Michel Boileau

Profinite completion of groups and 3-manifolds I

Branched Coverings, Degenerations, and Related Topics Hiroshima March 2016

Joint work with Stefan Friedl

17 mars 2016

Hiroshima-2016

Finite quotients

- In this lecture π will be a finitely generated and residually finite group.
- Let $Q(\pi)$ be the set of finite quotients of π .
- What properties of π can be deduced from $Q(\pi)$?
- For example if all finite quotient of π are abelian, then π is abelian.
- Finite quotients of π corresponds to finite index normal subgroups of π
- So properties related to finite quotients of π are encoded in the profinite completion of π .

Profinite completion

Let $\mathcal{N}(\pi)$ be the collection of all finite index normal subgroups Γ of π . $\mathcal{N}(\pi)$ is a directed set for the following pre-order : $\Gamma' \geq \Gamma$ if $\Gamma' \subset \Gamma$. If $\Gamma' \geq \Gamma$ there is an induced epimorphism $h_{\Gamma',\Gamma} : \pi/\Gamma' \to \pi/\Gamma$. So to a group π one can associate the inverse system :

$$\{\pi/\Gamma, h_{\Gamma',\Gamma}\}_{\Gamma}$$
 with $\Gamma \in \mathcal{N}(\pi)$

The profinite completion of π is defined as the inverse limit of this system :

$$\widehat{\pi} = \lim_{\longleftarrow} \pi / \Gamma$$

Profinite completion

Equip each finite quotient $\pi/\Gamma, \Gamma \in \mathcal{N}(\pi)$ with the discrete topology. The set $\prod_{\Gamma \in \mathcal{N}(\pi)} {\pi/\Gamma}$ is compact. Let $i_{\pi} : \pi \to \prod_{\Gamma \in \mathcal{N}(\pi)} {\pi/\Gamma}$ given by $\{g \in \pi \to \{g\Gamma\}_{\Gamma \in \mathcal{N}(\pi)}\}$. Then $\hat{\pi}$ can be identified with the closure $\overline{i_{\pi}(\pi)}$ in $\prod_{\Gamma \in \mathcal{N}(\pi)} {\pi/\Gamma}$.

 $i_{\pi}: \pi \to \widehat{\pi}$ is injective since π is residually finite.

Profinite completion

 $\widehat{\pi}$ is a compact topological group.

A subgroup $U < \hat{\pi}$ is open if and only if it is closed and of finite index.

A subgroup $H < \hat{\pi}$ is closed if and only if it is the intersection of all open subgroups of $\hat{\pi}$ containing it.

Thm (N. Nikolov and D. Segal (2007))

Let π be a finitely generated group. Then every finite index subgroup of $\hat{\pi}$ is open. In particular $\hat{\pi} = \hat{\pi}$.

Corollary

Let π be a finitely generated and residually finite group, then :

- (i) A finite index subgroup $\Gamma \subset \pi \to \overline{\Gamma} \subset \widehat{\pi}$, $[\pi : \Gamma] = [\widehat{\pi} : \overline{\Gamma}]$ and $\overline{\Gamma} \cong \widehat{\Gamma}$.
- (ii) Conversely an open subgroup $H \subset \widehat{\pi} \to H \cap \pi \in \pi$.

(iii) $\Gamma \trianglelefteq \pi \Leftrightarrow \overline{\Gamma} \trianglelefteq \widehat{\pi}$, and $\pi/\Gamma \cong \widehat{\pi}/\overline{\Gamma}$.

Homomorphisms

An important consequence is :

Lemma

For any finite group G the map $i_{\pi} : \pi \to \widehat{\pi}$ induces a bijection $i_{\pi}^* : Hom(\widehat{\pi}, G) \to Hom(\pi, G).$

A group homomorphism $\varphi: A \to B$ induces a continuous homomorphism $\widehat{\varphi}: \widehat{A} \to \widehat{B}$.

If A and B are finitely generated, any homorphism $\widehat{A} \to \widehat{B}$ is continuous. If φ is an isomorphism, so is $\widehat{\varphi}$.

On the other hand, an isomorphism $\phi : \widehat{A} \to \widehat{B}$ is not necessarily induced by a homomorphism $\varphi : A \to B$.

There are isomorphisms $\widehat{\mathbb{Z}}\to \widehat{\mathbb{Z}}$ that are not induced by an automorphism of $\mathbb{Z}.$

イロト イヨト イヨト

Isomorphisms

Let A and B be two finitely generated groups and $f : \widehat{A} \to \widehat{B}$ be an isomorphism.

For any finite group G the isomorphism $f:\widehat{A}\to \widehat{B}$ induces a bijection :

 $i_A^* \circ f^* \circ i_B^{*-1} : Hom(B, G) \xrightarrow{i_B^{*-1}} Hom(\widehat{B}, G) \xrightarrow{f^*} Hom(\widehat{A}, G) \xrightarrow{i_A^*} Hom(A, G).$ Given $\beta \in Hom(B, G)$ denote by $\beta \circ f$ the resulting homomorphism in Hom(A, G).

Groups A and B with isomorphic profinite completions have the same set of finite quotients : Q(A) = Q(B).

The converse also holds :

Lemma

Two finitely generated groups A and B have isomorphic profinite completions if and only if they have the same set of finite quotients.

イロト 不得 トイヨト イヨト 二日

Profinite rigidity

According to Grunwald and Zaleskii let define the genus of π as :

Definition

 $\mathcal{G}(\pi) = \{ \text{finitely generated, residually finite groups } \Gamma \text{such that } \widehat{\Gamma} \cong \widehat{\pi} \},$ modulo isomorphisms.

A residually finite and finitely generated group π is profinitely rigid if $\mathcal{G}(\pi) = \{\pi\}.$

Question

Which groups are profinitely rigid? Can $\mathcal{G}(\pi)$ be infinite?

Surprinsingly, the following question is still open :

Question

Is a finitely generated free group profinitely rigid?

Image: A match a ma

Profinite properties

One may ask a weaker question :

Question

What group theoretic properties are shared by groups in $\mathcal{G}(\pi)$?

Such properties are called *profinite properties* of a group. For example, being abelian is a profinite property.

The next lemma says that the abelianizations are the same.

Lemma	
$\widehat{\Gamma} \cong \widehat{\pi} \Rightarrow \Gamma^{ab} \cong \pi^{ab}$	J
Corollary	
If π is abelian, then $\mathcal{G}(\pi)=\{\pi\}$	

In general $\mathcal{G}(\pi) \neq \{\pi\}$

Thm (Baumslag 1974); Hirshon (1977))

Let Let Γ and π two finitely generated groups. If $\Gamma \times \mathbb{Z} \cong \pi \times \mathbb{Z}$ then $\widehat{\Gamma} \cong \widehat{\pi}$.

Given a group A and a class $\psi \in Aut(A)$, one can build the semidirect product $A_{\psi} := A \rtimes_{\psi} \mathbb{Z}$.

It corresponds to the split exact sequence

$$1 \rightarrow A \rightarrow A_{\psi} \rightarrow \mathbb{Z} \rightarrow 1,$$

where the action of \mathbb{Z} on A is given by ψ .

The isomorphism type of A_{ψ} depends only on the class of ψ in Out(A).

As a consequence one gets examples of finitely generated and residually finite groups which are not profinitely rigid :

Corollary

Let A be a finitely presented and residually finite group and $\psi \in Aut(A)$ such that ψ^n is an inner automorphism for some $n \in \mathbb{Z}$. Then for any $k \in \mathbb{Z}$ relatively prime to n, $\widehat{A_{\psi^k}} \cong \widehat{A_{\psi}}$.

Example

Let $\pi_1 = \mathbb{Z}/25\mathbb{Z} \rtimes_{\psi} \mathbb{Z}$ and $\pi_2 = \mathbb{Z}/25\mathbb{Z} \rtimes_{\psi^2} \mathbb{Z}$, $\psi \in \operatorname{Aut}(\mathbb{Z}/25\mathbb{Z})$ be given by $\psi(x) = x^6$ for a generator $x \in \mathbb{Z}/25\mathbb{Z}$. Then $\widehat{\pi_1} \cong \widehat{\pi_2}$. In this example ψ is of order 5 in $\operatorname{Out}(\mathbb{Z}/25\mathbb{Z})$.

Since A is residually finite and finitely generated, the profinite completion $\widehat{A_{\psi}}$ can be computed from \widehat{A} and $\widehat{\mathbb{Z}}$.

・ロン ・四 ・ ・ ヨン ・ ヨン

The system of characteristic finite index subgroups $C(n) := \bigcap_{[A:\Gamma] \le n} \Gamma$ is cofinal in A.

For each $n \in \mathbb{N}$ there exists some $m \in \mathbb{N}$ such that ψ^m induces the identity on the characteristic quotient A/C(n).

It follows that $C(n)_{\psi^m} := C(n) \rtimes_{\psi^m} \mathbb{Z}$ is a cofinal system of normal finite index subgroups of A_{ψ} , since $A \cap C(n)_{\psi^m} = C(n)$.

In particular A_{ψ} is residually finite and its profinite topology induces that of A, so the closure $\overline{A} \subset \widehat{A_{\psi}}$ can be identified with \widehat{A} .

By using the automorphisms induced by the elements of Aut(A) on the finite quotients A/C(n) and the equality $\widehat{A} = \underset{\longleftarrow}{\lim} A/C(n)$, one can define an homomorphism Aut(A) \rightarrow Aut(\widehat{A}).

Since Aut(A) is itself residually finite, the above homomorphism extends to a homomorphism $\widehat{Aut(A)} \to Aut(\widehat{A})$.

Therefore any homomorphism $\psi : \mathbb{Z} \to \operatorname{Aut}(A)$ extends to a homomorphism $\hat{\psi} : \widehat{\mathbb{Z}} \to \widehat{\operatorname{Aut}(A)} \to \operatorname{Aut}(\widehat{A})$.

These are key observations for the proof of the following results :

Proposition (Nikolov-Segal 2007)

Let A be a finitely generated and residually finite group and $\psi \in Aut(A)$, then :

$$\widehat{A_{\psi}} = \widehat{A \rtimes_{\psi} \mathbb{Z}} = \widehat{A} \rtimes_{\widehat{\psi}} \widehat{\mathbb{Z}}.$$

(a) $\widehat{A_{\psi}} = \widehat{A} \times \widehat{\mathbb{Z}}$ if and only if ψ induces an inner automorphisms on the finite characteristic quotients of A

Nikolov and Segal have given an example of a finitely generated and residually finite group A with an automorphism $\psi \in \operatorname{Aut}(A)$ such that no positive power of ψ is an inner automorphism, but $\widehat{A_{\psi}} = \widehat{A} \times \widehat{\mathbb{Z}}$.

イロト 不得下 イヨト イヨト 二日

3-manifold groups

In these lectures M will be a compact orientable aspherical 3-manifold with empty or toroidal boundary. For example the exterior E(K) of a knot $k \subset S^3$.

By Perelman's Geometrization Theorem $\pi_1(M)$ is residually finite.

Definition

An orientable compact 3-manifold M is called profinitely rigid if $\pi_1(M)$ distinguishes $\pi_1(M)$ from all other 3-manifold groups.

There are closed 3-manifolds which are not profinitely rigid.

The examples known at the moment are **Sol manifolds** (P. Stebe, L. Funar), or **Surface bundle with periodic monodromy, i.e Seifert fibered manifolds** (J. Hempel).

Examples : Seifert fibered

We describe now the Seifert fibered examples given by J. Hempel.

Let F be a closed orientable surface, $h \in Homeo^+(F)$ and $M = F \rtimes_h S^1$ be the surface bundle over S^1 with monodromy h.

Let $h_{\star} \in \operatorname{Aut}(\pi_1(F))$ be the automorphism induced by h, then $\pi_1(F)_{h_{\star}} = \pi_1(F) \rtimes_{h_{\star}} \mathbb{Z} \cong \pi_1(M)$.

Proposition (Hempel 2014)

If M and N are surface bundles with periodic monodromies h and h^k , for k coprime to the order of h, then $\widehat{\pi_1(N)} \cong \widehat{\pi_1(M)}$.

Seifert fibered rigidity

Thm (G. Wilkes (2015))

Let M be a closed orientable irreducible Seifert fibre space. Let N be a compact orientable 3-manifold with $\widehat{\pi_1(N)} \cong \widehat{\pi_1(M)}$. Then either :

- M is profinitely rigid, i.e. $\pi_1(N) \cong \pi(M)$, or
- M and N are Hempel examples.

Corollary

Let F be a closed orientable surface. A homeomorphism h of F is homotopic to the identity if and only if it induces an inner automorphisms on every finite characteristic quotient of $\pi_1(F)$.

Does the action induced by *h* on all the finite characteristic quotients of $\pi_1(F)$ determine $h_* \in Out(\pi_1(F)$ when *h* is not periodic?

The next examples of torus bundles with Anosov monodromies show that it is not true. $(\square \land (\square) (\square$