
Fibered Faces and Dynamics of Mapping Classes
Branched Coverings, Degenerations, and Related Topics 2012

Hiroshima University

Eriko Hironaka
Florida State University/Tokyo Institute of Technology

March 5-7, 2012



I. Pseudo-Anosov mapping classes
1. Introduction
2. Visualizing pseudo-Anosov mapping classes
3. Train tracks
4. Minimum dilatation problem

II. Fibered Faces and Applications
1. Introduction
2. Fibered face theory
3. Alexander and Teichmüller polynomials
4. First application: Orientable mapping classes

III. Families of mapping classes with small dilatations
1. Introduction
2. Deformations of mapping classes on fibered faces
3. Penner sequences and applications
4. Quasiperiodic mapping classes



I. Pseudo-Anosov mapping classes
1. Introduction
2. Visualizing pseudo-Anosov mapping classes
3. Train tracks
4. Minimum dilatation problem

II. Fibered Faces and Applications
1. Introduction
2. Fibered face theory
3. Alexander and Teichmüller polynomials
4. First application: Orientable mapping classes

III. Families of mapping classes with small dilatations
1. Introduction
2. Deformations of mapping classes on fibered faces
3. Penner sequences and applications
4. Quasiperiodic mapping classes



Introduction: Overview of Lectures

Problem: Describe the small dilatation pseudo-Anosov elements
PS ⊂ Mod(S) (e.g., invariants, constructions, families)

Method: Use theory of Fibered Faces (Thurston)

P =
⋃
S

PS ↪→
⋃
α

Fα

where Fα are Euclidean convex polyhedra (fibered faces) and the
image of P is the union of the interior rational points of Fα.

Focus of this lecture: The minimum dilatation problem for
pseudo-Anosov mapping classes.



Preliminaries

Objects: S = Sg ,n compact oriented surface, χ(S) < 0
Mod(S) mapping class group of S :

Mod(S)
def
= {φ : S

homeo+

−→ S}/isotopy
(alternately, isotopy rel ∂S)

Nielsen-Thurston Classification: Let φ ∈ Mod(S). Then φ is
either periodic, reducible or pseudo-Anosov.

periodic: ∃k ≥ 1 such that φk ∼ id

reducible: ∃k ≥ 1 and ∃γ ⊂ S an essential simple closed curve
such that φk(γ) ∼ γ
pseudo-Anosov:
∃ stable and unstable foliations of φ: (F s , νs), (Fu, νu) , and
∃ dilatation of φ: λ > 1 where

F s and Fu are singular φ-invariant foliations on S ,
νs and νu are transverse measures, and
φ∗ν

s = 1
λν

s and φ∗ν
u = λνu.



Local Flat Structure:

Let P =
⋃
PS be the set of pseudo-Anosov mapping classes,

(S , φ) ∈ P.

Away from singularities (Fu, νu) and (F s , νs) locally define a
Euclidean structure on S .



Near singularities and boundary components

Near a singularity: Near a boundary component:

These are called 4-pronged or degree 2.



Action of φ on local flat structure

An r × r square gets sent to a rectangle with sides λr × 1
λ r .

Singularities (resp. boundary components) are permuted.

⇒ If boundary component is not 1-pronged, then fIlling in its orbit
doesn’t change dilatation.



Relation to closed Teichmüller geodesics on moduli space

Teichmüller space: T (S) = marked Riemann surfaces
(marking is a homeomorphism f : S → X ).

Mod(S) acts on T (S) by pre-composition.

Moduli space: M(S) = Riemann surfaces X homeomorphic
to S .

M(S) = T (S)/Mod(S)

Pseudo-Anosov elements correspond to closed geodesics on
M(S)
(local flat structure determines points on the geodesic)

Length Spectrum
def
= Teichmüller lengths of closed geodesic curves on M(S)
= {log(λ(φ)) : φ ∈ PS}

(i.e., study of dilatations has ties with study of geometry of
M(S))
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Visualizing pseudo-Anosov mapping classes

Look at actions on essential simple closed curves.

Take any essential simple closed curve γ on S .

If φ is not periodic or reducible,

φm(γ) (F s , νs), as m→∞
where νs is a transverse measure (defined up to positive scalar
multiple). (F s , νs) is called the stable foliation for φ.

φ stretches along F s and contracts νs by 1
λ , where 0 < 1

λ < 1.
This λ is the dilatation of φ.

Similarly, the unstable foliation is determined by:

φ−m(γ) (Fu, νu), as m→∞
(F s , νs), (Fu, νu) and λ are independent of the choice of γ.



Action on essential simple closed curves

Example 1: a periodic map on the S0,4, the sphere with 4
boundary components.



Action of periodic map on a simple closed curve (periodic
map):



Action on a simple closed curve (one application):



Action on a simple closed curve (2nd application):



Action on a simple closed curve (3rd application):

back to start



Action on essential simple closed curves

Example 2: simplest pseudo-Anosov braid monodromy



Action on a simple closed curve (simplest pA braid
monodromy):



Action on a simple closed curve (one application of map):



Action on a simple closed curve (2 applications of map):



Action on a simple closed curve (3 applications of map):

back to start
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Train tracks

Train tracks are useful for capturing the dynamics of a mapping
class.
A train track is an embedded graph on S with “smoothings” at the
vertices.



Train tracks

A curve is carried by the train track (or is an allowable curve) if it
can be isotoped to the train track in a smooth way.



Train tracks

An allowable curve determines weights on the edges Eτ (or
branches) of the train track. For example,



Train tracks

When two branches meet, the edge weights corresponding to an
allowable curve satisfy the branching relation

 a + b = c

The weight space of a train track is the vector space of maps that
satisfy the branching conditions:

Wτ = {Eτ → R}/branching cond. = R[Eτ ]dual

The non-negative elements of Wτ can be thought of as virtual
curves.



Compatible Train Tracks and Stable Foliation

Given a pseudo-Anosov map (S , φ) and a compatible train track τ :

For γ any ess. simple closed curve, φm(γ) is carried by τ for
m� 0.

The action of φ on S induces a transition matrix
T : Wτ →Wτ .

“lengths” of virtual curves γ: |φm(γ)| ∼ |Tmvγ | for m� 0.

The transition matrix restricted to Wτ is a Perron Frobenius
map.

Train track + PF eigenvector ⇒ transverse measured singular
foliatation.

λ = PF eigenvalue = lim
m→∞

|Tm(vγ)|
1
m , for vγ any virtual curve

Singularities of F s ⇔ complementary regions of the train
track with k 6= 2 cusps.



Train track compatible with simplest pseudo-Anosov braid



Starting curve γ



Curve γ is not carried by train track



Image of γ after 1st application of map):



After 1st application of map (with train track):



After 1st application of map (with train track):

skip forward



Curve γ after 2nd application of map:



After 2nd application of map (with train track):



After 2nd application of map (with train track):



Train track with edge weights (after 2nd application of
map):

skip forward



Curve γ after 3rd application of map:



After 3rd application of map (with train track):



Train track with edge weights (after 3rd application of
map):

back to start skip forward



Transition matrix

T =

[
1 1
1 2

]
.

[
0
2

]
7→

[
2
4

]
7→

[
6
10

]



Transition matrix

T =

[
1 1
1 2

]
.

Train track τ defines F s .

Transition matrix T is a Perron-Frobenius map, and
determines the transverse measure and dilatation

PF-eigenvalue λ = |x2 − 3x + 1| = 3+
√
5

2 is the dilatation of φ



Number theoretic consequences for dilatations

Take (S , φ) ∈ P

λ(φ) is a Perron unit, degree ≤ 6g − 6 + 2n. (Thurston, Penner)

λ(φ) satisfies a monic integer polynomial
(the characteristic polynomial of the transition matrix)

degree ≤ dimension of the space of allowable weights on a
train track for φ
(related to the space of transverse measured singular
foliatations)

λ(φ) is an algebraic unit
(transition matrix on weight space preserves a symplectic
form)

λ(φ) is a Perron number, i.e., all other algebraic conjugates
have strictly smaller norm
(transition matrices are Perron-Frobenius)
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Minimum dilatation problem I

Let δ(S)
def
= min{λ(φ) : φ ∈ PS}

Property: δ(S) > 1.

Minimum Dilatation Problem

Find δ(S).

Describe element (or elements) of PS that realizes it.

Study number theoretic properties of dilatations (“shape” of
polynomials)



Small Euler characteristic examples

Applications of train track automata: (Ham, Ko, Los, Song)

Smallest n-strand braid monodromy,:

n = 3: (simplest pseudo-Anosov braid) δ = |x2 − 3x + 1| = 3+
√
5

2 .

n = 4: (Ko-Los-Song ’02) δ = |x4 − 2x3 − 2x + 1| ≈ 2.29663.

n = 5: (Ham-Song ’05) δ = |x4 − x3 − x2 − x + 1| ≈ 1.72208.

Smallest genus:
g = 1, n = 1: double branched cover (n = 3) δ = |x2 − 3x + 1|.

g = 2, n = 0: (Cho-Ham ’08) double branched covering (n = 5);
δ = |x4 − x3 − x2 − x + 1|



Minimum dilatation problem II

A subcollection P0 ⊂ P has asymptotically small dilatation if there
is a constant C so that for all (S , φ) ∈ P0, the normalized
dilatation satisfies

L(S , φ)
def
= λ(φ)|χ(S)| ≤ C .

This implies

log(λ(φ)) � 1

|χ(S)|
.

Problem: How does the normalized dilatation behave for large g
and n?



Asymptotic behavior in (g , n)-plane

(Penner ’91)

log δ(Sg ,n) ≥ log(2)

12g − 12 + 4n
, log δ(Sg ) � 1

g
.

(H-Kin ’06, Tsai ’08, Valdivia ’11)

log δ(Sg ,n) � 1

|χ(Sg ,n)|

for fixed g = 0, 1 and for (g , n) on positive rays through the
origin with rational slope.

(Tsai ’08) For fixed g ≥ 2,

log δ(Sg ,n) � log(n)

n
.



Asymptotic behavior in (g , n)-plane

log(δ(Sg ,n)| � 1

|χ(Sg ,n)|
(blue/green) vs.

log(|χ(Sg ,n)|)
|χ(Sg ,n)|

(red).



Minimum dilatation problem III

Problem: Which naturally occurring subsets of P have
asymptotically small dilatation?

Negative examples:

Algebraic constraints, e.g., Torelli group
(Farb-Leininger-Margalit ’08)

Geometric constraints e.g., on flat structure (Bossy, Lanneau
’10)

Positive examples: Hyperelliptic mapping classes, orientable
mapping classes (H-Kin ’06, H ’10)

...More special families in next two lectures...
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