On generic 4-fold covers of algebraic surfaces

Taketo Shirane

Department of Mathematics and Information Sciences, Tokyo Metropolitan University

Notation

In this poster, all varieties are defined over the field of complex numbers \mathbf{C} .

- Y : a **smooth** projective surface.
- X : a normal projective surface.

 $\pi: X \to Y$: a 4-fold cover (i.e. a finite surjective morphism with deg $\pi = 4$).

 $\Delta(\pi)$: the branch locus of π . ($\Delta(\pi) \neq \emptyset$, in general.)

 $\mathbf{C}(X), \mathbf{C}(Y)$: the rational function fields of X and Y, respectively.

 $K_Y, e(Y)$: a canonical divisor, topologically Euler number of Y, respectively.

 $\begin{array}{ll} \underline{\text{Main Thm.}} & Let \ \pi : X \to Y \ be \ a \ generic \ 4-fold \ cover \ as \\ above, \ and \ \overline{X} \ the \ minimal \ resolution \ of \ X. \ Then \\ & K_{\overline{X}}^2 = 4K_Y^2 + 2A.K_Y + \frac{1}{2}A^2 - \delta_1 - \delta_2, \\ & e(\overline{X}) = 4e(Y) + A.K_Y + A^2 - 3\delta_1 - 2\delta_2. \end{array}$

Resolution of 4-fold covers

We summatise resolution of any 4-fold covers, which is used in

 \mathbf{S}_i : the symmetric group of degree i.

4-fold covers and S_4 -covers

 $\mathbf{C}(X)$ is a finite extension of $\mathbf{C}(Y)$ with $[\mathbf{C}(X) : \mathbf{C}(Y)] = 4$. Hence there is $z \in \mathbf{C}(X)$ such that its minimal polynomial over $\mathbf{C}(Y)$ is

 $f := z^4 + g_1 z^2 + g_2 z + g_3.$

Based on Lagrange's method of solving f = 0, we canonically obtain the following diagram:

$$K_1 := \mathbf{C}(Y)(\theta_1), \qquad K_2 := K_1(\theta_{2,1}) = K_1(\theta_{2,2}),$$

 $\widetilde{K} := K_2(\theta_{3,1}, \theta_{3,2}) = K_2(\theta_{3,2}, \theta_{3,3}) = K_2(\theta_{3,3}, \theta_{3,1}),$

our proof of Main Theorem. For any integer i > 0, let $\sigma^{(i)} : Y^{(i)} \to Y^{(i-1)}$ be a blowing-up of $Y^{(i-1)}$ $(Y^{(0)} := Y)$. Then we obtain the following diagram by normalizing $Y^{(i)}$: $\widetilde{X}^{(i)} = \widetilde{X}^{(i)}$

Let $A^{(i)}$, $B^{(i)}$, $C^{(i)}$ and $D^{(i)}$ be the reduced divisors as A, B, C and D.

<u>Thm.</u> Let $\pi : X \to Y$ be a 4-fold cover. Then there is a resolution X'' of X such that it is constructed by the following diagram: $\widetilde{W}(r) = \widetilde{W}(r)$

where θ_1 , $\theta_{2,i}$ and $\theta_{3,j}$ are elements such that $\theta_1^2 = \delta_f$, $\theta_{2,1}^3 = -\frac{h_2}{2} + \theta_1$, $\theta_{2,2}^3 = -\frac{h_2}{2} - \theta_1$, $\theta_{3,1}^2 = \theta_{2,1} + \theta_{2,2}$, $\theta_{3,2}^2 = \zeta_3 \theta_{2,1} + \zeta_3^2 \theta_{2,2}$, $\theta_{3,3}^2 = \zeta_3^2 \theta_{2,1} + \zeta_3 \theta_{2,2}$. Here h_1 , $h_2 \in \mathbf{C}(Y)$ and $\zeta_3 = \exp\left(\frac{2\pi\sqrt{-1}}{3}\right)$. We define four distinct algebraic subsets of $\Delta(\tilde{\pi})$ as follows: $A := \overline{\{P \in Y \mid \sharp \psi_1^{-1}(P) = 1, \ \sharp(\psi_1 \circ \psi_2)^{-1}(P) = 3, \ \sharp \tilde{\pi}^{-1}(P) = 12\}},$ $B := \overline{\{P \in Y \mid \sharp \psi_1^{-1}(P) = 1, \ \sharp(\psi_1 \circ \psi_2)^{-1}(P) = 3, \ \sharp \tilde{\pi}^{-1}(P) = 6, \ P \notin A\}},$ $C := \overline{\{P \in Y \mid \sharp \psi_1^{-1}(P) = 2, \ \sharp(\psi_1 \circ \psi_2)^{-1}(P) = 2, \ \sharp \tilde{\pi}^{-1}(P) = 8\}},$ $D := \overline{\{P \in Y \mid \sharp \psi_1^{-1}(P) = 2, \ \sharp(\psi_1 \circ \psi_2)^{-1}(P) = 6, \ \sharp \tilde{\pi}^{-1}(P) = 12\}}.$ Note that $\Delta(\pi) = A + B + C + D$.

Generic 4-fold covers

<u>Def.</u> Let $\pi : X \to Y$ be a 4-fold cover.

For any reduced divisor H and $P \in Y$, we denote the multiplicity of H at P by $\mu_P(H)$. Let $P^{(i)}$ be the center of the blowing-up $\sigma^{(i+1)}$ for $i \ge 0$.

 π : generic $\stackrel{\text{def}}{\iff} \Delta(\pi) = A$ (i.e. B = C = D = 0)

Let $\pi : X \to Y$ be a generic 4-fold cover, which $\Delta(\pi) \subset Y$ is a reduced curve with at worst **simple singularities**. Let

 $\gamma: Z_1 \to X_1$: the minimal resolution of X_1 , $\hat{\psi}_2: Z_2 \to Z_1$: the K_2 -normalization of Z_1 , $\hat{\psi}_3: \widetilde{Z} \to Z_2$: the \widetilde{K} -normalization of Z_2 .

We put

 δ_1 : the number of connected components of $\Delta(\hat{\psi}_2) \subset Z_1$, δ_2 : the number of connected components of $\hat{\psi}_2(\Delta(\hat{\psi}_3)) \subset Z_1$. Then our **main** theorem is the following: Then we put a_i , b_i , c_i and d_i as follows;

 $\begin{aligned} a_i &:= \begin{cases} \mu_{P^{(i-1)}}(A^{(i-1)}) - 1 & (if \ E^{(i)} \subset A^{(i)}) \\ \mu_{P^{(i-1)}}(A^{(i-1)}) & (otherwise) \end{cases} \\ b_i &:= \begin{cases} \mu_{P^{(i-1)}}(B^{(i-1)}) - 1 & (if \ E^{(i)} \subset B^{(i)}) \\ \mu_{P^{(i-1)}}(B^{(i-1)}) & (otherwise) \end{cases} \\ c_i &:= \begin{cases} \mu_{P^{(i-1)}}(C^{(i-1)}) - 1 & (if \ E^{(i)} \subset C^{(i)}) \\ \mu_{P^{(i-1)}}(C^{(i-1)}) & (otherwise) \end{cases} \\ d_i &:= \begin{cases} \mu_{P^{(i-1)}}(D^{(i-1)}) - 1 & (if \ E^{(i)} \subset D^{(i)}) \\ \mu_{P^{(i-1)}}(D^{(i-1)}) & (otherwise) \end{cases} \end{aligned}$

Let s be the number of singular points of $D^{(r)}$.