. Editors: Fox et
al. Princeton Univ. Press (1957) pp.243-257
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Motivating Examples:

Foldings
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Dimension 2: regular

Figure: 2-fold cyclic

J.M.Montesinos (Institute) Branched coverings Hiroshima, March 2009 23 / 123



Figure: m-fold cyclic

J.M.Montesinos (Institute) Branched coverings Hiroshima, March 2009 24 / 123



Figure: 2-fold cyclic

Theorem
Every closed, orientable surface is a 2-fold branched covering of the
2-sphere S2.
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Figure: 6-fold cyclic
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Dimension 2:

Irregular covering

Figure: 3-fold irregular unbranched
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Dimension 2:

Irregular foldings. Folding letter trick
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Figure: Charpenter rule folding
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Passing to branched coverings
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Figure: Charpenter rule branched covering
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Again:
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Passes to
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Simplicial maps

Take a simplicial map
f : S ! T

between two triangulated surfaces.
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Assume S and T have no boundary and

f : S ! T

is open. Then we can have conings around vertexes (around a
vertex v of S the map f behaves like z 7! zn for some natural
number n). That is, f is a branched covering and n is the
branching index of the cone-point v .The image of the set of
cone-points is the branching set. It is a set of isolated points
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If T has non empty boundary and

f : S ! T

is open then we can also have foldings along edges. The map is a
branched folding. There are now cone-points,
corner-points and folding points.
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Combinatorial de�nition of branched covering

The de�nition of branched covering is relatively easy if the spaces
involved are triangulated manifolds.

Thus, if M and N are connected, unbounded, triangulable
n-manifolds, then a function

f : M ! N

is a (combinatorial) branched covering of N if there are
triangulations of M and N such that f is an open simplicial map.
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Assume n = 3 for simplicity.

Then f : M ! N is an ordinary covering when restricted to the
complement of the 1-skeletton of M.
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Therefore there is a minimal subset B of the 1-skeletton of N such
that the restriction

f j(Mnf �1(B )) : Mnf �1(B)! NnB

is an ordinary covering (the associated covering).

We call B the branching set of f : M ! N .

J.M.Montesinos (Institute) Branched coverings Hiroshima, March 2009 39 / 123



Therefore there is a minimal subset B of the 1-skeletton of N such
that the restriction

f j(Mnf �1(B )) : Mnf �1(B)! NnB

is an ordinary covering (the associated covering).

We call B the branching set of f : M ! N .

J.M.Montesinos (Institute) Branched coverings Hiroshima, March 2009 39 / 123



A point x 2 f �1(B) has branch index b(x) if

(star of x minus f �1(B))

is mapped b to 1 onto (star of f (x) minus B).
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The part of f �1(B) with branch index b > 1 is called the
branching cover.

The part of f �1(B) with branch index b = 1 is called the
pseudo-branching cover.
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The associated unbranched covering

g : Mnf �1(B)! N

is the composition of the covering f jMnf �1(B ) with the natural
inclusion NnB � N.; and
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The monodromy of the associated covering is a representation ω of
π1(NnB, p) into the group of bijections of f �1(p) obtained by lifting
p-based loops. It is transitive, because M is connected.
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A pair (B,ω) where B is a subpolyhedron of the 1-skeletton of N and
ω is a transitive representation into the group of bijections of a
numerable or �nite set F is called a represented graph of N.
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The information (B,ω) de�nes (or "gives rise" or "it is enough to
construct") a unique (up to PL-isomorphism) covering f : M ! N
branched over B with monodromy ω.

For M to be a manifold it is su¢ cient (but not necessary) that B is a
link.

J.M.Montesinos (Institute) Branched coverings Hiroshima, March 2009 45 / 123



The information (B,ω) de�nes (or "gives rise" or "it is enough to
construct") a unique (up to PL-isomorphism) covering f : M ! N
branched over B with monodromy ω.

For M to be a manifold it is su¢ cient (but not necessary) that B is a
link.

J.M.Montesinos (Institute) Branched coverings Hiroshima, March 2009 45 / 123



The construction (due to Neuwirth in "Knot groups")

Think of N as the result of pasting together tetrahedrons Ti (i
belongs to a countable set) along closed faces.
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Find a 2-subpolyhedron K of N such that ω
���π1(NnK ) is trivial (K is a

splitting complex)
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Paste the tetraedrons Ti together along the faces not belonging to K
to construct a 3-polyhedron (the trivial sheet S).
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Then N is the result of pasting together pairs of free 2-faces of S .
Each ordered such a pair (G1,G2) de�nes an element γ of π1(N).
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Paste together copies of the trivial sheet using the information given
by ω: face G i1 in sheet S

i is pasted with face G j2 in sheet S
j i¤

ω(γ)(i) = j .

Fox theorem grants that the branched covering so constructed is
unique.
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Simple coverings

A branched covering is simple if all the points in the �ber f �1(y),
y 2 B, have branch index 1, except for one point that has branch
index 2.

A simple branched covering is irregular except if it is 2-fold.
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A represented knot or link (B,ω) of S3 gives rise to a simple
branched covering i¤ ω sends meridians of B to transpositions of F .
We say that such a (B,ω) is a simple representation.
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End of the �rst part
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Second part: Particular problems
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2-fold branched coverings.

The �bration of the torus with base S1 is the 2-fold branched
covering of the "singular" �bration of the 2-sphere:

There is an involution of the torus de�ning the branched covering.
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This involution extends to the solid torus:
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The solid torus of the left (�bers collapsed) is the 2-fold branched
covering of the 3-cell of the right.

The branching set is the rational tangle 5/2, in this example.
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Notation:

the rational tangle α/β (left).

The rational tangle α/1 (right).
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Rational tangles from continuous fraction expansion (J. Conway):

The tangle 38/7.
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Strongly invertible knot:
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Theorem (M)

Surgery on strongly-invertible link is 2-fold branched covering of S3.

J.M.Montesinos (Institute) Branched coverings Hiroshima, March 2009 62 / 123



Proof
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Applications

Seifert Manifolds

Seifert Manifold (O, o, g j 0) = S1 � Fg =Orientable �ber bundle
over orientable surface of genus k (trivial).
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Seifert Manifold (O, n, k j 0) =Orientable �ber bundle over
non-orientable surface of genus k (trivial).
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Seifert Manifold (O, o, g j b; α1/β1, ..., αk/βk )
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Seifert Manifold (O, n, k j b; α1/β1, ..., αk/βk )
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Strongly symmetric:
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Montesinos knots:

For g = 0 or for any k � 1 these knots (links) are in S3.
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Example
The Borromean rings is a Montesinos link. Therefore its 2-fold branched
covering is the Seifert manifold

(O, n, 1 j �1; (2, 1), (2, 1)
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Problem
Is every closed, orientable 3-manifold a branched covering of S3?
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Solution
Every closed, orientable 3-manifold is a covering of S3 branched over a
graph (J. W. Alexander) and over a link (indicated by Alexander; proved in
detail by M).
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Problem
Is every closed, orientable 3-manifold a 2-fold covering of S3 branched over
a link?
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Theorem (R. H. Fox)

The 3-torus is not a 2-fold branched covering of S3.

This was shown much later by Edmonds in a di¤erent but very important
way.
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Therefore:

The minimal number of sheets is not two.
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Theorem (Tollefson)

There are closed, orientable 3-manifolds without periodic (PL-)
homeomorphisms.

If such a manifold branch-covers S3 the covering cannot be
regular
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Therefore it is natural to investigate irregular
3-fold branched coverings of S3.
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We will consider simple represented knots or links (L,ω) in X = S3

(resp. simple represented string or string-link in X = R3). Thus ω is
a transitive homomorphism

ω : π1(XnL)! Sn

onto the symmetric group Sn of the indices f1, 2, 3, ..., ng sending
meridians to transpositions.
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When n = 3 we will say that the simple representation (L,ω) in
X = S3 or X = R3 is a colored knot, link or string, as the
case may be, because
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ω : π1(XnL)! S3

sends meridians of L to transpositions (1, 2), (1, 3), or (2, 3) of S3.
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and following a beautiful idea of Fox, we can represent (1, 2) by color
Red (R), (1, 3) by color Green (G ) and (2, 3) by color Blue (B).
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1 and we can endow each overpass of a normal projection of L with one
of the three colors R,G ,B in such a way that the colors meeting in a
crossing are all equal or all are di¤erent.

2 and at least two colors ought to be used.
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A colored knot or link (resp. string or string-link) (L,ω) in X = S3

(resp. X = R3)
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gives rise to a simple, 3-fold irregular covering f : M(L,ω)! X
branched over L.

The space M(L,ω) is a closed (resp. open), orientable 3-manifold.
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Example

Consider the following colored knot (L,ω). Fox asked if M(L,ω) is S3.
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Solution (Montesinos PhD Thesis)

Yes: on top of the 3-cell Q (resp. S3nIntQ) lies a 3-cell because

pjp�1Q : p�1Q ! Q

is a 3-fold simple covering of the 3-cell Qi , branched over two properly
embedded arcs (apply the folding letter trick).
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Corollary (Montesinos PhD Thesis)

The following moves D, D 0 and D 00 have the following property. If these
moves are applied to a portion of a simply represented knot or link (resp.
string or string-link), we obtain a new simply represented knot or link
(resp. string or string-link) whose corresponding branched covering spaces
are homeomorphic.
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Moves D and D 0
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The move D 00: Adding a trivial sheet
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Applications
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At the left we have a 3-fold cyclic covering. It is modi�ed in a tubular nbd
of the knot to a simple 3-fold covering. Note that out of that tubular nbd
the covering behaves as cyclic. However the 3-fold branched covering is
irregular.
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Apply moves:
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This shows that the 3-fold branched cover of the toroidal knot f2, 5g
(Brieskorn manifold B(2, 3, 5)) is the 2-fold branched cover of the toroidal
knot f3, 5g (a result shown formerly by Seifert).
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Example

Consider the next colored string (L,ω) in R3. This colored string was
�rst considered by R. H. Fox in �A remarkable simple closed curve�. I will
call L Fox string. I will prove that the space M(L,ω) is homeomorphic to
R3. Thus there exist a 3-fold simple covering bp : R3 ! R3 branched over
the Fox string L.
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Let

p : M(L,ω)! R3

be the simple branched covering given by the representation ω.
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Select a sequence of 3-cells fQig∞
i=1 such that Qi � Int(Qi+1) and

[∞
i=1Qi = R3 = S3nf∞g,
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Then, for i � 1, p�1(Qi ) is a 3-cell Q 0i . In fact,

pjp�1(Qi ) : p�1(Qi )! Qi

is a 3-fold simple covering of the 3-cell Qi , branched over two properly
embedded arcs; these arcs are embedded exactly as in case i = 1.
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By the previous Example, p�1(Qi ) is a 3-cell Q 0i .

Then
M(L,ω) = [∞

i=1Q
0
i .
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And from this follows that M(L,ω) is homeomorphic to R3 (Brown
Theorem). (There is an alternative proof using moves.)
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Theorem (Hilden and Montesinos, independently)

Every closed orientable 3-manifold is of the form M(L,ω) for countably
many mutually inequivalent knots L. In other words, every closed
orientable 3-manifold is a simple 3 fold covering of S3 branched over a
knot in many di¤erent ways.

J.M.Montesinos (Institute) Branched coverings Hiroshima, March 2009 104 / 123



Starting point: Every closed orientable 3-manifold is obtained by
surgery on a link in S3 (Lickorish and Wallace independently).
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If the link is not strongly invertible:
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We need the folding letter trick covering:
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Together with Hempel´s trick:
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To almost symmetrize the link
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Hempel´s trick:
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Downstairs:
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Upstairs:
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Example: the 3-torus:
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Finally: use the move D to connect components of the branching set:
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Theorem (Piergallini)
Given two colored knots or links with the same associated covering spaces
it is possible to pass from one another by a �nite application of moves D,
D 0 and D 00.
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Sharpenigs:

Theorem (Hilden, M and Thickstun)

Every closed orientable 3-manifold is a simple 3 fold covering of S3

branched over a knot in such a way that the branched cover bounds a
2-cell.

This gives an elementary proof of this theorem of Hirsch-Smale:
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Corollary
Every closed orientable 3-manifold is parallelizable.
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Theorem (Hilden-Lozano-M)

Every closed orientable 3-manifold has a simple 3 fold covering p of S3,
which is pullback of the simple 3 fold covering q : S3 ! S3 branched over
a pair of unknotted unlinked circles.

The proof of this theorem can be used to sharpen a theorem of Hilden:
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Corollary

Every closed orientable 3-manifold M has an embedding in S3 �D2 such
that M ! S3 �D2 ! S3is a simple 3-fold branched covering.

This implies the following result of Morris Hirsch:
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Corollary

Every closed orientable 3-manifold M has an embedding in S5.
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Generalization:

Theorem (M)

Every orientable, open 3-manifold M admits a (combinatorial) simple 3
fold covering p : M ! S3nT branched over a 1-manifold, where T is a
subset of a tamely embedded Cantor set homeomorphic to the space of
ends of M.
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Corollary
Every open, 3-manifold with one end is a (combinatorial) simple 3 fold
covering p : M ! R3 branched over a string link.

Whitehead manifold is an example of this.
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