
Towards a higher dimensional generalization of

the Bennequin theory (Atsuhide Mori, Osaka Univ.)

Setup. S2n−1 ⊂ R2n(≈ Cn): the unit hypersphere

λ :=
1

2

n∑

i=1
(xidyi − yidxi), zi = xi + yi

√−1

then dλ: the standard symplectic form on R2n

λ|S2n−1: the standard contact form on S2n−1

Take M2k−1 ⊂ S2n−1: compact submanifold w/o ∂.

M is called a contact spinning if ker(λ|M) is contact
and arg z1|M defines a supporting† open-book.
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†open-book supporting cont str S2n−1

⇔ ∃X: cont vecter field s.t. M2k−1

1) X is positively ∩| to the
cont str, and

2) ∀pages of the open-book
is a Birkhoff section of X.
(positive, ∂ is also positive)

For cont spinning, we may
assume ∃X:close to the ro- N
tation around N = {z1 = 0}. arg z1 = θ

Remark. The binding is then M2k−1∩N (∅ for k = 1).
It is a cont submfd tangent to X( 6= 0).
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Well-known examples

i) For a given ∩| -link (1-dim cont submfd) L ⊂ S3,

Bennequin’s lemma. L is cont-topic to ∃closed braid.
Remarks. 1) ∀closed braid placed near the great circle
{|z1| = 1} ∩ S3 is an embedded 1-dim cont spinning.
2)“Bennequin’s lemma”(Mitsumatsu & M). ∀link ∩|
to the cont str supported by a given open-book on a
closed 3-mfd is cont-topic to a link ∩| to each page of
the open-book, i.e., cont-topic to a braid position.

ii) {zk+1 = · · · = zn = 0} ∩ S2n−1: standard spinning

iii) L = {fj(εz1, . . . , εzn) = 0 : holomorphic} ∩ S2n−1 is
a cont spinning (under a “moderate” assumption).

3



Realizability

Theorem (M’03, generalized by Mart́ınez Torres’11).
∀closed cont (2k − 1)-mfd can be immersed in S4k−3

and embedded in S4k−1 as cont spinnings.

This improves Giroux theorem (∃ of supporting open-
book). It is also an application of approximately holo-
morphic geometry (Donaldson-Auroux). It recovers
Gromov’s result without appealing to h-principle.

A smooth spinning, which lacks contactness, is still
improtant in high codimensional smooth knot theory.
It is a special case of Litherland’s ‘deformation spin’.
And I prefer Tamura’s ‘spinnable str’ to ‘open-book’.

— If you are intersted in this object, see also the papers of TAKASE
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More examples.

Lemma. Let M ⊂ S2n−1(⊂ Cn) be a submfd s.t.
i) M ∩ {arg z1 = θ} are symplectic pages, and
ii) it is nearly conic near the binding, i.e., roughly

{(re
√−1θ,

√
1− r2p) |0 ≤ r < ε, θ ∈ S1, (0, p) ∈ M}.

Then we can deform M to a spinning cont submfd.

Eg. hyperelliptic cont spinning from braiding curve

y2 = (x− b1(θ)) · · · · · (x− bm(θ))

({bi(θ)|i = 1, . . . , m}θ∈S1) on C2 × S1 ≈ intB4 × S1.
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More examples.

Theorem. Consider ∆ = {(r21, r22, r23)|r2i +r22+r23 = 1}
of S5 = {|z1|2 + |z2|2 + |z3|2 = 1} ⊂ C3. Take a curve
C : [−δ, δ] → ∆ which is parametrized by θ1+θ2+θ3 ∈
[−δ, δ]. This defines T2-fibration M(⊂ S5) → [−δ, δ]
possibly degenerated. Then (the sign of) λ ∧ dλ|M
coincides with (that of) the negative areal velocity of
C with respect to the barycenter G of ∆.

Cε: cont spinning S3 ⊂ S5.
C1: Reeb foliation by Leg.
C1+ε: negative cont.
(Vi: {|zi| = 1} ≈ S1)
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Dehn twist in higher dimension

Definition. A Dehn-Seidel twist is the following sym-
plectomorphism τ of T ∗Sm supported near the zero
section Sm (well-defined up to symplectic isotopy).
First we fix the restriction τ |Sm as the antipodal map.
Then extend it using geodesic flow so that it quiets
down to the identity map away from Sm.

Each page P of open-book supporting a contact str
on M2k−1 can be considered as a symplectic manifold
by taking dα|P of the cont form α with α(X) = 1.

Conjecture(Giroux). The symplectic monodromy is
a product of Dehn-Seidel twists and their inverses.
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Hopf plumbing

Fix a properly embedded Lagrangian ball Bk−1 ⊂ P .
We consider the disjoint union Bk−1t (a copy of Sk−1),
and identify Bk−1 ⊂ P with the hemisphere of Sk−1.
We slightly extend the quotient to a new symplectic
page on which Sk−1 becomes a Lagrangian sphere.
We extend the symplectic monodromy ϕ identically,
and then compose it with the Dehn-Seidel twist τ

(resp τ−1) along Sk−1. The new symplectic open-
book is called a positive (resp. negative) Hopf plumb-
ing. It supports a new cont str on the same mfd.

Conjecture(Giroux). ∀positive Hopf plumbing does
not change the contact structure up to cont-topy.
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3-dim case

(±)-Hopf plumbing on a closed braid is equivalent to
the Murasugi sum of (±)-Hopf band along (a square
nbhd of) an proper arc B1 which connects two points
on a pege {arg z1 = const}(≈ D2).

Torisu’00 and Giroux proved that a positive Hopf plumb-
ing does not change the contact str.

Theorem (Giroux’03). Two supporting open-books
of a cont str on a closed 3-mfd can be related by a
sequence of positive Hopf plumbings/deplumbings.

Indeed we can obtain a common open-book from them
by a suitable sequence of positive Hopf plumbings.
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Overtwistedness of 3-dim contact structure

We can modify a given cont str near a (certain) codim-
2 cont submfd. Lutz define such modification and I
generalized it to higher dimension. Bennequin proved
that the standard cont str of S3 is not equivalent to
the modified one. Indeed he found a property, called
tightness, of the standard cont str which is spoiled by
Lutz-modification. Lutz-modified cont str is said to
be overtwisted. Eliashberg proved that 3-dim (Ben-
nequin) tightness is equivalent to unovertwistedness.
He also proved that ∀homotopy class of plane fields
on a 3-mfd contains a unique overtwisted cont str.
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Hopf plumbing and overtwistedness

We see(?) that a negative Hopf plumbing produces
an overtwisted contact structure on S3. Conversely

Theorem (Giroux’03). ∀overtwisted cont str can be
supported by ∃negatively Hopf plumbed open-book.

This is the definition of overtwistedness in higher dim.
So the theorem is Lutz OT=Giroux OT if dim= 3.

The proof is based on Eliashberg’s classification of 3-
dim (Lutz) overtwisted cont strs.

Remark. As an application, Giroux deduced Harer’s
conjecture from Eliashberg’s classification of cont strs
on S3 including the uniqueness of tight cont str on S3.
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The work of Loi-Piergallini

(Montesinos-Morton’91) A simple branched covering
π : M3 → S3 defines an open-book O on M by π∗ arg z1
if the ramification locus B forms a closed braid. Then
for ∀stabilization B′ of B, ∃simple branched covering
π′ : M3 → S3 which defines Hopf plumbing O′ of O.

We say that π is simple if ∀critical level contains a
single multiple point and further it is a double point.

Interpreting the Eliashberg theorem on the topology
of Stein manifolds, Loi and Piergallini showed that

∀D: Stein fillable contact str, ∃B: quasipositive and

∃π: simple 3-fold s.t. O: positive and supporting D.
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Markov stabilization for closed braid

(±)-stabilization. Pull out a small N

segment from a closed braid and

hang it on the axis N so that an

additional (±)-interchange appears.

Here an ‘interchange’ in closed braid

is a mapping class of m-punctured

disk conjugate to the standard one.

Quasipositivity. A quasipositive

closed braid is one presenting a

composition of (+)-interchanges.
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Orevkov theory

Theorem(Orevkov’00). A braid is quasipositive if
(and only if) its positive stabilization is quasipositive.
Is ∀open-book supporting a Stein fillable str pisitive?

Theorem(Orevkov’00, due to Buckel’97 and Laver’96).
A negative stabilization is never quasipositive.
Want to associate it with Giroux overtwistedness.

Theorem(Orevkov-Shevchishin’03, Nancy Winkle’02).
Two braid presentations of the same ∩| -link can be re-
lated by a sequence of positive (de)stabilizations.

Want to associate it with the Giroux theorem.
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High dim stabilization (Main dish I)

We can stabilize Σ = {zk+1 = · · · = zn = 0} ∩ S2n−1

in S2k+1 = {zk+2 = · · · = zn = 0} ∩ S2n−1 to

Σ+ = {εz1 = z2
2 + · · ·+ z2

k+1, zk+2 = · · · = 0} ∩ S2n−1,

Σ− = {εz1 = z2
2 + · · ·+ z2

k+1, zk+2 = · · · = 0}∩S2n−1.

(+)-stabilization can be interpolated by a cont-topy.
(−)-stabilization can be interpolated by a diffeotopy,
but (−)-one makes the cont str (Giroux) overtwisted.
Indeed (±)-stabilization involves (±)-Hopf plumbing.

Problem. Generalize Orevkov theory to 5-dim so
that it implies results on positive open-books (Ak-
bulut, Ozbagci,...) and positive Hopf plumbings.
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What is Bennequin theory ?(side dish)

The Bennequin thm = his inequality for standard S3

Eliashberg, using J-curves, proved & generalized it.

however, as is reconsidered by Birman-Menasco,

Bennequin theory = his proof of the Markov thm
and its application to cont geom

(Entrelacements et équations de Pfaff)

Bennequin considered a Seifert surface of a given braid
which realizes the maximal χ, tangents to the page
{arg z1 = const} only at saddles, and transversely (and
essentially) intersects with the binding {z1 = 0}.

Then he observed ....
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Eliminating stabilization

The figure (not ideal but real)

presents a positive stabilization

of a closed negative 2-braid

which produces “the simplest

pseudo Anosov closed braid”.

Then we can obtain the standard

(1-)braid by an ovbious pair of

positive & negative destabilizations.

Surprisingly, we can eliminate

saddle tangencies to arg z1 = const

(marked by ?) in each step.

Example of Bennequin’s “poche”
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Convex Seifert hypersurface(Main dish II)

1. Closed convex hypersurface (Giroux ’91)

Σ: closed hypersurf embedded in a cont (2k−1)-mfd
Suppose ∃X: cont vect field ∩| to Σ and orient it.

Then we say that Σ is convex.

Giroux lemma. For ∀Σ:convex, ∃ cont form α of the
cont str s.t. we can decompose Σ as Σ = Σ+∪(−Σ−)

accoding to the sign of (dα)k−1|Σ. Then the dividing
set Γ = {(dα)k−1|Σ = 0} = ∂Σ± is a cont submfd.

Lemma(M’09). Given two strong exact symplectic
fillings Σi of a cont (2k− 3)-mfd, we can construct a
(2k − 1)-dim cont nbhd of convex Σ1 ∪ (−Σ2).
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2. Convex Seifert surface (M ’09)

Bennequin’s inequality (I omit the precise, but it is
an inequality between relative characteristic numbers)
can be naturally generalized in higher dim. However I
proved that no cont mfd of dim> 3 satisfies it.

Perhaps this is beacuse any surf in cont 3-mfd can be
smoothly approximated by a convex one (Giroux). In
higher dim, I found a small hypersurf far from convex
(as an application of Eliashberg-Floer-McDuff thm.)

Definition. 1) A Seifert hypersurf Σ is said to be
convex if ∃X, ∃α s.t. ∂Σ ⊂ ∂Σ+ :contact-type.

2) Then Bennequin’s inequality becomes χ(Σ−) ≤ 0.
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Tight vs Overtwisted

Theorem.(M ’09) 1) (E,G+ε) A cont 3-mfd is tight
iff any convex Seifert surf satisfies the inequality.

2) The (local) modification of Lutz & I produces a
convex Σ violating Bennequin’s ineqality.

3) The modification also produces a “bounded Legen-
drian open-book” which is a high dim generalization
of OT disk (see Massot-Niederkrüger-Wendl’11).

Probrems. 1)(tightness) Prove that S2n−1 satisfies
Bennequin’s inequality at least for convex Seifert hy-
persurfaces spanning contact spinnings.

2)(overtwistedness) Show that negatively stabilized
contact submanifold violates the inequality.
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Again on realizability

Conjecture. ∀closed contact (2k− 1)-manifold could
be embedded in S4k−3 as a contact spinning.
Want to associate to it a family of Legendrian submfd
(other than Reeb fol). S4k−3\(1-point) is contac-
tomorphic to the 1-jet space J1(R2(k−1),R). Then
M2k−1 presents a system of 2(k−1) first order PDEs
for a function with 2(k− 1) variables. If it may define
a codim-1 (possibly singular) foliation by Legendrians.
Such a foliation arises as a wall between the spaces of
cont submfds and reverses their orientations. We can
understand negative stabilization as a “round trip”
beyond the wall. ——Thank you for careful reading.
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