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Settings

A quasiprojective group is the fundamental group of a
quasiprojective smooth variety.

Goal 1: Find obstructions to determine if a group is
quasiprojective.

Goal 2: Relate geometrical properties of a quasiprojective
variety in terms of algebraic properties of the fundamental group.

Zariski-Lefschetz: it is enough to consider curves and surfaces.

Any finitely presented group is the fundamental group of
compact orientable 4-manifold.

Kähler groups are fundamental groups of compact Kähler
4-manifolds: there are obstructions for a group to be Kähler.
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Character Torus

G (finitely presented) group, X space such that G = π1(X).

H := G/G′ = H1(X;Z), k := rkH, TorsH the torsion of H.

TG := H1(X;C∗) = H1(G;C∗) = Hom(G,C∗) = Hom(H,Z).

Λ := ΛC = C[H], TG = SpecΛ.

TG is an abelian complex Lie group, T1
G the component through

the origin 1 is isomorphic to (C∗)k.

1→ T1
G→ TG→ Hom(TorsH,C∗)→ 1.

E. Artal IUMA, Universidad de Zaragoza
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Construction of the Alexander Invariant

X

Alexander Invariant

H1(X̃;C) = (G′/G′′)⊗ZC is a Λ-module, Λ = C[H].

Alexander presentation

Choose X to be a CW-complex and consider the chain complex
C∗(X;C).

X̃ inherits a CW-complex structure

Given σ an r-cell of X, fix σ̃ an r-cell in X̃ such that π(σ̃) = σ.

The cells of X̃ are {σ̃h|σ r-cell of X,h ∈ H}.
C∗(X̃;C) is complex of free Λ-modules.

E. Artal IUMA, Universidad de Zaragoza
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Twisted Cohomology

Local system of coefficients

ξ ∈ TG.

Define a locally constant sheaf Cξ.
X̃×C sheaf over X (C with the discrete topology).

Action of H given by (x̃, t)h := (x̃h, ξ(h−1)t).

Cξ is the quotient of X̃×C by this action.

Definition of twisted cohomology

H1(X;Cξ) means sheaf cohomology. It depends only on G!

E. Artal IUMA, Universidad de Zaragoza
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Computation of twisted cohomology

Fix X a CW-complex with π1(X) = G as before.

Endow C with a structure Cξ of Λ-module: if t ∈H, t · z := ξ(t)z.

Consider the complexes C∗(X;Cξ) := C∗(X̃;C)⊗Λ Cξ and
C∗(X;Cξ) := C∗(X̃;C)⊗Λ Cξ.
H1(X;Cξ) is the cohomology in degree 1 of C∗(X;Cξ).

For computational purposes we will consider H1(X;Cξ).

E. Artal IUMA, Universidad de Zaragoza
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Examples I

Free group

Fk the free group generated by x1, . . . ,xk

H is the free abelian group generated by t1, . . . , tk (tj ≡ xj

mod G′).

Let X be the CW-complex associated to the presentation

Λ-Bases for C∗(X̃;C).

C0 (p) (p is the unique 0-cell).
C1 (x1, . . . ,xk).
C2 ∅.

The matrix for δ1 is (t1−1 . . . tk−1).

k−1≤ dimH1(X;Cξ)≤ k (it equals k⇔ ξ = 1).

E. Artal IUMA, Universidad de Zaragoza
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Examples II

Zariski group

G = 〈x,y|x2 = y3 = 1〉
H = 〈t|t6 = 1〉, x 7→ t3, y 7→ t2.

The matrix for δ1 is
(
t3−1 t2−1

)
.

(Fox Derivation) δ2:
(

1 + t3 0
0 1 + t2 + t4

)
.

dimH1(X;Cξ) = 1 if ξ(t) is a primitive 6th-root of unity.
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A curve group

C : (x + z)z(y2z− x2z− x3) = 0
G = 〈x,y, z|[x,y] = 1,y = z−1xz, [yx, z] = 1〉.

E. Artal IUMA, Universidad de Zaragoza
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Examples III

Curve group

G = 〈x, z|[x, z2] = 1, [x, zxz] = 1〉.
H = 〈t, s|[t, s] = 1〉, x 7→ t, z 7→ s.

The matrix for δ1 is
(
t−1 s−1

)
.

δ2:
(

1− s2 (1− t)(1 + s)
(1 + ts)(1− s) (t−1)(1 + ts)

)
.

dimH1(X;Cξ) = 1 if ξ(t) = 1, ξ(s) =−1.
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Deligne’s theory I

Deligne extensions

X = X̄ \D, X̄ smooth projective, D normal crossing divisor.

Flat line bundle (Lξ,∇) on X where Lξ = Cξ⊗OX .

(L̄ξ,∇̄) extension to X̄

A lot of extensions are possible: parametrized by Zn, n number
of irreducible components of D.

E. Artal IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties



Quasiprojective Groups Characteristic Varieties Computations Orbifolds

Deligne’s theory II

Example

Let X = C∗, x a generator of π1(X) realized by t 7→ exp(2iπt).

Let ξ a character such that ξ(x) = exp(−2iπα), for some α ∈ C
Take a trivial bundle on C with section σ such that∇(τ) = 0 for
τ : z 7→ z−ασ multivalued section.

∇̄(σ) = α dz
z ⊗σ: α is the residue along 0 ∈ C.

Definition

The Deligne extension is defined as follows: the real part of the
residues are in [0,1).

E. Artal IUMA, Universidad de Zaragoza
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Deligne’s theory III

Theorem

1 H1(X;Cξ) = HOξ ⊕HŌξ .

2 If the residues are not positive integers then, HOξ is the homology
of

H0(X̄; L̄ξ)
∇̄−→ H0(X̄;Ω1

X̄(logD)⊗ L̄ξ)
∇̄−→ H0(X̄;Ω2

X̄(logD)⊗ L̄ξ)

and HŌξ is ker
(
∇̄ : H1(X̄; L̄ξ)→ H1(X̄;Ω1

X̄(logD)⊗ L̄ξ
)
.

3 ξ is unitary, L̃ξ is the Deligne extension:

HOξ = H0(X̄;Ω1
X̄(logD)⊗ L̃ξ), HŌξ = H1(X̄; L̃ξ).

E. Artal IUMA, Universidad de Zaragoza
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Definition of Characteristic Varieties

Definition

The k-th characteristic variety of X (or G) is the subvariety of TG,
defined by Vk(G) := {ξ ∈ TG | dimH1(X,Cξ)≥ k}.

Properties

Characteristic varieties are algebraic subvarieties of TG defined
over Q.

Vk is the set of zeros of the kth-Fitting ideal of the Alexander
invariant (except possibly at 1).

If ξ is torsion then its depth (the maximal k such that ξ ∈ Vk) is
related with jumpings of Betti numbers of finite abelian
coverings.

E. Artal IUMA, Universidad de Zaragoza
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Computations

Hypersurface case: Libgober approach

Libgober gives a method to compute most irreducible
components of Vk(P2 \C) without computing the fundamental
group.

Using Sakuma’s formula the problem is reduced to compute
equivariant Betti numbers of finite abelian coverings of
X := P2 \C:

Using quasiadjunction polytopes and ideals for the singular
points, one obtains a finite combinatorial partition; it is enough
to compute the twisted cohomology for one character in each
partition.

The position of the quasiadjunction ideals on each point is the
key point in the computation.

E. Artal IUMA, Universidad de Zaragoza
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Comments

Epimorphisms

If G1→ G2 is an epimorphism, then TG2 is a subtorus of TG1 and
Vk(G2)⊂ Vk(G1).

E. Artal IUMA, Universidad de Zaragoza
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Comments

Epimorphisms

If G1→ G2 is an epimorphism, then TG2 is a subtorus of TG1 and
Vk(G2)⊂ Vk(G1).

Theorem (Arapura)

Let Σ be an irreducible component of V1(G). Then,

1 If dimΣ> 0 then there exists a surjective morphism ρ : X→ C,
C algebraic curve, and a torsion element σ such that
Σ = σρ∗(H1(C;C∗)).

2 If dimΣ = 0 then Σ is unitary.

In particular, positive dimensional irreducible components are subtori
translated by torsion elements.

E. Artal IUMA, Universidad de Zaragoza
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Comments

Epimorphisms

If G1→ G2 is an epimorphism, then TG2 is a subtorus of TG1 and
Vk(G2)⊂ Vk(G1).

Uncovered Components

Isolated unitary non torsion points are not visible with
Libgober’s method.

Following Deligne, if ξ is torsion then, for the Deligne extension
HOξ = H0(X̄;Ω1

X̄(logD)⊗ L̃ξ), HŌξ = H1(X̄; L̃ξ).

Libgober proves that if ξ ramifies along any irreducible
component of C then H0(X̄;Ω1

X̄(logD)⊗ L̃ξ) = H0(X̄;Ω1
X̄⊗ L̃ξ).

E. Artal IUMA, Universidad de Zaragoza
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Theorem

Theorem

Let X be a quasi-projective smooth variety and let V := Vk(X) be the
kth characteristic variety of X. Let V be an irreducible component of
V . Then one of the two following statements holds:

1 There exists a surjective orbifold morphism ρ : X→ Cϕ and an
irreducible component V1 of Vk(π

orb
1 (Cϕ)) such that

V = ρ∗(V1).

2 V is an isolated torsion point.

Consequence

Behaviour of torsion characters determine characteristic varieties.

E. Artal IUMA, Universidad de Zaragoza
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Orbifold groups

Orbifold

An orbifold Xϕ is a quasiprojective Riemann surface X with a
function ϕ : X→ N with value 1 outside a finite number of points.

Orbifold group

For an orbifold Xϕ, let p1, . . . ,pn the points such that
ϕ(pj) := mj > 1. Then

πorb
1 := π1(X \{p1, . . . ,pn})/〈µmj

j = 1〉

where µj is a meridian of pj. We denote Xϕ by Xm1,...,mn .

E. Artal IUMA, Universidad de Zaragoza
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Orbifold maps

Definition

A dominant algebraic morphism ρ : Y→ X defines an orbifold
morphism Y→ Xϕ if for all p ∈ X, the divisor ρ∗(p) = ϕ(p)Dp.

Example

If ρ : X→ Cϕ is an orbifold morphism and C is a rational curve, then
ρ comes from a pencil in X̄; the multiple points comes from multiple
fibers of the pencil outside D.

Remark

If X̄ is rational only morphisms on rational orbifolds are allowed.

E. Artal IUMA, Universidad de Zaragoza
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Curves and pencils

Example

C = {(x + z)z(y2z− x2z− x3) = 0}
X := P2 \C = C2 \{(x + 1)(y2− x2− x3) = 0}

ρ : X→ C, ρ(x,y) := x2(x+1)
y2−x2−x3

Two multiple fibers outside D: y2z = 0 and x2(x + z) = 0.

πorb
1 (Cϕ) = Z/2∗Z/2

This case is uncovered by Libgober’s method.

E. Artal IUMA, Universidad de Zaragoza
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Properties of characteristic varieties of orbifolds

Except 1, irreducible components of Vk are connected
components of TG

For non-projective orbifolds, if k = rkH, then the component
through 1 is in Vk−1 \Vk (depth k−1). The other components
are in Vk (at least).

For projective orbifolds of genus g, then the component through
1 has depth 2g−2. The other components are in V2g−1 (at least).

E. Artal IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties



Quasiprojective Groups Characteristic Varieties Computations Orbifolds

Properties of characteristic varieties of orbifolds

Except 1, irreducible components of Vk are connected
components of TG

For non-projective orbifolds, if k = rkH, then the component
through 1 is in Vk−1 \Vk (depth k−1). The other components
are in Vk (at least).

For projective orbifolds of genus g, then the component through
1 has depth 2g−2. The other components are in V2g−1 (at least).

E. Artal IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties



Quasiprojective Groups Characteristic Varieties Computations Orbifolds

Properties of characteristic varieties of orbifolds

Except 1, irreducible components of Vk are connected
components of TG

For non-projective orbifolds, if k = rkH, then the component
through 1 is in Vk−1 \Vk (depth k−1). The other components
are in Vk (at least).

For projective orbifolds of genus g, then the component through
1 has depth 2g−2. The other components are in V2g−1 (at least).

E. Artal IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties



Quasiprojective Groups Characteristic Varieties Computations Orbifolds

Properties of characteristic varieties of quasiprojective
groups G

The irreducible components of V1(G) are subtori translated by
torsion elements. Given such a subvariety Σ its shadow ShΣ is
the paralell subtorus through the origin.

Σ1,Σ2 irreducible components of V1(G), dim(Σ1∩Σ2)> 0⇒
Σ1 = Σ2. The same happens for their shadows.

Σ1,Σ2 irreducible components of V1(G) of positive dimension
⇒ Σ1∩Σ2 ⊂ V2(G) and consists of torsion points. If their
shadows are not equal, 1 is an isolated intersection point.

If Σ has depth k and 1 /∈ Σ then, dimΣ≤ k + 1 (≤ k if dimΣ
odd). Moreover ShΣ has depth dimΣ−2 or dimΣ−1 (depth
dimΣ−1 if dimΣ odd).
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More properties quasiprojective groups G

If Σ has depth k and ξ ∈ Σ belongs to Vk+1 then ξ is torsion.

If 1 /∈ Σ and dimΣ> 2, then its shadow is an irreducible
component of V1(G).

1 /∈ Σ and dimΣ = 2, then its shadow is an irreducible
component of V1(G) if and only if it is for V2(G).

If 1 /∈ Σ and dimΣ = 1, then its shadow is not an irreducible
component of V1(G).

Let Σ1 be an irreducible component of Vk(G) and let Σ2 be an
irreducible component of V`(G). If ξ ∈ Σ1∩Σ2 then it is a
torsion point and ξ ∈ Vk+`(G).
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An Artin group

Example

Let G := 〈x,y, z|[x,y] = 1,(yz)2 = (zy)2,(xz)3 = (zx)3〉; V2(G) = ∅
and V1(G) has 5 irreducible components of dimension 1 Σi such that
Σi∩Σi+1 consists of one point (of torsion type). Then G is not
quasiprojective.

Theorem

Let Gp,q,r the Artin group associated to a triangle with sides p,q, r

If 1
p + 1

q + 1
r ≥ 1 then there exists an affine curve Cp,q,r such that

Gp,q,r = π1(C2 \Cp,q,r)

If p,q, r are even, not all of them equal and 1
p + 1

q + 1
r < 1 then

the groups Gp,q,r are not quasiprojective.
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Thanks for your attention

E. Artal IUMA, Universidad de Zaragoza
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