Fibered Faces and Dynamics of Mapping Classes Branched Coverings, Degenerations, and Related Topics 2012 Hiroshima University

Eriko Hironaka Florida State University/Tokyo Institute of Technology

March 5-7, 2012

I. Pseudo-Anosov mapping classes

- 1. Introduction
- 2. Visualizing pseudo-Anosov mapping classes
- 3. Train tracks
- 4. Minimum dilatation problem

II. Fibered Faces and Applications

- 1. Introduction
- 2. Fibered face theory
- 3. Alexander and Teichmüller polynomials
- 4. First application: Orientable mapping classes

III. Families of mapping classes with small dilatations

- 1. Introduction
- 2. Deformations of mapping classes on fibered faces
- 3. Penner sequences and applications
- 4. Quasiperiodic mapping classes

I. Pseudo-Anosov mapping classes

- 1. Introduction
- 2. Visualizing pseudo-Anosov mapping classes
- 3. Train tracks
- 4. Minimum dilatation problem

II. Fibered Faces and Applications

- 1. Introduction
- 2. Fibered face theory
- 3. Alexander and Teichmüller polynomials
- 4. First application: Orientable mapping classes

III. Families of mapping classes with small dilatations

- 1. Introduction
- 2. Deformations of mapping classes on fibered faces
- 3. Penner sequences and applications
- 4. Quasiperiodic mapping classes

Introduction: Overview of Lectures

Problem: Describe the small dilatation pseudo-Anosov elements $\mathcal{P}_S \subset Mod(S)$ (e.g., invariants, constructions, families) **Method:** Use *theory of Fibered Faces* (Thurston)

$$\mathcal{P} = \bigcup_{S} \mathcal{P}_{S} \hookrightarrow \bigcup_{\alpha} F_{\alpha}$$

where F_{α} are Euclidean convex polyhedra (fibered faces) and the image of \mathcal{P} is the union of the interior rational points of F_{α} . Focus of this lecture: The minimum dilatation problem for pseudo-Anosov mapping classes.

Preliminaries

Objects: $S = S_{g,n}$ compact oriented surface, $\chi(S) < 0$ Mod(S) mapping class group of S: Mod(S) $\stackrel{def}{=} \{\phi : S \xrightarrow{\text{homeo}^+} S\}/\text{isotopy}$ (alternately, isotopy rel ∂S)

Nielsen-Thurston Classification: Let $\phi \in Mod(S)$. Then ϕ is either *periodic, reducible or pseudo-Anosov.*

- *periodic*: $\exists k \geq 1$ such that $\phi^k \sim id$
- reducible: $\exists k \ge 1$ and $\exists \gamma \subset S$ an essential simple closed curve such that $\phi^k(\gamma) \sim \gamma$
- pseudo-Anosov: \exists stable and unstable foliations of ϕ : $(\mathcal{F}^{s}, \nu^{s})$, $(\mathcal{F}^{u}, \nu^{u})$, and \exists dilatation of ϕ : $\lambda > 1$ where
 - \mathcal{F}^s and \mathcal{F}^u are singular ϕ -invariant foliations on S,
 - $\nu^{\rm s}$ and $\nu^{\rm u}$ are transverse measures, and

•
$$\phi_*\nu^s = \frac{1}{\lambda}\nu^s$$
 and $\phi_*\nu^u = \lambda\nu^u$.

Local Flat Structure:

Let $\mathcal{P} = \bigcup \mathcal{P}_S$ be the set of pseudo-Anosov mapping classes, $(S, \phi) \in \mathcal{P}$.

Away from singularities $(\mathcal{F}^{u}, \nu^{u})$ and $(\mathcal{F}^{s}, \nu^{s})$ locally define a Euclidean structure on S.

Near singularities and boundary components

These are called 4-pronged or degree 2.

Action of ϕ on local flat structure

An $r \times r$ square gets sent to a rectangle with sides $\lambda r \times \frac{1}{\lambda}r$.

Singularities (resp. boundary components) are permuted.

 \Rightarrow If boundary component is not 1-pronged, then fllling in its orbit doesn't change dilatation.

Relation to closed Teichmüller geodesics on moduli space

- Teichmüller space: $\mathcal{T}(S) = \text{marked Riemann surfaces}$ (marking is a homeomorphism $f : S \to X$).
- Mod(S) acts on $\mathcal{T}(S)$ by pre-composition.
- *Moduli space:* $\mathcal{M}(S) =$ Riemann surfaces X homeomorphic to S.

$$\mathcal{M}(S) = \mathcal{T}(S) / Mod(S)$$

- Pseudo-Anosov elements correspond to closed geodesics on *M*(*S*) (local flat structure determines points on the geodesic)
- Length Spectrum

 $\stackrel{\text{def}}{=} \text{Teichmüller lengths of closed geodesic curves on } \mathcal{M}(S)$ $= \{\log(\lambda(\phi)) : \phi \in \mathcal{P}_S\}$ (i.e., study of dilatations has ties with study of geometry of $\mathcal{M}(S)$)

I. Pseudo-Anosov mapping classes

1. Introduction

2. Visualizing pseudo-Anosov mapping classes

- 3. Train tracks
- 4. Minimum dilatation problem

II. Fibered Faces and Applications

- 1. Introduction
- 2. Fibered face theory
- 3. Alexander and Teichmüller polynomials
- 4. First application: Orientable mapping classes

III. Families of mapping classes with small dilatations

- 1. Introduction
- 2. Deformations of mapping classes on fibered faces
- 3. Penner sequences and applications
- 4. Quasiperiodic mapping classes

Visualizing pseudo-Anosov mapping classes

Look at actions on essential simple closed curves.

- Take any essential simple closed curve γ on S.
- If ϕ is not periodic or reducible,

$$\phi^m(\gamma) \rightsquigarrow (\mathcal{F}^s, \nu^s), \qquad \text{as } m \to \infty$$

where ν^{s} is a transverse measure (defined up to positive scalar multiple). (\mathcal{F}^{s}, ν^{s}) is called the *stable foliation* for ϕ .

- ϕ stretches along \mathcal{F}^s and contracts ν^s by $\frac{1}{\lambda}$, where $0 < \frac{1}{\lambda} < 1$. This λ is the *dilatation* of ϕ .
- Similarly, the *unstable foliation* is determined by:

$$\phi^{-m}(\gamma) \rightsquigarrow (\mathcal{F}^u, \nu^u), \quad \text{as } m \to \infty$$

• $(\mathcal{F}^{s}, \nu^{s})$, $(\mathcal{F}^{u}, \nu^{u})$ and λ are independent of the choice of γ .

Action on essential simple closed curves

Example 1: a periodic map on the $S_{0,4}$, the sphere with 4 boundary components.

Action of periodic map on a simple closed curve (periodic map):

Action on a simple closed curve (one application):

Action on a simple closed curve (2nd application):

Action on a simple closed curve (3rd application):

Action on essential simple closed curves

Example 2: simplest pseudo-Anosov braid monodromy

Action on a simple closed curve (simplest pA braid monodromy):

Action on a simple closed curve (one application of map):

Action on a simple closed curve (2 applications of map):

Action on a simple closed curve (3 applications of map):

I. Pseudo-Anosov mapping classes

- 1. Introduction
- 2. Visualizing pseudo-Anosov mapping classes
- 3. Train tracks
- 4. Minimum dilatation problem

II. Fibered Faces and Applications

- 1. Introduction
- 2. Fibered face theory
- 3. Alexander and Teichmüller polynomials
- 4. First application: Orientable mapping classes

III. Families of mapping classes with small dilatations

- 1. Introduction
- 2. Deformations of mapping classes on fibered faces
- 3. Penner sequences and applications
- 4. Quasiperiodic mapping classes

Train tracks are useful for capturing the dynamics of a mapping class.

A *train track* is an embedded graph on S with "smoothings" at the vertices.

A curve is *carried* by the train track (or is an *allowable curve*) if it can be isotoped to the train track in a smooth way.

An allowable curve determines weights on the edges \mathcal{E}_{τ} (or *branches*) of the train track. For example,

When two branches meet, the edge weights corresponding to an allowable curve satisfy the *branching relation*

The *weight space* of a train track is the vector space of maps that satisfy the branching conditions:

$$W_{\tau} = \{\mathcal{E}_{\tau} \to \mathbb{R}\}/\text{branching cond.} = \mathbb{R}[\mathcal{E}_{\tau}]^{\mathsf{dual}}$$

The non-negative elements of W_{τ} can be thought of as *virtual curves*.

Compatible Train Tracks and Stable Foliation

Given a pseudo-Anosov map (S, ϕ) and a compatible train track τ :

- For γ any ess. simple closed curve, φ^m(γ) is carried by τ for m ≫ 0.
- The action of ϕ on S induces a transition matrix $T: W_{\tau} \to W_{\tau}$.
- "lengths" of virtual curves γ : $|\phi^m(\gamma)| \sim |T^m v_{\gamma}|$ for $m \gg 0$.
- The transition matrix restricted to W_{τ} is a Perron Frobenius map.
- Train track + PF eigenvector \Rightarrow transverse measured singular foliatation.
- $\lambda = \mathsf{PF}$ eigenvalue $= \lim_{m o \infty} |\mathcal{T}^m(v_\gamma)|^{rac{1}{m}}$, for v_γ any virtual curve
- Singularities of *F^s* ⇔ complementary regions of the train track with *k* ≠ 2 cusps.

Train track compatible with simplest pseudo-Anosov braid

Starting curve γ

Curve γ is not carried by train track

Image of γ after 1st application of map):

After 1st application of map (with train track):

After 1st application of map (with train track):

Curve γ after 2nd application of map:

After 2nd application of map (with train track):

After 2nd application of map (with train track):

Train track with edge weights (after 2nd application of map):

Curve γ after 3rd application of map:

After 3rd application of map (with train track):

Train track with edge weights (after 3rd application of map):

Transition matrix

$$T = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}.$$
$$\begin{bmatrix} 0 \\ 2 \end{bmatrix} \mapsto \begin{bmatrix} 2 \\ 4 \end{bmatrix} \mapsto \begin{bmatrix} 6 \\ 10 \end{bmatrix}$$

Transition matrix

$$T = \left[\begin{array}{rr} 1 & 1 \\ 1 & 2 \end{array} \right].$$

- Train track τ defines \mathcal{F}^s .
- Transition matrix T is a Perron-Frobenius map, and determines the transverse measure and dilatation

• PF-eigenvalue
$$\lambda = |x^2 - 3x + 1| = rac{3+\sqrt{5}}{2}$$
 is the dilatation of ϕ

Number theoretic consequences for dilatations

Take $(S, \phi) \in \mathcal{P}$

 $\lambda(\phi)$ is a *Perron unit*, degree $\leq 6g - 6 + 2n$. (Thurston, Penner)

- λ(φ) satisfies a monic integer polynomial (the characteristic polynomial of the transition matrix)
- degree \leq dimension of the space of allowable weights on a train track for ϕ (related to the space of transverse measured singular

foliatations)

- $\lambda(\phi)$ is an algebraic unit (transition matrix on weight space preserves a symplectic form)
- λ(φ) is a Perron number, i.e., all other algebraic conjugates have strictly smaller norm (transition matrices are Perron-Frobenius)

I. Pseudo-Anosov mapping classes

- 1. Introduction
- 2. Visualizing pseudo-Anosov mapping classes
- 3. Train tracks
- 4. Minimum dilatation problem

II. Fibered Faces and Applications

- 1. Introduction
- 2. Fibered face theory
- 3. Alexander and Teichmüller polynomials
- 4. First application: Orientable mapping classes

III. Families of mapping classes with small dilatations

- 1. Introduction
- 2. Deformations of mapping classes on fibered faces
- 3. Penner sequences and applications
- 4. Quasiperiodic mapping classes

Minimum dilatation problem I

Let
$$\delta(S) \stackrel{\mathsf{def}}{=} \min\{\lambda(\phi) : \phi \in \mathcal{P}_S\}$$

Property: $\delta(S) > 1$.

Minimum Dilatation Problem

- Find $\delta(S)$.
- \bullet Describe element (or elements) of $\mathcal{P}_{\mathcal{S}}$ that realizes it.
- Study number theoretic properties of dilatations ("shape" of polynomials)

Small Euler characteristic examples

Applications of train track automata: (Ham, Ko, Los, Song) Smallest *n*-strand braid monodromy,:

n = 3: (simplest pseudo-Anosov braid) $\delta = |x^2 - 3x + 1| = \frac{3+\sqrt{5}}{2}$. *n* = 4: (Ko-Los-Song '02) $\delta = |x^4 - 2x^3 - 2x + 1| \approx 2.29663$. *n* = 5: (Ham-Song '05) $\delta = |x^4 - x^3 - x^2 - x + 1| \approx 1.72208$.

Smallest genus:

g = 1, n = 1: double branched cover (n = 3) $\delta = |x^2 - 3x + 1|$. g = 2, n = 0: (Cho-Ham '08) double branched covering (n = 5); $\delta = |x^4 - x^3 - x^2 - x + 1|$

Minimum dilatation problem II

A subcollection $\mathcal{P}_0 \subset \mathcal{P}$ has asymptotically small dilatation if there is a constant C so that for all $(S, \phi) \in \mathcal{P}_0$, the normalized dilatation satisfies

$$L(S,\phi) \stackrel{\mathsf{def}}{=} \lambda(\phi)^{|\chi(S)|} \leq C.$$

This implies

$$\mathsf{log}(\lambda(\phi)) symp rac{1}{|\chi(\mathcal{S})|}.$$

Problem: How does the normalized dilatation behave for large g and n?

Asymptotic behavior in (g, n)-plane

• (Penner '91)

$$\log \delta(S_{g,n}) \geq rac{\log(2)}{12g - 12 + 4n}, \qquad \log \delta(S_g) \asymp rac{1}{g}.$$

• (H-Kin '06, Tsai '08, Valdivia '11)

$$\log \delta(S_{g,n}) \asymp \frac{1}{|\chi(S_{g,n})|}$$

for fixed g = 0, 1 and for (g, n) on positive rays through the origin with rational slope.

• (Tsai '08) For fixed $g \ge 2$,

$$\log \delta(S_{g,n}) \asymp \frac{\log(n)}{n}.$$

Asymptotic behavior in (g, n)-plane

$$\log(\delta(\mathcal{S}_{g,n})| \asymp \frac{1}{|\chi(\mathcal{S}_{g,n})|} (\mathsf{blue}/\mathsf{green}) \quad \mathsf{vs.} \quad \frac{\log(|\chi(\mathcal{S}_{g,n})|)}{|\chi(\mathcal{S}_{g,n})|} (\mathsf{red}).$$

Minimum dilatation problem III

Problem: Which naturally occurring subsets of \mathcal{P} have asymptotically small dilatation?

Negative examples:

- Algebraic constraints, e.g., Torelli group (Farb-Leininger-Margalit '08)
- Geometric constraints e.g., on flat structure (Bossy, Lanneau '10)

Positive examples: Hyperelliptic mapping classes, orientable mapping classes (H-Kin '06, H '10)

... More special families in next two lectures...