RAAGs in knot groups

Takuya Katayama

Hiroshima University

March 8, 2016
In this talk, we consider the following question.

Question

For a given non-trivial knot in the 3-sphere, which right-angled Artin group admits an embedding into the knot group?

The goal of this talk

To give a complete classification of right-angled Artin groups which admit embeddings into the knot group, for each non-trivial knot in the 3-sphere by means of Jaco-Shalen-Johnnson decompositions.
Definition of RAAGs

\(\Gamma \): a finite simple graph (\(\Gamma \) has no loops and multiple-edges)
\(V(\Gamma) = \{v_1, v_2, \ldots, v_n\} \): the vertex set of \(\Gamma \)
\(E(\Gamma) \): the edge set of \(\Gamma \)

Definition

The right-angled Artin group (RAAG), or the graph group on \(\Gamma \) is a group given by the following presentation:

\[
A(\Gamma) = \langle v_1, v_2, \ldots, v_n \mid [v_i, v_j] = 1 \text{ if } \{v_i, v_j\} \in E(\Gamma) \rangle.
\]

Example

\[
A(\bullet \bullet \bullet \cdots \bullet) \cong F_n.
\]
\[
A(\text{the complete graph on } n \text{ vertices}) \cong \mathbb{Z}^n.
\]
\[
A(\bullet \bullet \bullet \cdots \bullet) \cong \mathbb{Z} \times F_n.
\]
Theorem (Crisp-Wiest, 2004)

\(S: \) a connected surface

If \(S \not\cong \#\mathbb{RP}^2 \) (\(n = 1, 2, 3 \)), then

\[\exists \text{ a RAAG } A \text{ s.t. } \pi_1(S) \hookrightarrow A. \]

Theorem (Agol, Liu, Przytycki, Wise...et al.)

\(M: \) a compact aspherical 3-manifold

The interior of \(M \) admits a complete Riemannian metric with non-positive curvature

\[\Leftrightarrow \pi_1(M) \text{ admits a virtual embedding into a RAAG}. \]

i.e.,

\[\pi_1(M) \text{ finite index} \]

\[\exists H \hookrightarrow \exists A: \text{ a RAAG} \]
Theorem (Jaco-Shalen, Johannson, Thurston’s hyperbolization thm)

If \(K \) is a knot in \(S^3 \), then the knot exterior \(E(K) \) of \(K \) has a canonical decomposition by tori into hyperbolic pieces and Seifert pieces. Moreover, each Seifert piece is homeomorphic to one of the following spaces: a composing space, a cable space and a torus knot exterior.

Each cable space has a finite covering homeomorphic to a composing space, and \(\pi_1 \) of a composing space is isomorphic to \(A(\) \). Hence \(\pi_1 \) of the cable space is virtually a RAAG.
\(K := (\text{figure eight knot}) \# (\text{cable on trefoil knot}) \)

\[
E(K) =
\]

We now cut \(E(K) \) along tori...
$E(K) =$

- figure 8
- composing
- cable
- trefoil

Seifert-Seifert gluing
Question (recall)

For a given non-trivial knot in the 3-sphere, which RAAG admits an embedding into the knot group?
An answer to the question

Main Theorem (K.)

K: a non-trivial knot, $G(K) := \pi_1(E(K))$, Γ: a finite simple graph

Case 1. If $E(K)$ has only hyperbolic pieces,

then $A(\Gamma) \hookrightarrow G(K)$ iff Γ is a disjoint union of $\bullet \cdots \bullet$ and $\bullet \bullet \bullet \cdots \bullet$.

Case 2. If $E(K)$ is Seifert fibered (i.e., $E(K)$ is a torus knot exterior),

then $A(\Gamma) \hookrightarrow G(K)$ iff Γ is a star graph or $\bullet \bullet \bullet \cdots \bullet$.

Case 3. If $E(K)$ has both a Seifert piece and a hyperbolic piece, and has no Seifert-Seifert gluing,

then $A(\Gamma) \hookrightarrow G(K)$ iff Γ is a disjoint union of star graphs.

Case 4. If $E(K)$ has a Seifert-Seifert gluing,

then $A(\Gamma) \hookrightarrow G(K)$ iff Γ is a forest.

Here a simplicial graph Γ is said to be a forest if each connected component of Γ is a tree.
Definition

\[\Gamma: \text{ a simple graph.} \]

A subgraph \(\Lambda \subset \Gamma \): full

\[\begin{align*}
\text{def} & \iff \\
\forall e \in E(\Gamma), \ e^{(0)} \subset \Lambda & \implies e \in E(\Lambda).
\end{align*} \]

Lemma

\(\Gamma: \text{ a finite simple graph.} \)

If \(\Lambda \) is a full subgraph of \(\Gamma \), then \(\langle V(\Lambda) \rangle \cong A(\Lambda) \).

Lemma

\(A(\Gamma): \text{ the RAAG on a finite simple graph } \Gamma \)

If \(A(\Gamma) \) admits an embedding into a knot group, then \(\Gamma \) is a forest.
Theorem (Papakyriakopoulos-Conner, 1956)

$G(K)$: the knot group of a non-trivial knot K

Then there is an embedding $\mathbb{Z}^2 \hookrightarrow G(K)$ and is no embedding $\mathbb{Z}^3 \hookrightarrow G(K)$.

Theorem (Droms, 1985)

$A(\Gamma)$: the RAAG on a finite simple graph Γ

Then $A(\Gamma)$ is a 3-manifold group iff each connected component of Γ is a **triangle** or a **tree**.

Hence, in the proof of Main Theorem, we may assume Γ is a finite **forest**, and so every connected subgraph Λ of Γ is a full subgraph ($A(\Lambda) \hookrightarrow A(\Gamma)$).
Proof of Main Theorem(2)

Main Theorem(2)

M: a Seifert piece in a knot exterior, \(\Gamma \): a finite simple graph

Then \(A(\Gamma) \hookrightarrow \pi_1(M) \) iff \(\Gamma \) is a star graph \(\bullet \ldots \bullet \) or \(\bullet \bullet \bullet \ldots \).

We treat only the case \(M \) is a non-trivial torus knot exterior (because the other case can be treated similarly). Let \(G(p, q) \) be the \((p, q)\)-torus knot group.

Proof of the if part. It is enough to show that

\[
A(\bullet \ldots) \cong \mathbb{Z} \times F_n \hookrightarrow G(p, q)
\]

for some \(n \geq 2 \).

Note that \([G(p, q), G(p, q)] \cong F_n\) for some \(n \geq 2 \).

Then \(Z(G(p, q)) \times [G(p, q), G(p, q)] \) is a subgroup of \(G(p, q) \) isomorphic to \(\mathbb{Z} \times F_n \), as required.
The only if part of Main Theorem(2)

M: a Seifert piece in a knot exterior, Γ: a finite simple graph

Suppose $A(\Gamma) \hookrightarrow \pi_1(M)$.

Then Γ is a star graph $\bullet\bullet\bullet\bullet\bullet$ or $\bullet\bullet\bullet\bullet\bullet\bullet$.

Note that, in general, the following three facts hold.

1. If Γ is disconnected, then $A(\Gamma)$ is centerless.
2. $A(\bullet\cdots\bullet\bullet)$ is centerless.
3. If Γ has $\bullet\cdots\bullet\bullet\bullet\bullet$ as a (full) subgraph, then $A(\bullet\cdots\bullet\bullet\bullet\bullet) \hookrightarrow A(\Gamma)$.

Now suppose that $A(\Gamma) \hookrightarrow G(p, q)$ and $E(\Gamma) \neq \emptyset$.

Then Γ is a forest.

On the other hand, our assumptions imply that $A(\Gamma)$ has a non-trivial center.

Hence (1) implies that Γ is a tree.

Moreover, (2) together with (3) implies that Γ does not contain $\bullet\cdots\bullet\bullet\bullet\bullet$ as a subgraph.

Thus Γ is a star graph.
Main Theorem(4)

\(\Gamma \): a finite simple graph, \(\{C_1, C_2\} \): a Seifert-Seifert gluing in a knot exterior, \(T \): the JSJ torus \(C_1 \cap C_2 \)

If \(\Gamma \) is a forest, then \(A(\Gamma) \hookrightarrow \pi_1(C_1) \ast_{\pi_1(T)} \pi_1(C_2) \).

It is enough to show the following two lemmas.

(A) If \(\Gamma \) is a forest, then \(A(\Gamma) \hookrightarrow A(\bullet\bullet\bullet\bullet\bullet) \).

(B) \(A(\bullet\bullet\bullet\bullet\bullet) \hookrightarrow \pi_1(C_1) \ast_{\pi_1(T)} \pi_1(C_2) \).
Main Theorem (4)

\(\Gamma: \) a finite simple graph, \(\{C_1, C_2\}: \) a Seifert-Seifert gluing in a knot exterior, \(T: \) the JSJ torus \(C_1 \cap C_2 \)

If \(\Gamma \) is a forest, then \(A(\Gamma) \hookrightarrow \pi_1(C_1) \star_{\pi_1(T)} \pi_1(C_2). \)

It is enough to show the following two lemmas.

(A) If \(\Gamma \) is a forest, then \(A(\Gamma) \hookrightarrow A(\bullet \cdots \bullet). \) (Kim-Koberda)

(B) \(A(\bullet \cdots \bullet) \hookrightarrow \pi_1(C_1) \star_{\pi_1(T)} \pi_1(C_2). \) (Niblo-Wise)
Let Γ be a finite simple graph and v a vertex of Γ.

$\text{St}(v)$: the full subgraph induced by v and the vertices adjacent to v.

$D_v(\Gamma)$: the *double* of Γ along the full subgraph $\text{St}(v)$, namely, $D_v(\Gamma)$ is obtained by taking two copies of Γ and gluing them along copies of $\text{St}(v)$.

The Seifert-van Kampen theorem implies the following.

Lemma

$A(D_v(\Gamma)) \leftrightarrow A(\Gamma)$.

Lemma (A)

If Γ is a finite forest, then $A(\Gamma) \hookrightarrow A(\bullet\bullet\bullet\bullet)$.

Proof.
Since every finite forest is a full subgraph of a finite tree T, we may assume that $\Gamma = T$.
We shall prove this theorem by induction on the ordered pair $(\text{diam}(T), \# \text{ of geodesic edge-paths of length diam}(T))$ and by using doubled graphs.
If $\text{diam}(T) \leq 2$, then T is a star graph, and so we have $A(\bullet\cdots\bullet) \hookrightarrow A(\bullet\bullet\bullet) \hookrightarrow A(\bullet\bullet\bullet\bullet)$. We now consider the case where the diameter of T is at least 3.
\(v \): a pendant vertex on a geodesic edge-path of length \(\text{diam}(T) \)

\(v' \): the (unique) vertex adjacent to \(v \)

\(T' := T \setminus (v \cup \{v, v'\}) \)

Case 1. The degree of \(v' \) is at least 3.
Hence, we have $A(T) \leftrightarrow A(D_{v_1}(T')) \leftrightarrow A(T')$.

Removing away v and $\{v, v'\}$ from T implies that either the diam decreases or # of geodesic edge-paths of length diam decreases.
Case 2. The degree of v' is equal to 2. We can assume $\text{diam}(T) \geq 4$.

Thus we have $A(T) \leftrightarrow A(D_{v'}(T')) \leftrightarrow A(T')$.
A proof of [Niblo-Wise, 2000]

Lemma (B)

Γ: a finite simple graph, $\{C_1, C_2\}$: a Seifert-Seifert gluing in a knot exterior, T: the JSJ torus $C_1 \cap C_2$

Then $A(\bullet-\bullet-\bullet-\bullet) \hookrightarrow \pi_1(C_1) \ast_{\pi_1(T)} \pi_1(C_2)$.
Proof. We shall construct an embedding
\[A(\bullet\rightarrow) \hookrightarrow \pi_1(C_1) *_{\pi_1(T)} \pi_1(C_2) \]
as follows.

For each \(i = 1,2 \), we take a finite index subgroup of \(\pi_1(C_i) \), which is isomorphic to \(A(\text{St}_{m_i}) \) for some \(m_i \geq 2 \).

Here, \(\text{St}_{m_i} \) = \includegraphics{tikz.png}.

(i) \(\psi(\bullet) \in A(\text{St}_{m_1}) \cap A(\text{St}_{m_2}) \cap \pi_1(T) \cap Z(\pi_1(C_1)) \).
(ii) \(\psi(\bullet) \in A(\text{St}_{m_1}) \cap A(\text{St}_{m_2}) \cap \pi_1(T) \cap Z(\pi_1(C_2)) \).
(iii) \(\psi(\bullet) \in A(\text{St}_{m_1}) \).
(iv) \(\psi(\bullet) \in A(\text{St}_{m_2}) \).

Then the normal form theorem says that \(\psi \) is injective, as desired.
Main Theorem (K.)

\(K: \) a non-trivial knot, \(\Gamma: \) a finite simplicial graph

Case 1. If \(E(K) \) has only hyperbolic pieces,

\[A(\Gamma) \rightarrow G(K) \iff \Gamma \text{ is a disjoint union of } \bullet \bullet \ldots \bullet \text{ and } \bullet \bullet \ldots \bullet. \]

Case 2. If \(E(K) \) is Seifert (i.e. \(M \) is a torus knot exterior),

\[A(\Gamma) \rightarrow G(K) \iff \Gamma \text{ is a star graph } \bullet \bullet \ldots \bullet \text{ or } \bullet \bullet \bullet \ldots \bullet. \]

Case 3. If \(E(K) \) has both a Seifert piece and a hyperbolic piece and has no Seifert-Seifert gluing,

\[A(\Gamma) \rightarrow G(K) \iff \Gamma \text{ is a disjoint union of star graphs.} \]

Case 4. If \(E(K) \) has a Seifert-Seifert gluing,

\[A(\Gamma) \rightarrow G(K) \iff \Gamma \text{ is a forest.} \]
Future work

Question
Which knot group admits an embedding into a RAAG?

Every knot group admits a \textit{virtual} embedding into a RAAG. This question seems to be connected with the following question.

Question
Which knot group is bi-orderable?

Since every RAAG is bi-orderable (Duchamp-Thibon), every knot group which admits an embedding into a RAAG must be bi-orderable.
Thank you.