Fibered Faces and Dynamics of Mapping Classes III

Branched Coverings, Degenerations, and Related Topics 2012 Hiroshima University

Eriko Hironaka Florida State University/Tokyo Institute of Technology

March 5-7, 2012

- 1. Introduction
- 2. Visualizing pseudo-Anosov mapping classes
- 3. Train tracks
- 4. Minimum dilatation problem

II. Fibered Faces and Applications

- 1. Introduction
- 2. Fibered face theory
- 3. Alexander and Teichmüller polynomials
- 4. First application: Orientable mapping classes

III. Families of mapping classes with small dilatations

- 1. Introduction
- 2. Deformations of mapping classes on fibered faces
- 3. Second Application: Penner sequences
- 4. Quasiperiodic mapping classes

- 1. Introduction
- 2. Visualizing pseudo-Anosov mapping classes
- 3. Train tracks
- 4. Minimum dilatation problem

II. Fibered Faces and Applications

- 1. Introduction
- 2. Fibered face theory
- 3. Alexander and Teichmüller polynomials
- 4. First application: Orientable mapping classes

III. Families of mapping classes with small dilatations

- 1. Introduction
- 2. Deformations of mapping classes on fibered faces
- 3. Second Application: Penner sequences
- 4. Quasiperiodic mapping classes

- 1. Introduction
- 2. Visualizing pseudo-Anosov mapping classes
- 3. Train tracks
- 4. Minimum dilatation problem

II. Fibered Faces and Applications

- 1. Introduction
- 2. Fibered face theory
- 3. Alexander and Teichmüller polynomials
- 4. First application: Orientable mapping classes

III. Families of mapping classes with small dilatations

1. Introduction

- 2. Deformations of mapping classes on fibered faces
- 3. Second Application: Penner sequences
- 4. Quasiperiodic mapping classes

Functions on ${\mathcal P}$

Let $F \subset \operatorname{int}(\overline{\mathcal{P}})$, $G_F = H_1(M; \mathbb{Z})/\operatorname{Torsion}$

Alexander polynomial $\exists \Delta_F \in \mathbb{Z}[G_F]$ such that for $\phi \in F$, $\lambda_{\text{hom}}(\phi) = |\Delta_F^{\psi}|$.

Teichmüller polynomial (C. McMullen '00) $\exists \Theta_F \in \mathbb{Z}[G_F]$ such that for $\phi \in F$, $\lambda(\phi) = |\Theta^{\psi}|$.

Normalized dilatation (D. Fried '82, C. McMullen '00) $\exists L : int(\overline{\mathcal{P}}) \to \mathbb{R}$ continuous, convex function such that for $(S, \phi) \in \mathcal{P}, L(S, \phi) = \lambda(\phi)^{|\chi(S)|}.$

Goals in this lecture

- Understand these functions in terms of train tracks and coverings.
- Give examples of deformations of pseudo-Anosov mapping classes.

- 1. Introduction
- 2. Visualizing pseudo-Anosov mapping classes
- 3. Train tracks
- 4. Minimum dilatation problem

II. Fibered Faces and Applications

- 1. Introduction
- 2. Fibered face theory
- 3. Alexander and Teichmüller polynomials
- 4. First application: Orientable mapping classes

III. Families of mapping classes with small dilatations

- 1. Introduction
- 2. Deformations of mapping classes on fibered faces
- 3. Second Application: Penner sequences
- 4. Quasiperiodic mapping classes

Fix M a hyperbolic 3-manifold, F a fibered face (i.e., a connected component of $int(\overline{P})$).

The rational points in the interior of F correspond to the following equivalent objects:

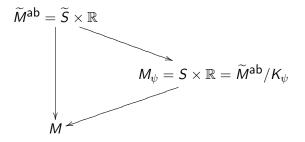
- fibration $\psi: M \to S^1$;
- epimomorphism $\psi_*: H_1(M; \mathbb{Z}) \to \mathbb{Z};$
- monodromy $\phi: S \to S$ (or (S, ϕ));
- an infinite cyclic covering $M_{\psi} \to M$, where $M_{\psi} = S \times \mathbb{R}$.

Maximal abelian covering

Let $\widetilde{\rho}: \widetilde{M}^{ab} \to M$ be the maximal abelian covering.

This is determined by the Hurewicz map, $\pi_1(M) \to H_1(M; \mathbb{Z})/\text{Torsion} \quad (= G_F).$

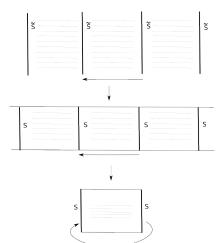
For all $\psi \in F$, we have a commutative diagram.



where G_F acts as covering automorphisms of \widetilde{M}^{ab} over M, and $K_{\psi} = \text{Ker}(\psi_*) \subset G_F$.

Tower of abelian coverings

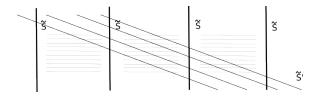
Picture:



 $\widetilde{M}^{ab} \simeq \widetilde{S} imes \mathbb{R}$ \downarrow $M_{\psi} \simeq S imes \mathbb{R}$ \downarrow M

Suspension of flat structure on S lifts to M_ψ and $\widetilde{M}^{\rm ab}$.

Deformation of \widetilde{S} in \widetilde{M}^{ab}



Let $(S', \phi') \in F$ be a deformation of (S, ϕ) . The lift $\widetilde{S}' \subset \widetilde{M}^{ab}$ has the property that it is preserved by the action of $K_{\psi'} = \text{Ker}(\psi'_*)$.

Properties

Advantages of the picture:

- The homeomorphism type of the surface \tilde{S} does not depend on the choice of $(S, \phi) \in F$. Thus we can think of our deformations as happening on a single surface.
- The stable and unstable foliations and dilatation lift to \widetilde{S} .
- The local flat structure on S defined by ϕ lifts to \tilde{S} , and the suspension defines a foliation on \tilde{M}^{ab} .
- Given any fixed (S, φ) ∈ F, and (S_a, φ_a) ∈ F, the local flat structure on the preimage S̃_a of S_a is the restriction of the suspension of (S̃, φ̃) in M̃^{ab}.
- The action of G_F = H₁(M; ℤ)/Torsion on M̃^{ab} acts as isometry.

Properties

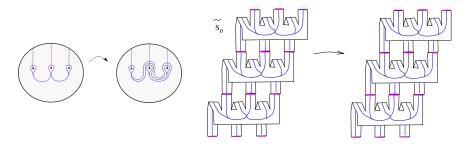
Caution:

- The surface \tilde{S} is of infinite type (Moduli space theory for infinite surfaces?)
- The way \widetilde{S} is embedded in M^{ab} changes, and hence so does its intersection with the suspended foliation on \widetilde{M}^{ab} .

Difficulty: Describe the changing structure on \widetilde{S} as you vary $\psi \in F$.

We can do this for special cases.

Application 1: Simplest pseudo-Anosov braid



Teichmüller polynomial $\begin{bmatrix} t & t \end{bmatrix}$

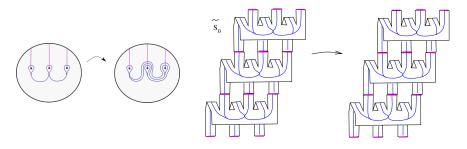
 $\left[\begin{array}{cc} 1 & 1+t^{-1} \end{array}\right] \quad \Rightarrow \quad$

$$\Theta(t, u) = u^2 - (t + 1 + t^{-1})u + 1$$

Alexander polynomial

$$\begin{bmatrix} -t & t \\ 1 & 1-t^{-1} \end{bmatrix} \Rightarrow \Delta(t,u) = u^2 - (-t+1-t^{-1})u + 1$$

Application 1: Simplest pseudo-Anosov braid



Teichmüller polynomial $\begin{bmatrix} t & t \\ 1 & 1 + t^{-1} \end{bmatrix} \Rightarrow$

$$\Theta(t, u) = u^2 - (t + 1 + t^{-1})u + 1$$

Alexander polynomial

$$\begin{bmatrix} -t & t \\ 1 & 1-t^{-1} \end{bmatrix} \Rightarrow \Delta(t,u) = u^2 - (-t+1-t^{-1})u + 1$$

- 1. Introduction
- 2. Visualizing pseudo-Anosov mapping classes
- 3. Train tracks
- 4. Minimum dilatation problem

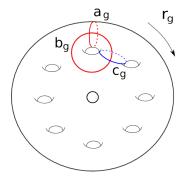
II. Fibered Faces and Applications

- 1. Introduction
- 2. Fibered face theory
- 3. Alexander and Teichmüller polynomials
- 4. First application: Orientable mapping classes

III. Families of mapping classes with small dilatations

- 1. Introduction
- 2. Deformations of mapping classes on fibered faces
- 3. Second Application: Penner sequences
- 4. Quasiperiodic mapping classes

Penner's sequence of mapping classes



The mapping classes

$$\phi_{\rm g} = r_{\rm g} \delta_{\rm c_g} \delta_{\rm b_g}^{-1} \delta_{\rm a_g}$$

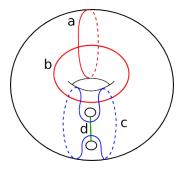
are pseudo-Anosov, and

 $\lambda(\phi_g)^g \leq 11.$

Original proof:

- Penner's semi-group criterion;
- Train track transition matrix has bounded column sums.

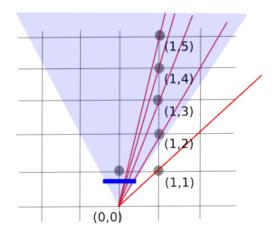
Alternate proof using fibered faces



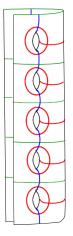
- Let $S = S_{1,2}$ and $\phi = \delta_c \delta_b^{-1} \delta_a$. This is pseudo-Anosov by semi-group criterion.
- The path *d* determines a ϕ -invariant element of $H^1(S; \mathbb{Z})$, and hence an element $\xi \in H^1(M; \mathbb{Z})$.

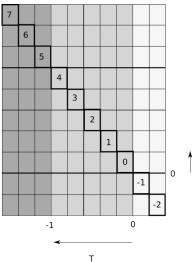
Deformation

Penner's sequence (S_g, ϕ_g) corresponds to the elements $\psi_n = \xi + n\psi = (1, n)$ in the fibered cone over F_{ψ} , for n large enough.



Deformation of \widetilde{S}

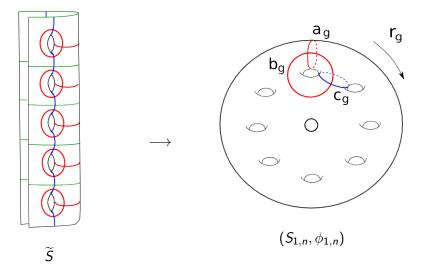




ĩ

↑ z

Deformations corresponding to the sequence $\psi_{\rm g}$



Invariants

The Teichmüller polynomial for F_{ϕ} is given by

$$\Theta(u,t) = u^2 - u(5 + t + t^{-1}) + 1,$$

where u is dual to ψ and t is dual to ξ .

• (McMullen) $\Rightarrow \lambda(\phi_g) = |x^{2g} - x^{g+1} - 5x^g - x^{g-1} + 1|.$

• (Fried, McMullen)
$$\Rightarrow L(S_g, \phi_g) o \left(rac{7+3\sqrt{5}}{2}
ight)^2$$
.

or, equivalently,

$$\lim_{g\to\infty}\lambda(\phi_g)^g=\frac{7+3\sqrt{5}}{2}\approx 6.8541<11.$$

Invariants

The Teichmüller polynomial for F_{ϕ} is given by

$$\Theta(u,t) = u^2 - u(5 + t + t^{-1}) + 1,$$

where u is dual to ψ and t is dual to ξ .

• (McMullen)
$$\Rightarrow \lambda(\phi_g) = |x^{2g} - x^{g+1} - 5x^g - x^{g-1} + 1|.$$

• (Fried, McMullen)
$$\Rightarrow L(S_g,\phi_g) o \left(rac{7+3\sqrt{5}}{2}
ight)^2$$
 .

or, equivalently,

$$\lim_{g\to\infty}\lambda(\phi_g)^g = \frac{7+3\sqrt{5}}{2} \approx 6.8541 < 11.$$

Invariants

The Teichmüller polynomial for F_{ϕ} is given by

$$\Theta(u,t) = u^2 - u(5 + t + t^{-1}) + 1,$$

where u is dual to ψ and t is dual to ξ .

• (McMullen)
$$\Rightarrow \lambda(\phi_g) = |x^{2g} - x^{g+1} - 5x^g - x^{g-1} + 1|.$$

• (Fried, McMullen)
$$\Rightarrow L(S_g, \phi_g) \rightarrow \left(\frac{7+3\sqrt{5}}{2}\right)^2$$
.

or, equivalently,

$$\lim_{g\to\infty}\lambda(\phi_g)^g=\frac{7+3\sqrt{5}}{2}\approx 6.8541<11.$$

Generalized Penner Sequences: Set up.

Let a, b be essential multi-curves on S, c a simple closed curve on S.

Let *d* be either a simple closed curve on *S*, or a relatively simple closed curve in $(S, \partial S)$.

Assume also:

- a, b and c meet pairwise minimally;
- *a* and *c* are disjoint;
- $a \cup b$ and d are disjoint;

•
$$i_{alg}(c, d) = 0.$$

Let $\phi = \delta_c \delta_b^{-1} \delta_a$.

(Penner's semi-group criterion) \Rightarrow If $a \cup b \cup c$ fill S, then (S, ϕ) is pseudo-Anosov.

Generalized Penner Sequences

Take *m* large.

Let $S_m \rightarrow S$ be the *m*-cyclic covering determined by *d* and let r_m be a generator for the group of covering automorphisms.

Let $\Sigma_m \subset S_m$ be a fundamental domain of r_m homeomorphic to $\Sigma = S \setminus d$.

Let $\tilde{a}, \tilde{b}, \tilde{c}$ be lifts of a, b, c so that \tilde{a} and \tilde{b} are contained in Σ_m and

$$\widetilde{c} \subset \Sigma_m \cup r_m \Sigma_m \cup \cdots \cup (r_m)^k \Sigma_m,$$

for some k < m.

Theorem and consequences

Theorem (Valdivia - PhD. Thesis)

The maps (S_m, ϕ_m) are the monodromies of a single 3-manifold M.

(Fundamental groups, Mostow-Prasad rigidity)

Theorem (H_)

The maps (S_m, ϕ_m) are monodromy of the mapping torus M_{ϕ} corresponding to $\psi_n = \xi + n\psi$, where $\xi \in H^1(M; \mathbb{Z})$ is induced by d, and ψ is the fibration of M associated to ϕ .

Corollary:

- $L(S_m, \phi_m) \rightarrow L(S, \phi)$,
- $L(S_m, \phi_m)$ is bounded,
- $\chi(S_m)$ is proportional to m, and
- $\log(\lambda(\phi_m)) \asymp \frac{1}{m}$.

Applications of Penner sequences

Application 2: Handlebody subgroups

Background:

 (S, ϕ) is a handlebody mapping classes if for some identification $S = \partial H$, ϕ extends to a homeomorphism of H.

Let \mathcal{H}_S be the collection of handlebody mapping classes in \mathcal{P}_S , and $\mathcal{H} = \bigcup_S \mathcal{H}_S$.

(H. Masur '86) The limit set of the handlebody subgroup has measure zero in Thurston's sphere of measured foliations

In other words, \mathcal{H} is small.

Application of Penner Sequences: \mathcal{H} supports asymptotically small dilatations.

Application 2: Handlebody subgroups

Background:

 (S, ϕ) is a handlebody mapping classes if for some identification $S = \partial H$, ϕ extends to a homeomorphism of H.

Let \mathcal{H}_S be the collection of handlebody mapping classes in \mathcal{P}_S , and $\mathcal{H} = \bigcup_S \mathcal{H}_S$.

(H. Masur '86) The limit set of the handlebody subgroup has measure zero in Thurston's sphere of measured foliations

In other words, \mathcal{H} is small.

Application of Penner Sequences: $\mathcal H$ supports asymptotically small dilatations.

Application 2: Handlebody subgroups

Background:

 (S, ϕ) is a handlebody mapping classes if for some identification $S = \partial H$, ϕ extends to a homeomorphism of H.

Let \mathcal{H}_S be the collection of handlebody mapping classes in \mathcal{P}_S , and $\mathcal{H} = \bigcup_S \mathcal{H}_S$.

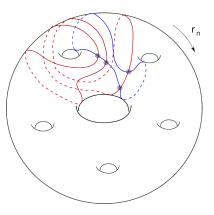
(H. Masur '86) The limit set of the handlebody subgroup has measure zero in Thurston's sphere of measured foliations

In other words, \mathcal{H} is small.

Application of Penner Sequences: $\ensuremath{\mathcal{H}}$ supports asymptotically small dilatations.

Handlebody map deformation





Application 3: Mapping classes with trivial homological dilatation

Background:

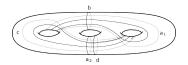
(Farb-Leininger-Margalit '08) The pseudo-Anosov elements in the Torelli groups have dilatation $\lambda(\phi) \ge c_0 > 1$.

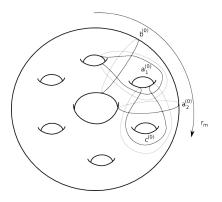
Application of Penner Sequences \Rightarrow Let $\mathcal{F} \subset \mathcal{P}$ be the family of pseudo-Anosov mapping classes with trivial homological dilatation. Then \mathcal{F} supports asymptotically small dilatation.

Lemma

The composition of a Torelli map and a periodic map has trivial homological dilatation.

Torelli map deformation





- 1. Introduction
- 2. Visualizing pseudo-Anosov mapping classes
- 3. Train tracks
- 4. Minimum dilatation problem

II. Fibered Faces and Applications

- 1. Introduction
- 2. Fibered face theory
- 3. Alexander and Teichmüller polynomials
- 4. First application: Orientable mapping classes

III. Families of mapping classes with small dilatations

- 1. Introduction
- 2. Deformations of mapping classes on fibered faces
- 3. Second Application: Penner sequences
- 4. Quasiperiodic mapping classes

Quasiperiodicity Question

Question: (Farb-Leininger-Margalit) Given C > 1, does $L(S, \phi) < C$ imply that $(S, \phi) = (S_m, \phi_m)$ for some Penner sequence (S_m, ϕ_m) where the support Σ satisfies

 $|\chi(\Sigma)| < K_C$?