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Introduction: Overview of Lectures

Problem: Describe the small dilatation pseudo-Anosov elements
Ps C Mod(S) (e.g., invariants, constructions, families)

Method: Use theory of Fibered Faces (Thurston)
P=JPs—|JF
S «

where F, are Euclidean convex polyhedra (fibered faces) and the
image of P is the union of the interior rational points of F,.

Focus of this lecture: The minimum dilatation problem for
pseudo-Anosov mapping classes.



Preliminaries

Objects: S = S, , compact oriented surface, x(S) < 0
Mod(S) mapping class group of S:

+
Mod(S) *f {$:S homo S}/isotopy

(alternately, isotopy rel 9S)

Nielsen-Thurston Classification: Let ¢ € Mod(S). Then ¢ is
either periodic, reducible or pseudo-Anosov.

o periodic: 3k > 1 such that ¢* ~ id

@ reducible: 3k > 1 and 3y C S an essential simple closed curve
such that ¢k(y) ~ v

@ pseudo-Anosov:
3 stable and unstable foliations of ¢: (F*,v*®), (F“,v"), and
3 dilatation of ¢: A > 1 where

e F* and FY are singular ¢-invariant foliations on S,
e v° and VY are transverse measures, and

1
o ¢.v° = sv° and ¢.v" = A



Local Flat Structure:

Let P = |JPs be the set of pseudo-Anosov mapping classes,
(S,9) € P.

Away from singularities (F*, ") and (F*,v®°) locally define a
Euclidean structure on S.




Near singularities and boundary components

Near a singularity: Near a boundary component:

These are called 4-pronged or degree 2.



Action of ¢ on local flat structure

An r X r square gets sent to a rectangle with sides Ar x %r.

Singularities (resp. boundary components) are permuted.

= If boundary component is not 1-pronged, then fllling in its orbit
doesn’t change dilatation.



Relation to closed Teichmiiller geodesics on moduli space

e Teichmiiller space: T(S) = marked Riemann surfaces
(marking is a homeomorphism f : S — X).

@ Mod(S) acts on T(S) by pre-composition.

e Moduli space: M(S) = Riemann surfaces X homeomorphic
to S.
M(S) =T(S)/Mod(S)
@ Pseudo-Anosov elements correspond to closed geodesics on
M(S)
(local flat structure determines points on the geodesic)
e Length Spectrum
% Teichmiiller lengths of closed geodesic curves on M(S)
= {log(A\(¢)) : ¢ € Ps}
(i.e., study of dilatations has ties with study of geometry of
M(S))
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Visualizing pseudo-Anosov mapping classes

Look at actions on essential simple closed curves.

@ Take any essential simple closed curve v on S.
@ If ¢ is not periodic or reducible,
O () ~ (F2,v°), as m — oo
where v° is a transverse measure (defined up to positive scalar
multiple). (F°,v°) is called the stable foliation for ¢.

@ ¢ stretches along F*° and contracts v° by % where 0 < % <1
This X is the dilatation of ¢.

@ Similarly, the unstable foliation is determined by:
¢~ (y) ~ (FY, ), as m — oo
o (F°,v°), (F“,v") and A are independent of the choice of ~.



Action on essential simple closed curves

Example 1: a periodic map on the Sg 4, the sphere with 4
boundary components.



Action of periodic map on a simple closed curve (periodic
map):



Action on a simple closed curve (one application):



Action on a simple closed curve (2nd application):

:



Action on a simple closed curve (3rd application):

» back to start



Action on essential simple closed curves

Example 2: simplest pseudo-Anosov braid monodromy



Action on a simple closed curve (simplest pA braid
monodromy):



Action on a simple closed curve (one application of map):



Action on a simple closed curve (2 applications of map):



Action on a simple closed curve (3 applications of map):

» back to start
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Train tracks

Train tracks are useful for capturing the dynamics of a mapping
class.

A train track is an embedded graph on S with “smoothings” at the
vertices.



Train tracks

A curve is carried by the train track (or is an allowable curve) if it
can be isotoped to the train track in a smooth way.

(9]¢
not QK



Train tracks

An allowable curve determines weights on the edges & (or
branches) of the train track. For example,




Train tracks

When two branches meet, the edge weights corresponding to an
allowable curve satisfy the branching relation

a

~ atb=c

The weight space of a train track is the vector space of maps that
satisfy the branching conditions:

W, = {€; — R} /branching cond. = R[é}]dual

The non-negative elements of W, can be thought of as virtual
curves.



Compatible Train Tracks and Stable Foliation

Given a pseudo-Anosov map (S, ¢) and a compatible train track 7:

@ For v any ess. simple closed curve, ¢ () is carried by 7 for
m > 0.

@ The action of ¢ on S induces a transition matrix
T: W, — W,

@ “lengths” of virtual curves v: |¢"(v)| ~ | T™v,| for m > 0.

@ The transition matrix restricted to W, is a Perron Frobenius
map.

o Train track 4+ PF eigenvector = transverse measured singular
foliatation.

: . 1 .
e \ = PF eigenvalue = mll;n | T™(vy)|m, for v, any virtual curve
o0

@ Singularities of 7° < complementary regions of the train

track with k # 2 cusps.



Train track compatible with simplest pseudo-Anosov braid

V€ Y



Starting curve v



Curve 7 is not carried by train track




Image of ~ after 1st application of map):



After 1st application of map (with train track):



After 1st application of map (with train track):

<3
<o)
<o)

skip forward



Curve v after 2nd application of map:



After 2nd application of map (with train track):




After 2nd application of map (with train track):




Train track with edge weights (after 2nd application of
map):

skip forward



Curve v after 3rd application of map:



After 3rd application of map (with train track):




Train track with edge weights (after 3rd application of
map):







Transition matrix

@ Train track 7 defines F°.

@ Transition matrix T is a Perron-Frobenius map, and
determines the transverse measure and dilatation

o PF-eigenvalue A = [x? —3x + 1| = 3‘*'2—‘/5 is the dilatation of ¢



Number theoretic consequences for dilatations

Take (S,¢) € P

(@) is a Perron unit, degree < 6g — 6 + 2n. (Thurston, Penner)

@ \(¢) satisfies a monic integer polynomial
(the characteristic polynomial of the transition matrix)

o degree < dimension of the space of allowable weights on a
train track for ¢
(related to the space of transverse measured singular
foliatations)

@ A(¢) is an algebraic unit
(transition matrix on weight space preserves a symplectic
form)

@ A(¢) is a Perron number, i.e., all other algebraic conjugates

have strictly smaller norm
(transition matrices are Perron-Frobenius)
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Minimum dilatation problem |
Let 5(S) %" min{A(®) : ¢ € Ps)
Property: §(S) > 1.

Minimum Dilatation Problem
o Find §(S).
@ Describe element (or elements) of Ps that realizes it.

@ Study number theoretic properties of dilatations (“shape” of
polynomials)



Small Euler characteristic examples

Applications of train track automata: (Ham, Ko, Los, Song)
Smallest n-strand braid monodromy,:

n = 3: (simplest pseudo-Anosov braid) § = [x? — 3x + 1| = 3%
n = 4: (Ko-Los-Song '02) § = |x* — 2x3 — 2x + 1| ~ 2.29663.

n=5: (Ham-Song '05) 0 = |x* — x® — x% — x + 1| ~ 1.72208.

&

Smallest genus:
g = 1,n = 1: double branched cover (n=3) § = [x? — 3x + 1|,

g =2,n=0: (Cho-Ham '08) double branched covering (n = 5);
§=|x*—x3—x2—x+1]



Minimum dilatation problem I

A subcollection Py C P has asymptotically small dilatation if there
is a constant C so that for all (S, ¢) € Py, the normalized
dilatation satisfies

L(S,6) €A@@ < c.

This implies
log(A(¢)) = —=y7-

Problem: How does the normalized dilatation behave for large g
and n?



Asymptotic behavior in (g, n)-plane
o (Penner '91)

log(2) 1
| ) > e = -
0B0(Sen) = iy logd(S) =

o (H-Kin '06, Tsai '08, Valdivia '11)
v
Ix(Sg,n)l

for fixed g = 0,1 and for (g, n) on positive rays through the
origin with rational slope.

o (Tsai '08) For fixed g > 2,

log 6(Sg,n) <

Iog(n)‘

log 6(Sg,n) <



Asymptotic behavior in (g, n)-plane

Penner ('91) Valdivia ('12)

[s]

} Tsai (*08)

f ~ Hin (06)

(blue/green) vs. M(red).

log(0(Sg,n) IX(Sg.n)|

= 1
Ix(Sg,n)l



Minimum dilatation problem Il

Problem: Which naturally occurring subsets of P have
asymptotically small dilatation?

Negative examples:

@ Algebraic constraints, e.g., Torelli group
(Farb-Leininger-Margalit '08)

e Geometric constraints e.g., on flat structure (Bossy, Lanneau
'10)

Positive examples: Hyperelliptic mapping classes, orientable
mapping classes (H-Kin '06, H '10)

...More special families in next two lectures...
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