Cyclic branched covers of knots and L-spaces

Masakazu Teragaito

Hiroshima University

Branched coverings, degenerations, and related topics 2015
Contents

1. Background

2. Cyclic branched covers

3. Quasi-alternating links and Q-polynomials
Contents

1. Background

2. Cyclic branched covers

3. Quasi-alternating links and Q-polynomials
L–space (Ozsváth-Szabó 2005)

Definition

A rational homology 3-sphere Y is an L–space if its Heegaard Floer homology $\widehat{HF}(Y)$ is a free abelian group with rank equal to $|H_1(Y; \mathbb{Z})|$.

- S^3, Poincaré homology sphere
- lens spaces
- elliptic manifolds
- double branched covers over non-split alternating knots/links

* In general, $\text{rank} \, \widehat{HF}(Y) \geq |H_1(Y; \mathbb{Z})|$ for any rational homology sphere Y.
L–space (Ozsváth-Szabó 2005)

Definition

A rational homology 3-sphere Y is an L–space if its Heegaard Floer homology $\widehat{HF}(Y)$ is a free abelian group with rank equal to $|H_1(Y; \mathbb{Z})|$.

- S^3, Poincaré homology sphere
- lens spaces
- elliptic manifolds
- double branched covers over non-split alternating knots/links

* In general, $\text{rank } \widehat{HF}(Y) \geq |H_1(Y; \mathbb{Z})|$ for any rational homology sphere Y.
L–space (Ozsváth-Szabó 2005)

Definition

A rational homology 3-sphere Y is an L–space if its Heegaard Floer homology $\widehat{HF}(Y)$ is a free abelian group with rank equal to $|H_1(Y; \mathbb{Z})|$.

- S^3, Poincaré homology sphere
- lens spaces
- elliptic manifolds
- double branched covers over non-split alternating knots/links

* In general, $\text{rank} \, \widehat{HF}(Y) \geq |H_1(Y; \mathbb{Z})|$ for any rational homology sphere Y.
L–space (Ozsváth-Szabó 2005)

Definition

A rational homology 3-sphere Y is an L–space if its Heegaard Floer homology $\hat{HF}(Y)$ is a free abelian group with rank equal to $|H_1(Y; \mathbb{Z})|$.

- S^3, Poincaré homology sphere
- lens spaces
- elliptic manifolds
- double branched covers over non-split alternating knots/links

* In general, $\text{rank} \hat{HF}(Y) \geq |H_1(Y; \mathbb{Z})|$ for any rational homology sphere Y.
L–space conjecture

It is an open problem to find a non-Heegaard Floer characterization of \(L\)–spaces.

Conjecture (Boyer-Gordon-Watson 2011)

Let \(Y\) be an irreducible rational homology sphere. Then \(Y\) is an \(L\)–space if and only if \(\pi_1(Y)\) is not left-orderable.

Left-orderable

A non-trivial group \(G\) is **left-orderable** if \(G\) admits a total order such that

\[
a < b \implies ga < gb \quad \text{for any } g, a, b \in G
\]

They confirmed the conjecture for Seifert fibered manifolds, Sol-manifolds, etc.
L–space conjecture

It is an open problem to find a non-Heegaard Floer characterization of L–spaces.

Conjecture (Boyer-Gordon-Watson 2011)

Let Y be an irreducible rational homology sphere. Then Y is an L–space if and only if $\pi_1(Y)$ is not left-orderable.

Left-orderable

A non-trivial group G is left-orderable if G admits a total order such that

$$a < b \implies ga < gb \text{ for any } g, a, b \in G$$

They confirmed the conjecture for Seifert fibered manifolds, Sol-manifolds, etc.
L–space conjecture

It is an open problem to find a non-Heegaard Floer characterization of L–spaces.

Conjecture (Boyer-Gordon-Watson 2011)

Let Y be an irreducible rational homology sphere. Then Y is an L–space if and only if $\pi_1(Y)$ is not left-orderable.

Left-orderable

A non-trivial group G is **left-orderable** if G admits a total order such that

\[a < b \implies ga < gb \quad \text{for any } g, a, b \in G \]

They confirmed the conjecture for Seifert fibered manifolds, Sol-manifolds, etc.
L–space conjecture

It is an open problem to find a non-Heegaard Floer characterization of L–spaces.

Conjecture (Boyer-Gordon-Watson 2011)

Let Y be an irreducible rational homology sphere. Then Y is an L–space if and only if $\pi_1(Y)$ is not left-orderable.

Left-orderable

A non-trivial group G is **left-orderable** if G admits a total order such that

$$a < b \implies ga < gb \quad \text{for any } g, a, b \in G$$

They confirmed the conjecture for Seifert fibered manifolds, Sol-manifolds, etc.
L–space conjecture

It is an open problem to find a non-Heegaard Floer characterization of L–spaces.

Conjecture (Boyer-Gordon-Watson 2011)

Let Y be an irreducible rational homology sphere. Then Y is an L–space if and only if $\pi_1(Y)$ is not left-orderable.

Left-orderable

A non-trivial group G is **left-orderable** if G admits a total order such that

$$a < b \implies ga < gb \quad \text{for any } g, a, b \in G$$

They confirmed the conjecture for Seifert fibered manifolds, Sol-manifolds, etc.
Contents

1. Background

2. Cyclic branched covers

3. Quasi-alternating links and Q-polynomials
Cyclic branched covers

Theorem

Let L be a non-split alternating link in S^3. Then,

- $\Sigma_2(L)$ is an L–space; [Ozsváth-Szabó]
- $\pi_1 \Sigma_2(L)$ is not left-orderable. [Ito, Greene, BGW]

Examples.

\[
\begin{align*}
\Sigma_2(L) & = L(2,1) \\
\pi_1 \Sigma_2(L) & = \mathbb{Z}_2 \\
\Sigma_2(K) & = L(5,2) \\
\pi_1 \Sigma_2(K) & = \mathbb{Z}_5
\end{align*}
\]
Cyclic branched covers

Theorem

Let L be a non-split alternating link in S^3. Then,

- $\Sigma_2(L)$ is an L–space;
- $\pi_1 \Sigma_2(L)$ is not left-orderable.

[Ozsváth-Szabó]

[Ito, Greene, BGW]

Examples.

\[
\begin{align*}
\Sigma_2(L) &= L(2, 1) \\
\pi_1 \Sigma_2(L) &= \mathbb{Z}_2 \\
\Sigma_2(K) &= L(5, 2) \\
\pi_1 \Sigma_2(K) &= \mathbb{Z}_5
\end{align*}
\]
Cyclic branched covers

Theorem

Let \(L \) be a non-split alternating link in \(S^3 \). Then,

- \(\Sigma_2(L) \) is an \(L \)-space;
- \(\pi_1 \Sigma_2(L) \) is not left-orderable.

[Ozsváth-Szabó]
[Ito, Greene, BGW]

Examples.

\[
\begin{align*}
\Sigma_2(L) &= L(2, 1) \\
\pi_1 \Sigma_2(L) &= \mathbb{Z}_2 \\
\Sigma_2(K) &= L(5, 2) \\
\pi_1 \Sigma_2(K) &= \mathbb{Z}_5
\end{align*}
\]
Basic problem

Problem
Which cyclic branched cover of a knot or link is an \(L \)-space?

- Frontal attack: calculate \(\widehat{HF}(\Sigma_d(L)) \). [Levine, Grigsby]
- Restrict to \(\Sigma_2(L) \).
- Fix \(L \) or a class, and study \(\Sigma_d(L) \) (\(d \geq 2 \)).
Basic problem

Problem

Which cyclic branched cover of a knot or link is an L–space?

- Frontal attack: calculate $\widehat{HF}(\Sigma_d(L))$. [Levine, Grigsby]
- Restrict to $\Sigma_2(L)$.
- Fix L or a class, and study $\Sigma_d(L)$ ($d \geq 2$).
Basic problem

Problem
Which cyclic branched cover of a knot or link is an L–space?

- Frontal attack: calculate $\widehat{HF}(\Sigma_d(L))$. [Levine, Grigsby]
- Restrict to $\Sigma_2(L)$.
- Fix L or a class, and study $\Sigma_d(L)$ ($d \geq 2$).
Basic problem

Problem
Which cyclic branched cover of a knot or link is an L–space?

- Frontal attack: calculate $\widehat{HF}(\Sigma_d(L))$.
 [Levine, Grigsby]
- Restrict to $\Sigma_2(L)$.
- Fix L or a class, and study $\Sigma_d(L)$ ($d \geq 2$).
Basic problem

Problem

Which cyclic branched cover of a knot or link is an L–space?

- Frontal attack: calculate $\widehat{HF}(\Sigma_d(L))$. [Levine, Grigsby]
- Restrict to $\Sigma_2(L)$.
- Fix L or a class, and study $\Sigma_d(L)$ ($d \geq 2$).
Simple questions

Questions

1. Is there a knot/link all of whose cyclic branched covers are L–spaces?
2. Is there a knot/link none of whose cyclic branched covers are L–spaces?

Answers.

1. Yes.
2. Yes.
Simple questions

Questions

1. Is there a knot/link all of whose cyclic branched covers are L–spaces?
2. Is there a knot/link none of whose cyclic branched covers are L–spaces?

Answers.

1. Yes.
2. Yes.
Simple questions

Questions

1. Is there a knot/link all of whose cyclic branched covers are L–spaces?
2. Is there a knot/link none of whose cyclic branched covers are L–spaces?

Answers.

1. Yes.
2. Yes.
Answer to Question 1

Think $\mathbb{Z}_2 \oplus \mathbb{Z}_d$-cover of $A \cup k$. (A and k are interchangeable.)

All cyclic branched covers of the figure-eight knot are L–spaces.

This trick is applicable for 2-bridge knots $C[2b_1, 2b_2, \ldots, 2b_n]$, where all $b_i > 0$.
Answer to Question 1

Think $\mathbb{Z}_2 \oplus \mathbb{Z}_d$-cover of $A \cup k$. (A and k are interchangeable.)

All cyclic branched covers of the figure-eight knot are L–spaces.

This trick is applicable for 2-bridge knots $C[2b_1, 2b_2, \ldots, 2b_n]$, where all $b_i > 0$.

Answer to Question 1

Think $\mathbb{Z}_2 \oplus \mathbb{Z}_d$-cover of $A \cup k$. (A and k are interchangeable.)

All cyclic branched covers of the figure-eight knot are L-spaces.

This trick is applicable for 2-bridge knots $C[2b_1, 2b_2, \ldots, 2b_n]$, where all $b_i > 0$.
All cyclic branched covers of the figure-eight knot are L–spaces.

This trick is applicable for 2-bridge knots $C[2b_1, 2b_2, \ldots, 2b_n]$, where all $b_i > 0$.

Think $\mathbb{Z}_2 \oplus \mathbb{Z}_d$-cover of $A \cup k$. (A and k are interchangeable.)
Answer to Question 2

(3, 7)-torus knot

Gordon-Lidman 2014

For \((p, q)\)-torus knot \(K\),

\[\Sigma_d(K) \text{ is an } L\text{-space} \iff \pi_1 \Sigma_d(K) \text{ is finite}\]
Answer to Question 2

(3, 7)-torus knot

Gordon-Lidman 2014

For \((p, q)\)-torus knot \(K\),

\[\Sigma_d(K) \text{ is an } L\text{-space} \iff \pi_1 \Sigma_d(K) \text{ is finite}\]
Further question

Corollary

\[\Sigma_d(\text{trefoil}) \text{ is an } L \text{-space } \iff d \leq 5 \]

Question [Gordon-Lidman]

For a knot or link \(L \), if there exists \(d \geq 2 \) such that \(\pi_1 \Sigma_d(L) \) is left-orderable, then is \(\pi_1 \Sigma_e(L) \) left-orderable for any \(e \geq d \)?

Another evidence [Hu]

For a 2-bridge knot \(S(p, q) \) with \(p \equiv 3 \pmod{4} \), there exists \(N \) such that \(\pi_1 \Sigma_d(S(p, q)) \) is left-orderable for any \(d \geq N \).
Further question

Corollary

\[\Sigma_d(\text{trefoil}) \text{ is an } L\text{-space } \iff d \leq 5 \]

Question [Gordon-Lidman]

For a knot or link \(L \), if there exists \(d \geq 2 \) such that \(\pi_1 \Sigma_d(L) \) is left-orderable, then is \(\pi_1 \Sigma_e(L) \) left-orderable for any \(e \geq d \)?

Another evidence [Hu]

For a 2-bridge knot \(S(p, q) \) with \(p \equiv 3 \pmod{4} \), there exists \(N \) such that \(\pi_1 \Sigma_d(S(p, q)) \) is left-orderable for any \(d \geq N \).
Further question

Corollary

\[\Sigma_d(\text{trefoil}) \text{ is an } L\text{-space } \iff d \leq 5 \]

Question [Gordon-Lidman]

For a knot or link \(L \), if there exists \(d \geq 2 \) such that \(\pi_1 \Sigma_d(L) \) is left-orderable, then is \(\pi_1 \Sigma_e(L) \) left-orderable for any \(e \geq d \)?

Another evidence [Hu]

For a 2-bridge knot \(S(p, q) \) with \(p \equiv 3 \pmod{4} \), there exists \(N \) such that \(\pi_1 \Sigma_d(S(p, q)) \) is left-orderable for any \(d \geq N \).
Example

Let K be the 2-bridge knot $5_2 = S(7, 2)$.

- If $d \geq 9$, then $\pi_1 \Sigma_d(K)$ is left-orderable. \cite{Hu}
- $\Sigma_d(K)$ is an L–space for $d = 2, 3, 4, 5$. \cite{Peters, Te, Hori}
Example

Let K be the 2-bridge knot $5_2 = S(7, 2)$.

- If $d \geq 9$, then $\pi_1 \Sigma_d(K)$ is left-orderable. [Hu]
- $\Sigma_d(K)$ is an L–space for $d = 2, 3, 4, 5$. [Peters, Te, Hori]
Select a class

Problem
Which cyclic branched cover of a knot is an L–space?

- torus knot: Solved.
- cable knot
- doubled knot
- alternating knot
- 2-bridge knot
Select a class

Problem

Which cyclic branched cover of a **knot** is an \(L \)-space?

- torus knot: Solved.
- cable knot
- doubled knot
- alternating knot
- 2-bridge knot
Select a class

Problem
 Which cyclic branched cover of a knot is an L--space?

- torus knot: Solved.
- cable knot
- doubled knot
- alternating knot
- 2-bridge knot
Select a class

Problem
Which cyclic branched cover of a knot is an L–space?

- torus knot: Solved.
- cable knot
- doubled knot
- alternating knot
- 2-bridge knot
Select a class

Problem

Which cyclic branched cover of a knot is an L--space?

- torus knot: Solved.
- cable knot
 - doubled knot
 - alternating knot
 - 2-bridge knot
Select a class

Problem
Which cyclic branched cover of a knot is an L–space?

- torus knot: Solved.
- cable knot
- doubled knot
 - alternating knot
 - 2-bridge knot
Select a class

Problem
Which cyclic branched cover of a knot is an L–space?

- torus knot: Solved.
- cable knot
- doubled knot
- alternating knot
- 2-bridge knot
Select a class

Problem
Which cyclic branched cover of a knot is an L–space?

- torus knot: Solved.
- cable knot
- doubled knot
- alternating knot
- 2-bridge knot
Alternating knot

Let K be an alternating knot.

Ozsváth-Szabó 2005

$\Sigma_2(K)$ is an L–space.

3-fold covers

Is $\Sigma_3(K)$ an L–space?

No! \rightarrow (2, 7)-torus knot
Alternating knot

Let K be an alternating knot.

Ozsváth-Szabó 2005

$\Sigma_2(K)$ is an L–space.

3-fold covers

Is $\Sigma_3(K)$ an L–space?

No! → (2, 7)-torus knot
Alternating knot

Let K be an alternating knot.

Ozsváth-Szabó 2005
$\Sigma_2(K)$ is an L–space.

3-fold covers

Is $\Sigma_3(K)$ an L–space?

No! $\to (2, 7)$-torus knot
Alternating knot

Let K be an alternating knot.

Ozsváth-Szabó 2005

$\Sigma_2(K)$ is an L–space.

3-fold covers

Is $\Sigma_3(K)$ an L–space?

No! $\rightarrow (2, 7)$-torus knot
Genus one alternating knot

Theorem

Let K be a genus 1 alternating knot. Then,

- $\Sigma_3(K)$ is an L–space. \hfill [Te]
- $\pi_1 \Sigma_3(K)$ is not left-orderable. \hfill [GL]
Genus one alternating knot

Theorem

Let K be a genus 1 alternating knot. Then,

- $\Sigma_3(K)$ is an L–space. [Te]
- $\pi_1\Sigma_3(K)$ is not left-orderable. [GL]
Two-bridge knot

- Σ_2 is a lens space, so an L–space.
- For $C[2b_1, 2b_2, \ldots, 2b_n]$ with $b_i > 0$, all Σ_d is an L–space.
- In general, hard to handle.
Two-bridge knot

- Σ_2 is a lens space, so an L–space.
- For $C[2b_1, 2b_2, \ldots, 2b_n]$ with $b_i > 0$, all Σ_d is an L–space.
- In general, hard to handle.
Genus one 2-bridge knot

There are two types.

\[C[2m, 2n] \quad \text{and} \quad C[2m, -2n] \]
Genus one 2-bridge knot

There are two types.

\[C[2m, 2n] \quad \text{and} \quad C[2m, -2n] \]
Genus one 2-bridge knot

There are two types.

\[C[2m, 2n] \quad \text{and} \quad C[2m, -2n] \]
Genus one 2-bridge knot

Theorem

For \(K = C[2m, 2n] \), \(m, n > 0 \), \(\Sigma_d(K) \) is an L–space for any \(d \geq 2 \).

Theorem

For \(K = C[2m, -2n] \), \(m, n > 0 \), \(\Sigma_d(K) \) is an L–space for

- \(d = 3 \)
- \(d = 4 \)
- \(d = 5 \)

[Peters]
[Te]
[Hori]

Conjecture

For \(K = C[2m, -2n] \), \(m, n > 0 \), \(\Sigma_d(K) \) is not an L–space if \(d \geq 6 \).
Genus one 2-bridge knot

Theorem

For $K = C[2m, 2n]$, $m, n > 0$, $\Sigma_d(K)$ is an L–space for any $d \geq 2$.

Theorem

For $K = C[2m, -2n]$, $m, n > 0$, $\Sigma_d(K)$ is an L–space for
- $d = 3$ [Peters]
- $d = 4$ [Te]
- $d = 5$ [Hori]

Conjecture

For $K = C[2m, -2n]$, $m, n > 0$, $\Sigma_d(K)$ is not an L–space if $d \geq 6$.
Genus one 2-bridge knot

Theorem

For $K = C[2m, 2n]$, $m, n > 0$, $\Sigma_d(K)$ is an L–space for any $d \geq 2$.

Theorem

For $K = C[2m, -2n]$, $m, n > 0$, $\Sigma_d(K)$ is an L–space for

- $d = 3$
 [Peters]
- $d = 4$
 [Te]
- $d = 5$
 [Hori]

Conjecture

For $K = C[2m, -2n]$, $m, n > 0$, $\Sigma_d(K)$ is not an L–space if $d \geq 6$.
Genus one 2-bridge knot

Theorem

For $K = C[2m, 2n]$, $m, n > 0$, $\Sigma_d(K)$ is an L–space for any $d \geq 2$.

Theorem

For $K = C[2m, -2n]$, $m, n > 0$, $\Sigma_d(K)$ is an L–space for

- $d = 3$
- $d = 4$
- $d = 5$

[Peter]

[Te]

[Hori]

Conjecture

For $K = C[2m, -2n]$, $m, n > 0$, $\Sigma_d(K)$ is not an L–space if $d \geq 6$.
Idea

$5_2 = C'[2, -4]$.
Idea

$5_2 = C[2, -4]$.

3-fold cover of K
Idea

- Is this alternating?
- No! (This is 9_{49}.)
- But, it is quasi-alternating.

Ozsváth-Szabó

If L is quasi-alternating, then $\Sigma_2(L)$ is an L–space.
Idea

- Is this alternating?
- No! (This is \(9_{49}\).)
- But, it is quasi-alternating.

Ozsváth-Szabó

If \(L\) is quasi-alternating, then \(\Sigma_2(L)\) is an \(L\)-space.
Idea

- Is this alternating?
- No! (This is 9_{49}.)
- But, it is quasi-alternating.

Ozsváth-Szabó

If L is quasi-alternating, then $\Sigma_2(L)$ is an L–space.
Idea

- Is this alternating?
- No! (This is 9_{49}.)
- But, it is quasi-alternating.

Ozsváth-Szabó

If L is quasi-alternating, then $\Sigma_2(L)$ is an L–space.
Idea

- Is this alternating?
- No! (This is 9_{49}.)
- But, it is quasi-alternating.

Ozsváth-Szabó

If L is quasi-alternating, then $\Sigma_2(L)$ is an L–space.
Idea

- Is this alternating?
- No! (This is 9_{49}.)
- But, it is quasi-alternating.

Ozsváth-Szabó

If L is quasi-alternating, then $\Sigma_2(L)$ is an L–space.
Contents

1 Background

2 Cyclic branched covers

3 Quasi-alternating links and Q-polynomials
Quasi-alternating link

A quasi-alternating link (QA) is defined recursively.

- The unknot is QA.
- If a diagram of a link L contains a QA-crossing, then L is QA. Here, a crossing is QA if two resolution L_∞, L_0 satisfy
 - L_∞ and L_0 are QA.
 - $\text{det } L = \text{det } L_\infty + \text{det } L_0$

In particular, any alternating knot or non-split alternating link is QA.
Quasi-alternating link

A quasi-alternating link (QA) is defined recursively.

- The unknot is QA.
- If a diagram of a link L contains a QA-crossing, then L is QA. Here, a crossing is QA if two resolution L_∞, L_0 satisfy
 - L_∞ and L_0 are QA.
 - $\det L = \det L_\infty + \det L_0$

In particular, any alternating knot or non-split alternating link is QA.
Quasi-alternating link

A quasi-alternating link (QA) is defined recursively.

- The unknot is QA.
 - If a diagram of a link L contains a QA-crossing, then L is QA. Here, a crossing is QA if two resolution L_∞, L_0 satisfy
 - L_∞ and L_0 are QA.
 - $\det L = \det L_\infty + \det L_0$

In particular, any alternating knot or non-split alternating link is QA.
Quasi-alternating link

A quasi-alternating link (QA) is defined recursively.

- The unknot is QA.
- If a diagram of a link L contains a QA-crossing, then L is QA. Here, a crossing is QA if two resolution L_∞, L_0 satisfy
 - L_∞ and L_0 are QA.
 - $\det L = \det L_\infty + \det L_0$

\[
\begin{array}{c}
\begin{array}{c}
\includegraphics[width=0.3\textwidth]{link_diagram.png}
\end{array}
\end{array}
\]

In particular, any alternating knot or non-split alternating link is QA.
Quasi-alternating link

A quasi-alternating link (QA) is defined recursively.

- The unknot is QA.
- If a diagram of a link L contains a QA-crossing, then L is QA. Here, a crossing is QA if two resolution L_∞, L_0 satisfy
 - L_∞ and L_0 are QA.
 - $\det L = \det L_\infty + \det L_0$

In particular, any alternating knot or non-split alternating link is QA.
Quasi-alternating link

A quasi-alternating link (QA) is defined recursively.

- The unknot is QA.
- If a diagram of a link L contains a QA-crossing, then L is QA. Here, a crossing is QA if two resolution L_∞, L_0 satisfy
 - L_∞ and L_0 are QA.
 - $\det L = \det L_\infty + \det L_0$

In particular, any alternating knot or non-split alternating link is QA.
Example 1

\[8_{21} \]

\[\text{det}=15 \quad \rightarrow \quad \text{det}=2 \]

\[\text{det}=13 \quad \rightarrow \quad \text{det}=2 \]
Example 2

\begin{align*}
\text{det}=25 & \quad \Rightarrow \quad \text{det}=5 \\
\text{det}=20 & \quad \Rightarrow \quad \text{det}=5
\end{align*}
Q-polynomial

For an unoriented link, the Q-polynomial $Q_L \in \mathbb{Z}[x, x^{-1}]$ is defined as follows.

- For the unknot U, $Q_U = 1$.
- $Q_{L_+} + Q_{L_-} = x(Q_{L_\infty} + Q_{L_\infty})$

\[
\begin{array}{cccc}
\times & \times & \times & \times \\
L_+ & L_- & L_\infty & L_0 \\
\end{array}
\]
Basic problem

Problem

Determine whether a given link is QA or not.

Properties of QA-links

- $\Sigma_2(L)$ is an L-space.
- $\Sigma_2(L)$ bounds H_1-torsion free, negative-definite 4-manifold.
- Homologically thin (knot Floer, reduced Khovanov, reduced odd Khovanov)
 i.e. supported on a single diagonal
Basic problem

Problem

Determine whether a given link is QA or not.

Properties of QA-links

- $\Sigma_2(L)$ is an L–space.
- $\Sigma_2(L)$ bounds H_1-torsion free, negative-definite 4-manifold.
- homologically thin (knot Floer, reduced Khovanov, reduced odd Khovanov)
 i.e. supported on a single diagonal
Qazaqzeh-Chbili’s work (2014)

Theorem

If a link L is QA, then

$$\deg Q_L \leq \det L - 1$$

$K = 8_{19}$

$$\deg Q_K = 7, \ \det K = 3.$$
So, K is not QA.
Qazaqzeh-Chbili’s work (2014)

Theorem

If a link L is QA, then

$$\deg Q_L \leq \det L - 1$$

$$K = 8_{19}$$

$$\deg Q_K = 7 , \det K = 3.$$
So, K is not QA.
Qazaqzeh-Chbili’s work (2014)

Theorem

If a link L is QA, then

$$\deg Q_L \leq \det L - 1$$

\[K = 8_{19} \]

\[\deg Q_K = 7, \ \det K = 3. \]

So, K is not QA.
New criterion

Theorem

If a link L is QA, then either,

1. L is a $(2, n)$-torus link ($n \neq 0$) and $\deg Q_L = \det L - 1$;
2. $\deg Q_L \leq \det L - 2$.

Remark

1. Figure-eight knot K is alternating, so QA. Since $\deg Q_K = 3$, $\det K = 5$, the above evaluation is optimal.
2. Connected sum of two Hopf links L is QA. $\deg Q_L = 2$, $\det L = 4$.
New criterion

Theorem

If a link L is QA, then either,

1. L is a $(2, n)$-torus link $(n \neq 0)$ and $\deg Q_L = \det L - 1$;
2. $\deg Q_L \leq \det L - 2$.

Remark

1. Figure-eight knot K is alternating, so QA. Since $\deg Q_K = 3$, $\det K = 5$, the above evaluation is optimal.
2. Connected sum of two Hopf links L is QA. $\deg Q_L = 2$, $\det L = 4$.
New criterion

Theorem

If a link L is QA, then either,

1. L is a $(2, n)$-torus link $(n \neq 0)$ and $\deg Q_L = \det L - 1$;
2. $\deg Q_L \leq \det L - 2$.

Remark

1. Figure-eight knot K is alternating, so QA. Since $\deg Q_K = 3$, $\det K = 5$, the above evaluation is optimal.
2. Connected sum of two Hopf links L is QA. $\deg Q_L = 2$, $\det L = 4$.
Application

Examples

For non-alternating knots $12_{n025}, 12_{n093}, 12_{n0115}, 12_{n0138}, 12_{n0199}, 12_{n0355}, 12_{n0374},$

$$\deg Q = 10, \text{det} = 11.$$

So, these are not QA.
(This was known by homological-thickness.)
Application

Examples

For non-alternating knots $12_{n0025}, 12_{n0093}, 12_{n0115}, 12_{n0138}$, $12_{n0199}, 12_{n0355}, 12_{n0374}$,

$$\text{deg } Q = 10, \text{det } = 11.$$

So, these are not QA.
(This was known by homological-thickness.)
Idea

Qazaqzeh-Chbili

\[\deg Q_L \leq \max\{\deg Q_{L_{\infty}}, \deg Q_{L_0}\} + 1 \]

Greene (Heegaard Floer Theory)

For a QA link,

\begin{array}{|c|c|c|c|}
\hline
\text{det} & 1 & 2 & 3 \\
\hline
\text{knot/link} & \text{unknot} & \text{Hopf link} & \text{trefoil} \\
\hline
\end{array}

Theorem

For a QA link \(L \),

1. if \(\det L = 4 \), then \(L \) is the \((2, \pm4)\)-torus link or \(\deg Q_L \leq 2 \);
2. if \(\det L = 5 \), then \(L \) is the \((2, \pm5)\)-torus knot or the figure-eight knot.
Idea

Qazaqzeh-Chbili

\[\deg Q_L \leq \max\{\deg Q_{L\infty}, \deg Q_{L0}\} + 1 \]

Greene (Heegaard Floer Theory)

For a QA link ,

<table>
<thead>
<tr>
<th>det</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>knot/link</td>
<td>unknot</td>
<td>Hopf link</td>
<td>trefoil</td>
</tr>
</tbody>
</table>

Theorem

For a QA link \(L \),

1. if \(\det L = 4 \), then \(L \) is the \((2, \pm 4)\)-torus link or \(\deg Q_L \leq 2 \);
2. if \(\det L = 5 \), then \(L \) is the \((2, \pm 5)\)-torus knot or the figure-eight knot.
Idea

Qazaqzeh-Chbili

\[\deg Q_L \leq \max\{\deg Q_{L\infty}, \deg Q_{L_0}\} + 1 \]

Greene (Heegaard Floer Theory)

For a QA link,

<table>
<thead>
<tr>
<th>det</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>knot/link</td>
<td>unknot</td>
<td>Hopf link</td>
<td>trefoil</td>
</tr>
</tbody>
</table>

Theorem

For a QA link \(L \),

1. *if \(\det L = 4 \), then \(L \) is the \((2, \pm 4)\)-torus link or \(\deg Q_L \leq 2 \);*
2. *if \(\det L = 5 \), then \(L \) is the \((2, \pm 5)\)-torus knot or the figure-eight knot.*
Idea

Induction on $\det L$

For a QA link L, think QA resolutions L_∞ and L_0.

If neither L_∞ nor L_0 is a $(2, n)$-torus link,

$$
\det Q_L \leq \max\{\deg Q_{L_\infty}, \deg Q_{L_0}\} + 1 \\
= \deg Q_{L_\alpha} + 1 \quad (\{\alpha, \beta\} = \{\infty, 0\}) \\
\leq (\det L_\alpha - 2) + 1 \\
\leq (\det L - \det L_\beta) - 1 \\
\leq \det L - 2
$$

- If one of L_∞, L_0 is a $(2, n)$-torus link and the other is not, then similar.
- If both are $(2, n)$-torus links, then it needs an argument.
Idea

Induction on $\det L$

For a QA link L, think QA resolutions L_∞ and L_0.

If neither L_∞ nor L_0 is a $(2, n)$-torus link,

$$\det Q_L \leq \max\{\deg Q_{L_\infty}, \deg Q_{L_0}\} + 1$$
$$= \deg Q_{L_\alpha} + 1 \quad (\{\alpha, \beta\} = \{\infty, 0\})$$
$$\leq (\det L_\alpha - 2) + 1$$
$$\leq (\det L - \det L_\beta) - 1$$
$$\leq \det L - 2$$

- If one of L_∞, L_0 is a $(2, n)$-torus link and the other is not, then similar.
- If both are $(2, n)$-torus links, then it needs an argument.
References

Masakazu Teragaito,

Masakazu Teragaito,

Masakazu Teragaito,

Masakazu Teragaito,
Quasi-alternating links and Q-polynomials, II, in preparation.