Characteristic Varieties of Quasiprojective Varieties

Enrique ARTAL BARTOLO

Departmento de Matemáticas Facultad de Ciencias Instituto Universitario de Matemáticas y sus Aplicaciones Universidad de Zaragoza

Branched Coverings, Degenerations and Related Topics 2010 Hiroshima March 8th 2010

Joint work with J.I. Cogolludo and D. Matei

IUMA, Universidad de Zaragoza

E. Artal

Characteristic Varieties of Quasiprojective Varieties

Quasiprojective Groups	Characteristic Varieties	Computations	Orbifolds
Settings			

• A *quasiprojective* group is the fundamental group of a quasiprojective smooth variety.

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

- A *quasiprojective* group is the fundamental group of a quasiprojective smooth variety.
- Goal 1: Find obstructions to determine if a group is quasiprojective.

Characteristic Varieties of Quasiprojective Varieties

- A *quasiprojective* group is the fundamental group of a quasiprojective smooth variety.
- Goal 1: Find obstructions to determine if a group is quasiprojective.
- Goal 2: Relate geometrical properties of a quasiprojective variety in terms of algebraic properties of the fundamental group.

Characteristic Varieties of Quasiprojective Varieties

- A *quasiprojective* group is the fundamental group of a quasiprojective smooth variety.
- Goal 1: Find obstructions to determine if a group is quasiprojective.
- Goal 2: Relate geometrical properties of a quasiprojective variety in terms of algebraic properties of the fundamental group.
- Zariski-Lefschetz: it is enough to consider curves and surfaces.

- A *quasiprojective* group is the fundamental group of a quasiprojective smooth variety.
- Goal 1: Find obstructions to determine if a group is quasiprojective.
- Goal 2: Relate geometrical properties of a quasiprojective variety in terms of algebraic properties of the fundamental group.
- Any finitely presented group is the fundamental group of compact orientable 4-manifold.

- A *quasiprojective* group is the fundamental group of a quasiprojective smooth variety.
- Goal 1: Find obstructions to determine if a group is quasiprojective.
- Goal 2: Relate geometrical properties of a quasiprojective variety in terms of algebraic properties of the fundamental group.
- Any finitely presented group is the fundamental group of compact orientable 4-manifold.
- Kähler groups are fundamental groups of compact Kähler
 4-manifolds: there are obstructions for a group to be Kähler.

Character Torus

• *G* (finitely presented) group, *X* space such that $G = \pi_1(X)$.

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

Character Torus

- *G* (finitely presented) group, *X* space such that $G = \pi_1(X)$.
- $H := G/G' = H_1(X;\mathbb{Z}), k := \operatorname{rk} H$, Tors H the torsion of H.

Characteristic Varieties of Quasiprojective Varieties

Character Torus

- *G* (finitely presented) group, *X* space such that $G = \pi_1(X)$.
- $H := G/G' = H_1(X;\mathbb{Z}), k := \operatorname{rk} H$, Tors H the torsion of H.
- $\blacksquare \mathbb{T}_G := H^1(X; \mathbb{C}^*) = H^1(G; \mathbb{C}^*) = \operatorname{Hom}(G, \mathbb{C}^*) = \operatorname{Hom}(H, \mathbb{Z}).$

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

Character Torus

- *G* (finitely presented) group, *X* space such that $G = \pi_1(X)$.
- $H := G/G' = H_1(X;\mathbb{Z}), k := \operatorname{rk} H$, Tors H the torsion of H.
- $\blacksquare \mathbb{T}_G := H^1(X; \mathbb{C}^*) = H^1(G; \mathbb{C}^*) = \operatorname{Hom}(G, \mathbb{C}^*) = \operatorname{Hom}(H, \mathbb{Z}).$
- $\Lambda := \Lambda_{\mathbb{C}} = \mathbb{C}[H], \mathbb{T}_G = \operatorname{Spec} \Lambda.$

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

Character Torus

- *G* (finitely presented) group, *X* space such that $G = \pi_1(X)$.
- $H := G/G' = H_1(X;\mathbb{Z}), k := \operatorname{rk} H$, Tors H the torsion of H.
- $\blacksquare \mathbb{T}_G := H^1(X; \mathbb{C}^*) = H^1(G; \mathbb{C}^*) = \operatorname{Hom}(G, \mathbb{C}^*) = \operatorname{Hom}(H, \mathbb{Z}).$
- $\Lambda := \Lambda_{\mathbb{C}} = \mathbb{C}[H], \mathbb{T}_G = \operatorname{Spec} \Lambda.$
- \mathbb{T}_G is an abelian complex Lie group, \mathbb{T}_G^1 the component through the origin **1** is isomorphic to $(\mathbb{C}^*)^k$.

Characteristic Varieties of Quasiprojective Varieties

Character Torus

- *G* (finitely presented) group, *X* space such that $G = \pi_1(X)$.
- $H := G/G' = H_1(X;\mathbb{Z}), k := \operatorname{rk} H$, Tors H the torsion of H.
- $\blacksquare \mathbb{T}_G := H^1(X; \mathbb{C}^*) = H^1(G; \mathbb{C}^*) = \operatorname{Hom}(G, \mathbb{C}^*) = \operatorname{Hom}(H, \mathbb{Z}).$

•
$$\Lambda := \Lambda_{\mathbb{C}} = \mathbb{C}[H], \mathbb{T}_G = \operatorname{Spec} \Lambda.$$

- \mathbb{T}_G is an abelian complex Lie group, \mathbb{T}_G^1 the component through the origin **1** is isomorphic to $(\mathbb{C}^*)^k$.
- $\blacksquare 1 \to \mathbb{T}_G^1 \to \mathbb{T}_G \to \operatorname{Hom}(\operatorname{Tors} H, \mathbb{C}^*) \to 1.$

Construction of the Alexander Invariant

Χ

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

Construction of the Alexander Invariant

 $\begin{array}{c} \pi \\ \star \\ \chi \end{array}$

 \tilde{X} maximal abelian covering of X

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

Orbifolds

Construction of the Alexander Invariant

$$\begin{array}{c} \tilde{X} & \heartsuit H \\ \\ \pi \\ \chi \\ X \end{array}$$

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

Construction of the Alexander Invariant

Alexander Invariant

 $H_1(\tilde{X};\mathbb{C}) = (G'/G'') \otimes_{\mathbb{Z}} \mathbb{C}$ is a Λ -module, $\Lambda = \mathbb{C}[H]$.

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

Construction of the Alexander Invariant

Alexander Invariant

$$H_1(\tilde{X};\mathbb{C}) = (G'/G'') \otimes_{\mathbb{Z}} \mathbb{C}$$
 is a Λ -module, $\Lambda = \mathbb{C}[H]$.

Alexander presentation

Choose *X* to be a CW-complex and consider the chain complex $C_*(X; \mathbb{C})$.

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

Construction of the Alexander Invariant

Alexander Invariant

$$H_1(\tilde{X};\mathbb{C}) = (G'/G'') \otimes_{\mathbb{Z}} \mathbb{C}$$
 is a Λ -module, $\Lambda = \mathbb{C}[H]$.

Alexander presentation

Choose *X* to be a CW-complex and consider the chain complex $C_*(X; \mathbb{C})$.

 \mathbf{I} \tilde{X} inherits a CW-complex structure

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

Construction of the Alexander Invariant

Alexander Invariant

$$H_1(\tilde{X};\mathbb{C}) = (G'/G'') \otimes_{\mathbb{Z}} \mathbb{C}$$
 is a Λ -module, $\Lambda = \mathbb{C}[H]$.

Alexander presentation

- Choose *X* to be a CW-complex and consider the chain complex $C_*(X; \mathbb{C})$.
- \tilde{X} inherits a CW-complex structure
- Given σ an *r*-cell of *X*, fix $\tilde{\sigma}$ an *r*-cell in \tilde{X} such that $\pi(\tilde{\sigma}) = \sigma$.

Construction of the Alexander Invariant

Alexander Invariant

$$H_1(\tilde{X};\mathbb{C}) = (G'/G'') \otimes_{\mathbb{Z}} \mathbb{C}$$
 is a Λ -module, $\Lambda = \mathbb{C}[H]$.

Alexander presentation

- Choose *X* to be a CW-complex and consider the chain complex $C_*(X; \mathbb{C})$.
- \tilde{X} inherits a CW-complex structure
- Given σ an *r*-cell of *X*, fix $\tilde{\sigma}$ an *r*-cell in \tilde{X} such that $\pi(\tilde{\sigma}) = \sigma$.
- The cells of \tilde{X} are $\{\tilde{\sigma}^h | \sigma r$ -cell of $X, h \in H\}$.

Construction of the Alexander Invariant

Alexander Invariant

$$H_1(\tilde{X};\mathbb{C}) = (G'/G'') \otimes_{\mathbb{Z}} \mathbb{C}$$
 is a Λ -module, $\Lambda = \mathbb{C}[H]$.

Alexander presentation

- Choose *X* to be a CW-complex and consider the chain complex $C_*(X; \mathbb{C})$.
- \tilde{X} inherits a CW-complex structure
- Given σ an *r*-cell of *X*, fix $\tilde{\sigma}$ an *r*-cell in \tilde{X} such that $\pi(\tilde{\sigma}) = \sigma$.
- The cells of \tilde{X} are $\{\tilde{\sigma}^h | \sigma r$ -cell of $X, h \in H\}$.
- $C_*(\tilde{X};\mathbb{C})$ is complex of free Λ -modules.

Twisted Cohomology

Local system of coefficients

- $\xi \in \mathbb{T}_G$.
- Define a *locally constant* sheaf $\underline{\mathbb{C}}_{\xi}$.
- $\tilde{X} \times \mathbb{C}$ sheaf over X (\mathbb{C} with the discrete topology).
- Action of *H* given by $(\tilde{x}, t)^h := (\tilde{x}^h, \xi(h^{-1})t)$.
- $\underline{\mathbb{C}}_{\xi}$ is the quotient of $\tilde{X} \times \mathbb{C}$ by this action.

Characteristic Varieties of Quasiprojective Varieties

Twisted Cohomology

Local system of coefficients

• $\xi \in \mathbb{T}_G$.

- Define a *locally constant* sheaf $\underline{\mathbb{C}}_{\xi}$.
- $\tilde{X} \times \mathbb{C}$ sheaf over X (\mathbb{C} with the discrete topology).
- Action of *H* given by $(\tilde{x}, t)^h := (\tilde{x}^h, \xi(h^{-1})t)$.
- $\underline{\mathbb{C}}_{\xi}$ is the quotient of $\tilde{X} \times \mathbb{C}$ by this action.

Definition of twisted cohomology

 $H^1(X; \underline{\mathbb{C}}_{\xi})$ means *sheaf cohomology*. It depends only on *G*!

Computation of twisted cohomology

Fix X a CW-complex with $\pi_1(X) = G$ as before.

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

Computation of twisted cohomology

- Fix *X* a CW-complex with $\pi_1(X) = G$ as before.
- Endow \mathbb{C} with a structure \mathbb{C}_{ξ} of Λ -module: if $t \in H$, $t \cdot z := \xi(t)z$.

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

Computation of twisted cohomology

- Fix X a CW-complex with $\pi_1(X) = G$ as before.
- Endow \mathbb{C} with a structure \mathbb{C}_{ξ} of Λ -module: if $t \in H$, $t \cdot z := \xi(t)z$.
- Consider the complexes $C_*(X; \mathbb{C}_{\xi}) := C_*(\tilde{X}; \mathbb{C}) \otimes_{\Lambda} \mathbb{C}_{\xi}$ and $C^*(X; \mathbb{C}_{\xi}) := C^*(\tilde{X}; \mathbb{C}) \otimes_{\Lambda} \mathbb{C}_{\xi}.$

Computation of twisted cohomology

- Fix X a CW-complex with $\pi_1(X) = G$ as before.
- Endow \mathbb{C} with a structure \mathbb{C}_{ξ} of Λ -module: if $t \in H$, $t \cdot z := \xi(t)z$.
- Consider the complexes $C_*(X; \mathbb{C}_{\xi}) := C_*(\tilde{X}; \mathbb{C}) \otimes_{\Lambda} \mathbb{C}_{\xi}$ and $C^*(X; \mathbb{C}_{\xi}) := C^*(\tilde{X}; \mathbb{C}) \otimes_{\Lambda} \mathbb{C}_{\xi}$.
- $H^1(X; \underline{\mathbb{C}}_{\xi})$ is the cohomology in degree 1 of $C^*(X; \mathbb{C}_{\xi})$.

Computation of twisted cohomology

- Fix X a CW-complex with $\pi_1(X) = G$ as before.
- Endow \mathbb{C} with a structure \mathbb{C}_{ξ} of Λ -module: if $t \in H$, $t \cdot z := \xi(t)z$.
- Consider the complexes $C_*(X; \mathbb{C}_{\xi}) := C_*(\tilde{X}; \mathbb{C}) \otimes_{\Lambda} \mathbb{C}_{\xi}$ and $C^*(X; \mathbb{C}_{\xi}) := C^*(\tilde{X}; \mathbb{C}) \otimes_{\Lambda} \mathbb{C}_{\xi}.$
- $H^1(X; \underline{\mathbb{C}}_{\xi})$ is the cohomology in degree 1 of $C^*(X; \mathbb{C}_{\xi})$.
- For computational purposes we will consider $H_1(X; \mathbb{C}_{\xi})$.

IUMA, Universidad de Zaragoza

Examples I

Free group

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

Examples I

Free group

• \mathbb{F}_k the free group generated by x_1, \ldots, x_k

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

Examples I

Free group

- \mathbb{F}_k the free group generated by x_1, \ldots, x_k
- *H* is the free abelian group generated by t_1, \ldots, t_k ($t_j \equiv x_j \mod G'$).

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

Examples I

Free group

- \mathbb{F}_k the free group generated by x_1, \ldots, x_k
- *H* is the free abelian group generated by t_1, \ldots, t_k ($t_j \equiv x_j \mod G'$).
- Let *X* be the CW-complex associated to the presentation

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

Examples I

Free group

- \mathbb{F}_k the free group generated by x_1, \ldots, x_k
- *H* is the free abelian group generated by t_1, \ldots, t_k ($t_j \equiv x_j \mod G'$).
- Let *X* be the CW-complex associated to the presentation
- Λ -Bases for $C_*(\tilde{X}; \mathbb{C})$.

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

Examples I

Free group

- \mathbb{F}_k the free group generated by x_1, \ldots, x_k
- *H* is the free abelian group generated by t_1, \ldots, t_k ($t_j \equiv x_j \mod G'$).
- Let *X* be the CW-complex associated to the presentation
- Λ -Bases for $C_*(\tilde{X}; \mathbb{C})$.

 C_0 (p) (p is the unique 0-cell).

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

Examples I

Free group

- \mathbb{F}_k the free group generated by x_1, \ldots, x_k
- *H* is the free abelian group generated by t_1, \ldots, t_k ($t_j \equiv x_j \mod G'$).
- Let *X* be the CW-complex associated to the presentation
- Λ -Bases for $C_*(\tilde{X}; \mathbb{C})$.

 C_0 (p) (p is the unique 0-cell). C_1 (x_1, \ldots, x_k).

Characteristic Varieties of Quasiprojective Varieties
Examples I

Free group

- \mathbb{F}_k the free group generated by x_1, \ldots, x_k
- *H* is the free abelian group generated by t_1, \ldots, t_k ($t_j \equiv x_j \mod G'$).
- Let *X* be the CW-complex associated to the presentation
- Λ -Bases for $C_*(\tilde{X}; \mathbb{C})$.

 $C_0 (p) (p \text{ is the unique 0-cell}).$ $C_1 (x_1, \dots, x_k).$ $C_2 \emptyset.$

Examples I

Free group

- \mathbb{F}_k the free group generated by x_1, \ldots, x_k
- *H* is the free abelian group generated by t_1, \ldots, t_k ($t_j \equiv x_j \mod G'$).
- Let *X* be the CW-complex associated to the presentation
- Λ -Bases for $C_*(\tilde{X}; \mathbb{C})$.

 $C_0 (p) (p \text{ is the unique 0-cell}).$ $C_1 (x_1, \dots, x_k).$ $C_2 \emptyset.$

• The matrix for δ_1 is $(t_1 - 1 \dots t_k - 1)$.

Examples I

Free group

- \mathbb{F}_k the free group generated by x_1, \ldots, x_k
- *H* is the free abelian group generated by t_1, \ldots, t_k ($t_j \equiv x_j \mod G'$).
- Let *X* be the CW-complex associated to the presentation
- Λ -Bases for $C_*(\tilde{X}; \mathbb{C})$.

 $C_0 (p) (p \text{ is the unique 0-cell}).$ $C_1 (x_1, \dots, x_k).$ $C_2 \emptyset.$

• The matrix for δ_1 is $(t_1 - 1 \dots t_k - 1)$.

• $k-1 \leq \dim H_1(X; \underline{\mathbb{C}}_{\xi}) \leq k$ (it equals $k \Leftrightarrow \xi = 1$).

Examples II

Zariski group

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

Examples II

Zariski group

$$\bullet G = \langle x, y | x^2 = y^3 = 1 \rangle$$

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

Examples II

Zariski group

•
$$G = \langle x, y | x^2 = y^3 = 1 \rangle$$

• $H = \langle t | t^6 = 1 \rangle, x \mapsto t^3, y \mapsto t^2.$

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

Examples II

Zariski group

- $G = \langle x, y | x^2 = y^3 = 1 \rangle$ $H = \langle t | t^6 = 1 \rangle, x \mapsto t^3, y \mapsto t^2.$
- $\Pi = \langle i | i = 1 \rangle, x \mapsto i , y \mapsto i .$
- The matrix for δ_1 is $(t^3 1 \quad t^2 1)$.

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

Examples II

Zariski group

$$G = \langle x, y | x^2 = y^3 = 1 \rangle$$

$$\blacksquare H = \langle t | t^6 = 1 \rangle, x \mapsto t^3, y \mapsto t^2.$$

• The matrix for
$$\delta_1$$
 is $(t^3 - 1 \quad t^2 - 1)$.

• (Fox Derivation)
$$\delta_2$$
: $\begin{pmatrix} 1+t^3 & 0\\ 0 & 1+t^2+t^4 \end{pmatrix}$.

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

Examples II

Zariski group

$$G = \langle x, y | x^2 = y^3 = 1 \rangle$$

$$\blacksquare H = \langle t | t^6 = 1 \rangle, x \mapsto t^3, y \mapsto t^2.$$

• The matrix for
$$\delta_1$$
 is $(t^3 - 1 \quad t^2 - 1)$.

• (Fox Derivation)
$$\delta_2$$
: $\begin{pmatrix} 1+t^3 & 0\\ 0 & 1+t^2+t^4 \end{pmatrix}$.

• dim $H_1(X; \underline{\mathbb{C}}_{\xi}) = 1$ if $\xi(t)$ is a primitive 6th-root of unity.

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

A curve group

Characteristic Varieties of Quasiprojective Varieties

Examples III

Curve group

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

Examples III

Curve group

$$\bullet G = \langle x, z | [x, z^2] = 1, [x, zxz] = 1 \rangle.$$

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

Examples III

Curve group

$$G = \langle x, z | [x, z^2] = 1, [x, zxz] = 1 \rangle.$$
$$H = \langle t, s | [t, s] = 1 \rangle, x \mapsto t, z \mapsto s.$$

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

Examples III

Curve group

- $G = \langle x, z | [x, z^2] = 1, [x, zxz] = 1 \rangle.$
- $\blacksquare H = \langle t, s | [t, s] = 1 \rangle, x \mapsto t, z \mapsto s.$
- The matrix for δ_1 is $(t-1 \quad s-1)$.

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

Examples III

Curve group

•
$$G = \langle x, z | [x, z^2] = 1, [x, zxz] = 1 \rangle.$$

$$\blacksquare H = \langle t, s | [t, s] = 1 \rangle, x \mapsto t, z \mapsto s.$$

The matrix for
$$\delta_1$$
 is $(t-1 \quad s-1)$.

•
$$\delta_2: \begin{pmatrix} 1-s^2 & (1-t)(1+s) \\ (1+ts)(1-s) & (t-1)(1+ts) \end{pmatrix}.$$

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

A D > <
 A P >
 A

Examples III

Curve group

$$G = \langle x, z | [x, z^2] = 1, [x, zxz] = 1 \rangle.$$

$$\blacksquare H = \langle t, s | [t, s] = 1 \rangle, x \mapsto t, z \mapsto s.$$

The matrix for
$$\delta_1$$
 is $(t-1 \quad s-1)$.

•
$$\delta_2: \begin{pmatrix} 1-s^2 & (1-t)(1+s) \\ (1+ts)(1-s) & (t-1)(1+ts) \end{pmatrix}.$$

• dim $H_1(X; \underline{\mathbb{C}}_{\xi}) = 1$ if $\xi(t) = 1, \xi(s) = -1$.

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

Deligne's theory I

Deligne extensions

- $X = \overline{X} \setminus D$, \overline{X} smooth projective, D normal crossing divisor.
- Flat line bundle (L_{ξ}, ∇) on *X* where $L_{\xi} = \underline{\mathbb{C}}_{\xi} \otimes \mathcal{O}_X$.
- $(\bar{L}_{\xi}, \bar{\nabla})$ extension to \bar{X}
- A lot of extensions are possible: parametrized by Zⁿ, *n* number of irreducible components of D.

Deligne's theory II

Example

- Let $X = \mathbb{C}^*$, x a generator of $\pi_1(X)$ realized by $t \mapsto \exp(2i\pi t)$.
- Let ξ a character such that $\xi(x) = \exp(-2i\pi\alpha)$, for some $\alpha \in \mathbb{C}$
- Take a trivial bundle on \mathbb{C} with section σ such that $\nabla(\tau) = 0$ for $\tau: z \mapsto z^{-\alpha}\sigma$ multivalued section.
- $\overline{\nabla}(\sigma) = \alpha \frac{dz}{z} \otimes \sigma$: α is the residue along $0 \in \mathbb{C}$.

Characteristic Varieties of Quasiprojective Varieties

Deligne's theory II

Example

- Let $X = \mathbb{C}^*$, x a generator of $\pi_1(X)$ realized by $t \mapsto \exp(2i\pi t)$.
- Let ξ a character such that $\xi(x) = \exp(-2i\pi\alpha)$, for some $\alpha \in \mathbb{C}$
- Take a trivial bundle on \mathbb{C} with section σ such that $\nabla(\tau) = 0$ for $\tau: z \mapsto z^{-\alpha} \sigma$ multivalued section.

•
$$\overline{\nabla}(\sigma) = \alpha \frac{dz}{z} \otimes \sigma$$
: α is the residue along $0 \in \mathbb{C}$.

Definition

The Deligne extension is defined as follows: the real part of the residues are in [0, 1).

IUMA, Universidad de Zaragoza

Deligne's theory III

Theorem

$$H^1(X;\underline{\mathbb{C}}_{\xi}) = H^{\mathcal{O}}_{\xi} \oplus H^{\bar{\mathcal{O}}}_{\xi}.$$

2 If the residues are not positive integers then, $H_{\xi}^{\mathcal{O}}$ is the homology of

$$\begin{aligned} H^{0}(\bar{X};\bar{L}_{\xi}) &\xrightarrow{\bar{\nabla}} H^{0}(\bar{X};\Omega^{1}_{\bar{X}}(\log \mathcal{D}) \otimes \bar{L}_{\xi}) \xrightarrow{\bar{\nabla}} H^{0}(\bar{X};\Omega^{2}_{\bar{X}}(\log \mathcal{D}) \otimes \bar{L}_{\xi}) \\ and \ H^{\bar{\mathcal{O}}}_{\xi} \ is \ \ker\left(\bar{\nabla}:H^{1}(\bar{X};\bar{L}_{\xi}) \to H^{1}(\bar{X};\Omega^{1}_{\bar{X}}(\log \mathcal{D}) \otimes \bar{L}_{\xi}\right). \end{aligned}$$

$$\begin{aligned} \mathbf{3} \ \xi \ is \ unitary, \ \tilde{L}_{\xi} \ is \ the \ Deligne \ extension: \\ H^{\mathcal{O}}_{\xi} &= H^{0}(\bar{X};\Omega^{1}_{\bar{X}}(\log \mathcal{D}) \otimes \tilde{L}_{\xi}), \quad H^{\bar{\mathcal{O}}}_{\xi} &= H^{1}(\bar{X};\tilde{L}_{\xi}). \end{aligned}$$

Definition of Characteristic Varieties

Definition

The *k*-th *characteristic variety* of *X* (or *G*) is the subvariety of \mathbb{T}_G , defined by $\mathcal{V}_k(G) := \{\xi \in \mathbb{T}_G \mid \dim H^1(X, \underline{\mathbb{C}}_{\xi}) \ge k\}.$

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

Definition of Characteristic Varieties

Definition

The *k*-th *characteristic variety* of *X* (or *G*) is the subvariety of \mathbb{T}_G , defined by $\mathcal{V}_k(G) := \{\xi \in \mathbb{T}_G \mid \dim H^1(X, \underline{\mathbb{C}}_{\xi}) \ge k\}.$

Properties

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

Definition of Characteristic Varieties

Definition

The *k*-th *characteristic variety* of *X* (or *G*) is the subvariety of \mathbb{T}_G , defined by $\mathcal{V}_k(G) := \{\xi \in \mathbb{T}_G \mid \dim H^1(X, \underline{\mathbb{C}}_{\xi}) \ge k\}.$

Properties

■ Characteristic varieties are algebraic subvarieties of **T**_{*G*} defined over **Q**.

Characteristic Varieties of Quasiprojective Varieties

Definition of Characteristic Varieties

Definition

The *k*-th *characteristic variety* of *X* (or *G*) is the subvariety of \mathbb{T}_G , defined by $\mathcal{V}_k(G) := \{\xi \in \mathbb{T}_G \mid \dim H^1(X, \underline{\mathbb{C}}_{\xi}) \ge k\}.$

Properties

- Characteristic varieties are algebraic subvarieties of T_G defined over Q.
- *V_k* is the set of zeros of the *k*th-Fitting ideal of the Alexander invariant (except possibly at **1**).

Definition of Characteristic Varieties

Definition

The *k*-th *characteristic variety* of *X* (or *G*) is the subvariety of \mathbb{T}_G , defined by $\mathcal{V}_k(G) := \{\xi \in \mathbb{T}_G \mid \dim H^1(X, \underline{\mathbb{C}}_{\xi}) \ge k\}.$

Properties

- Characteristic varieties are algebraic subvarieties of T_G defined over Q.
- *V_k* is the set of zeros of the *k*th-Fitting ideal of the Alexander invariant (except possibly at **1**).
- If ξ is torsion then its depth (the maximal k such that $\xi \in \mathcal{V}_k$) is related with jumpings of Betti numbers of finite abelian coverings.

Computations

Hypersurface case: Libgober approach

- Libgober gives a method to compute *most* irreducible components of $\mathcal{V}_k(\mathbb{P}^2 \setminus C)$ without computing the fundamental group.
- Using Sakuma's formula the problem is reduced to compute equivariant Betti numbers of finite abelian coverings of X := P² \ C:

Characteristic Varieties of Quasiprojective Varieties

Computations

Hypersurface case: Libgober approach

- Libgober gives a method to compute *most* irreducible components of $\mathcal{V}_k(\mathbb{P}^2 \setminus C)$ without computing the fundamental group.
- Using Sakuma's formula the problem is reduced to compute equivariant Betti numbers of finite abelian coverings of X := P² \ C:
 - Let σ a torsion element of T_G of order $\ell > 1$
 - ρ is associated to a cyclic ℓ -fold covering $\rho_{\sigma}: Y_{\sigma} \to X$
 - There is a natural decomposition of $H^1(Y_{\sigma}; \mathbb{C}) = \bigoplus_{j=0}^{\ell-1} H_{\sigma^j}$
 - $\sigma \in \mathcal{V}_k(G) \Leftrightarrow \dim H_\sigma \geq k.$

Computations

Hypersurface case: Libgober approach

- Libgober gives a method to compute *most* irreducible components of $\mathcal{V}_k(\mathbb{P}^2 \setminus C)$ without computing the fundamental group.
- Using Sakuma's formula the problem is reduced to compute equivariant Betti numbers of finite abelian coverings of X := P² \ C:
- Using quasiadjunction polytopes and ideals for the singular points, one obtains a finite combinatorial partition; it is enough to compute the twisted cohomology for one character in each partition.
- The *position* of the quasiadjunction ideals on each point is the key point in the computation.

Comments

Epimorphisms

If $G_1 \to G_2$ is an epimorphism, then \mathbb{T}_{G_2} is a subtorus of \mathbb{T}_{G_1} and $\mathcal{V}_k(G_2) \subset \mathcal{V}_k(G_1)$.

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

Comments

Epimorphisms

If $G_1 \to G_2$ is an epimorphism, then \mathbb{T}_{G_2} is a subtorus of \mathbb{T}_{G_1} and $\mathcal{V}_k(G_2) \subset \mathcal{V}_k(G_1)$.

Theorem (Arapura)

Let Σ be an irreducible component of $\mathcal{V}_1(G)$. Then,

If dim $\Sigma > 0$ then there exists a surjective morphism $\rho : X \to C$, *C* algebraic curve, and a torsion element σ such that $\Sigma = \sigma \rho^*(H^1(C; \mathbb{C}^*)).$

2 If dim $\Sigma = 0$ then Σ is unitary.

In particular, positive dimensional irreducible components are subtori translated by torsion elements.

Comments

Epimorphisms

If $G_1 \to G_2$ is an epimorphism, then \mathbb{T}_{G_2} is a subtorus of \mathbb{T}_{G_1} and $\mathcal{V}_k(G_2) \subset \mathcal{V}_k(G_1)$.

Uncovered Components

- Isolated unitary non torsion points are not visible with Libgober's method.
- Following Deligne, if ξ is torsion then, for the Deligne extension $H_{\xi}^{\mathcal{O}} = H^0(\bar{X}; \Omega_{\bar{X}}^1(\log \mathcal{D}) \otimes \tilde{L}_{\xi}), \quad H_{\xi}^{\bar{\mathcal{O}}} = H^1(\bar{X}; \tilde{L}_{\xi}).$
- Libgober proves that if ξ ramifies along any irreducible component of C then H⁰(X̄; Ω¹_{X̄}(log D) ⊗ L̃_ξ) = H⁰(X̄; Ω¹_{X̄} ⊗ L̃_ξ).

Theorem

Let X be a quasi-projective smooth variety and let $\mathcal{V} := \mathcal{V}_k(X)$ be the k^{th} characteristic variety of X. Let V be an irreducible component of \mathcal{V} . Then one of the two following statements holds:

Characteristic Varieties of Quasiprojective Varieties

Theorem

Let X be a quasi-projective smooth variety and let $\mathcal{V} := \mathcal{V}_k(X)$ be the k^{th} characteristic variety of X. Let V be an irreducible component of \mathcal{V} . Then one of the two following statements holds:

There exists a surjective orbifold morphism $\rho : X \to C_{\varphi}$ and an irreducible component V_1 of $\mathcal{V}_k(\pi_1^{\text{orb}}(C_{\varphi}))$ such that $V = \rho^*(V_1)$.

Characteristic Varieties of Quasiprojective Varieties

Theorem

Let X be a quasi-projective smooth variety and let $\mathcal{V} := \mathcal{V}_k(X)$ be the k^{th} characteristic variety of X. Let V be an irreducible component of \mathcal{V} . Then one of the two following statements holds:

- There exists a surjective orbifold morphism $\rho : X \to C_{\varphi}$ and an irreducible component V_1 of $\mathcal{V}_k(\pi_1^{\text{orb}}(C_{\varphi}))$ such that $V = \rho^*(V_1)$.
- **2** *V* is an isolated torsion point.

Theorem

Let X be a quasi-projective smooth variety and let $\mathcal{V} := \mathcal{V}_k(X)$ be the k^{th} characteristic variety of X. Let V be an irreducible component of \mathcal{V} . Then one of the two following statements holds:

- There exists a surjective orbifold morphism $\rho : X \to C_{\varphi}$ and an irreducible component V_1 of $\mathcal{V}_k(\pi_1^{\text{orb}}(C_{\varphi}))$ such that $V = \rho^*(V_1)$.
- **2** *V* is an isolated torsion point.

Consequence

Behaviour of torsion characters determine characteristic varieties.

IUMA, Universidad de Zaragoza

Orbifold groups

Orbifold

An orbifold X_{φ} is a quasiprojective Riemann surface X with a function $\varphi : X \to \mathbb{N}$ with value 1 outside a finite number of points.

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties
Orbifold groups

Orbifold

An orbifold X_{φ} is a quasiprojective Riemann surface X with a function $\varphi : X \to \mathbb{N}$ with value 1 outside a finite number of points.

Orbifold group

For an orbifold X_{φ} , let p_1, \ldots, p_n the points such that $\varphi(p_j) := m_j > 1$. Then

$$\pi_1^{\text{orb}} := \pi_1(X \setminus \{p_1, \dots, p_n\}) / \langle \mu_j^{m_j} = 1 \rangle$$

where μ_j is a meridian of p_j . We denote X_{φ} by $X_{m_1,...,m_n}$.

Characteristic Varieties of Quasiprojective Varieties

Orbifold maps

Definition

A dominant algebraic morphism $\rho : Y \to X$ defines an orbifold morphism $Y \to X_{\varphi}$ if for all $p \in X$, the divisor $\rho^*(p) = \varphi(p)\mathcal{D}_p$.

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

Orbifold maps

Definition

A dominant algebraic morphism $\rho : Y \to X$ defines an orbifold morphism $Y \to X_{\varphi}$ if for all $p \in X$, the divisor $\rho^*(p) = \varphi(p)\mathcal{D}_p$.

Example

If $\rho: X \to C_{\varphi}$ is an orbifold morphism and *C* is a rational curve, then ρ comes from a pencil in \overline{X} ; the multiple points comes from multiple fibers of the pencil outside \mathcal{D} .

Characteristic Varieties of Quasiprojective Varieties

Orbifold maps

Definition

A dominant algebraic morphism $\rho : Y \to X$ defines an orbifold morphism $Y \to X_{\varphi}$ if for all $p \in X$, the divisor $\rho^*(p) = \varphi(p)\mathcal{D}_p$.

Example

If $\rho: X \to C_{\varphi}$ is an orbifold morphism and *C* is a rational curve, then ρ comes from a pencil in \overline{X} ; the multiple points comes from multiple fibers of the pencil outside \mathcal{D} .

Remark

If \overline{X} is rational only morphisms on rational orbifolds are allowed.

Curves and pencils

Example

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

Curves and pencils

Example

•
$$C = \{(x+z)z(y^2z - x^2z - x^3) = 0\}$$

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

Curves and pencils

Example

•
$$C = \{(x+z)z(y^2z - x^2z - x^3) = 0\}$$

• $X := \mathbb{P}^2 \setminus C = \mathbb{C}^2 \setminus \{(x+1)(y^2 - x^2 - x^3) = 0\}$

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

Curves and pencils

Example

•
$$C = \{(x+z)z(y^2z - x^2z - x^3) = 0\}$$

• $X := \mathbb{P}^2 \setminus C = \mathbb{C}^2 \setminus \{(x+1)(y^2 - x^2 - x^3) = 0\}$
• $\rho : X \to \mathbb{C}, \ \rho(x,y) := \frac{x^2(x+1)}{y^2 - x^2 - x^3}$

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

Curves and pencils

Example

•
$$C = \{(x+z)z(y^2z - x^2z - x^3) = 0\}$$

• $X := \mathbb{P}^2 \setminus C = \mathbb{C}^2 \setminus \{(x+1)(y^2 - x^2 - x^3) = 0\}$
• $\rho: X \to \mathbb{C}, \ \rho(x, y) := \frac{x^2(x+1)}{y^2 - x^2 - x^3}$
• Two multiple fibers outside $\mathcal{D}: \ y^2z = 0$ and $x^2(x+z) = 0$.

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

Curves and pencils

Example

•
$$C = \{(x+z)z(y^2z - x^2z - x^3) = 0\}$$

• $X := \mathbb{P}^2 \setminus C = \mathbb{C}^2 \setminus \{(x+1)(y^2 - x^2 - x^3) = 0\}$
• $\rho: X \to \mathbb{C}, \ \rho(x,y) := \frac{x^2(x+1)}{y^2 - x^2 - x^3}$
• Two multiple fibers outside $\mathcal{D}: \ y^2z = 0$ and $x^2(x+z) = 0$.

 $\bullet \pi_1^{\operatorname{orb}}(C_{\varphi}) = \mathbb{Z}/2 * \mathbb{Z}/2$

Curves and pencils

Example

•
$$C = \{(x+z)z(y^2z - x^2z - x^3) = 0\}$$

•
$$X := \mathbb{P}^2 \setminus C = \mathbb{C}^2 \setminus \{ (x+1)(y^2 - x^2 - x^3) = 0 \}$$

•
$$\rho: X \to \mathbb{C}, \, \rho(x, y) := \frac{x^2(x+1)}{y^2 - x^2 - x^2}$$

• Two multiple fibers outside \mathcal{D} : $y^2 z = 0$ and $x^2(x+z) = 0$.

$$\pi_1^{\operatorname{orb}}(C_{\varphi}) = \mathbb{Z}/2 * \mathbb{Z}/2$$

■ This case is uncovered by Libgober's method.

Properties of characteristic varieties of orbifolds

Except 1, irreducible components of V_k are connected components of T_G

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

Properties of characteristic varieties of orbifolds

- Except **1**, irreducible components of \mathcal{V}_k are connected components of \mathbb{T}_G
- For non-projective orbifolds, if $k = \operatorname{rk} H$, then the component through 1 is in $\mathcal{V}_{k-1} \setminus \mathcal{V}_k$ (depth k-1). The other components are in \mathcal{V}_k (at least).

Characteristic Varieties of Quasiprojective Varieties

Properties of characteristic varieties of orbifolds

- Except 1, irreducible components of \mathcal{V}_k are connected components of \mathbb{T}_G
- For non-projective orbifolds, if $k = \operatorname{rk} H$, then the component through **1** is in $\mathcal{V}_{k-1} \setminus \mathcal{V}_k$ (depth k-1). The other components are in \mathcal{V}_k (at least).
- For projective orbifolds of genus g, then the component through 1 has depth 2g - 2. The other components are in V_{2g-1} (at least).

IUMA, Universidad de Zaragoza

• The irreducible components of $\mathcal{V}_1(G)$ are subtori translated by torsion elements. Given such a subvariety Σ its *shadow* Sh Σ is the paralell subtorus through the origin.

Characteristic Varieties of Quasiprojective Varieties

- The irreducible components of $\mathcal{V}_1(G)$ are subtori translated by torsion elements. Given such a subvariety Σ its *shadow* Sh Σ is the paralell subtorus through the origin.
- Σ_1, Σ_2 irreducible components of $\mathcal{V}_1(G)$, dim $(\Sigma_1 \cap \Sigma_2) > 0 \Rightarrow \Sigma_1 = \Sigma_2$. The same happens for their shadows.

Characteristic Varieties of Quasiprojective Varieties

- The irreducible components of $\mathcal{V}_1(G)$ are subtori translated by torsion elements. Given such a subvariety Σ its *shadow* Sh Σ is the paralell subtorus through the origin.
- Σ₁, Σ₂ irreducible components of V₁(G), dim(Σ₁ ∩ Σ₂) > 0 ⇒
 Σ₁ = Σ₂. The same happens for their shadows.
- ∑₁, ∑₂ irreducible components of V₁(G) of positive dimension
 ⇒ ∑₁ ∩ ∑₂ ⊂ V₂(G) and consists of torsion points. If their shadows are not equal, 1 is an isolated intersection point.

- The irreducible components of $\mathcal{V}_1(G)$ are subtori translated by torsion elements. Given such a subvariety Σ its *shadow* Sh Σ is the paralell subtorus through the origin.
- Σ₁, Σ₂ irreducible components of V₁(G), dim(Σ₁ ∩ Σ₂) > 0 ⇒
 Σ₁ = Σ₂. The same happens for their shadows.
- ∑₁, ∑₂ irreducible components of V₁(G) of positive dimension
 ⇒ ∑₁ ∩ ∑₂ ⊂ V₂(G) and consists of torsion points. If their shadows are not equal, 1 is an isolated intersection point.
- If Σ has depth k and $\mathbf{1} \notin \Sigma$ then, dim $\Sigma \leq k + 1$ ($\leq k$ if dim Σ odd). Moreover Sh Σ has depth dim $\Sigma 2$ or dim $\Sigma 1$ (depth dim $\Sigma 1$ if dim Σ odd).

More properties quasiprojective groups G

If Σ has depth k and $\xi \in \Sigma$ belongs to \mathcal{V}_{k+1} then ξ is torsion.

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

More properties quasiprojective groups G

- If Σ has depth k and $\xi \in \Sigma$ belongs to \mathcal{V}_{k+1} then ξ is torsion.
- If 1 ∉ ∑ and dim ∑ > 2, then its shadow is an irreducible component of V₁(G).

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

More properties quasiprojective groups G

- If Σ has depth k and $\xi \in \Sigma$ belongs to \mathcal{V}_{k+1} then ξ is torsion.
- If 1 ∉ ∑ and dim ∑ > 2, then its shadow is an irreducible component of V₁(G).
- 1 ∉ ∑ and dim ∑ = 2, then its shadow is an irreducible component of V₁(G) if and only if it is for V₂(G).

More properties quasiprojective groups G

- If Σ has depth k and $\xi \in \Sigma$ belongs to \mathcal{V}_{k+1} then ξ is torsion.
- If 1 ∉ ∑ and dim ∑ > 2, then its shadow is an irreducible component of V₁(G).
- 1 ∉ ∑ and dim ∑ = 2, then its shadow is an irreducible component of V₁(G) if and only if it is for V₂(G).
- If 1 ∉ ∑ and dim ∑ = 1, then its shadow is not an irreducible component of V₁(G).

More properties quasiprojective groups G

- If Σ has depth k and $\xi \in \Sigma$ belongs to \mathcal{V}_{k+1} then ξ is torsion.
- If 1 ∉ ∑ and dim ∑ > 2, then its shadow is an irreducible component of V₁(G).
- 1 ∉ ∑ and dim ∑ = 2, then its shadow is an irreducible component of V₁(G) if and only if it is for V₂(G).
- If 1 ∉ ∑ and dim ∑ = 1, then its shadow is not an irreducible component of V₁(G).
- Let Σ₁ be an irreducible component of V_k(G) and let Σ₂ be an irreducible component of V_ℓ(G). If ξ ∈ Σ₁ ∩ Σ₂ then it is a torsion point and ξ ∈ V_{k+ℓ}(G).

An Artin group

Example

Let $G := \langle x, y, z | [x, y] = 1, (yz)^2 = (zy)^2, (xz)^3 = (zx)^3 \rangle$; $\mathcal{V}_2(G) = \emptyset$ and $\mathcal{V}_1(G)$ has 5 irreducible components of dimension 1 Σ_i such that $\Sigma_i \cap \Sigma_{i+1}$ consists of one point (of torsion type). Then *G* is not quasiprojective.

IUMA, Universidad de Zaragoza

Characteristic Varieties of Quasiprojective Varieties

An Artin group

Example

Let $G := \langle x, y, z | [x, y] = 1, (yz)^2 = (zy)^2, (xz)^3 = (zx)^3 \rangle$; $\mathcal{V}_2(G) = \emptyset$ and $\mathcal{V}_1(G)$ has 5 irreducible components of dimension 1 Σ_i such that $\Sigma_i \cap \Sigma_{i+1}$ consists of one point (of torsion type). Then *G* is not quasiprojective.

Theorem

E Artal

Let $G_{p,q,r}$ the Artin group associated to a triangle with sides p,q,r

- If $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} \ge 1$ then there exists an affine curve $C_{p,q,r}$ such that $G_{p,q,r} = \pi_1(\mathbb{C}^2 \setminus C_{p,q,r})$
- If p,q,r are even, not all of them equal and $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} < 1$ then the groups $G_{p,q,r}$ are not quasiprojective.

Thanks for your attention

IUMA, Universidad de Zaragoza

a

E. Artal

Characteristic Varieties of Quasiprojective Varieties