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Goal

Geometrically understand the higher-dimensional analogues of the
2-dimensional Painlevé equations.

Idea

Characterize integrable systems studying the degeneration of the Liouville tori
and the spectral curves.

Contents
1. A review of Painlevé-type equations
2. Classification of 4-dimensional Painlevé-type equations

3. Autonomouos (isospectral) limit of Painlevé-type equations

4. Degeneration of the spectral curves and the Liouville tori
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The Painlevé equations

o The Painlevé equations are 8 types of nonlinear second order ordinary
differential equations with the Painlevé property (its general solution
has no critical singularities that depend on initial values) other than linear
equations, differential equations satisfied by elliptic functions, equations
solvable by quadratures.
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The Painlevé equations

@ The Painlevé equations are 8 types of nonlinear second order ordinary
differential equations with the Painlevé property (its general solution
has no critical singularities that depend on initial values) other than linear
equations, differential equations satisfied by elliptic functions, equations
solvable by quadratures.

@ The Painlevé equations govern the isomonodromic deformation of
certain linear equations.

@ The Painlevé equations can be expressed as Hamiltonian systems.

® These 8 equations are linked by certain limiting processes
(degeneration).

o = = = x 9ace
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The Painlevé equations and Isomonodromic Deformation

The Painlevé equations has another important aspect; they govern
isomonodromic deformation of certain linear equations.
Let us consider m coupled linear ODE of first order:

d
d—)’(X) = A(x)y(x).
X
Here y(x) is an m-component vector, and A(x) is an m X m matrix, rational in

x and has poles at#, (v =1,...,n) and at ¢, = co. Let us consider a
fundamental matrix solution Y (x):

d
T Y (%) =AY (). (1
X
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Let P! = P!\ {t1,...,tn, t}, and 7: ﬁ — P! the universal covering. Let y be

a path in P!, starting at the point x, and ending at Xy such that 7(x) = 7(x,).
There exists a nonsingular constant matrix A, such that

Y(xy) = Y(x)M,.

The mapping [y] = M, defines a representation of the fundamental group of
P}, the monodromy representation associated with the differential system.

iY(x, 1) = A(x, )Y (x,1), (D)
ox

Given a differential system (1), is it possible to deform it while preserving its
monodromy representation? The answer is that to ensure the isomonodromy
of the deformation, Y (x), as a function of deformation parameters, has to
satisfy a set of linear partial differential equations.

(%Y(x,t) = Bi(x, )Y (x,1).
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Linear equation
0
=Y (x,1) = A(x, DY (x,1),
ox

admit isomonodromic deformation.

Y (x,t) satisfies

iY(x, )= A(x, )Y (x,1)
Ox

0
6_hy(x7t) = Bi(x’ t)Y(xat)’

l Frobenius integrability

0A(x, 1) 3 0B;(x,t)
0t; ox

+ [A(x’ t)’ Bi(xa t)] (2)

The Painlevé equations are the solutions of (2) for certain A(x,)’s.
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The Painlevé equations

@ The Painlevé equations are 8 types of nonlinear second order ordinary
differential equations with the Painlevé property (its general solution
has no critical singularities that depend on initial values) other than linear
equations, differential equations satisfied by elliptic functions, equations
solvable by quadratures.

@ The Painlevé equations govern the isomonodromic deformation of
certain linear equations.

@ The Painlevé equations can be expressed as Hamiltonian systems.

® These 8 equations are linked by certain limiting processes
(degeneration).

o (=] = = E A
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Hamiltonians of the Painlevé equations

dq _OH dp _ _OH
dt  dp  dt  dq

H(t;q.p) =p> - ¢ - 1q,
Hy (a:tiq.p) = p* = (¢> +)p - aq,
Hy (@, B;t;9,p) = pq(p—q —1) + Bp + ag,
tHm(Ds) (t:4,p) = p¢° +qp — 4 - 2,
tHu(D7) (a;t;9.p) = p°q” + aqp +1p +q,
tHu(De) (@, Bit:q.p) = p°q° — (¢ — Bg — )p — aq,
tHy (@, B,y:t;q,p) = p(p +1)q(q = 1) + Bpg + yp — (a + y)tq,
t(t = DHvyi (@, B.y. €:t:4.p) = q(q — 1)(q - O)p*
+{eqlg—1) - Qa+B+y+e)q(g—1)
+y(q—-1D(g—-tp+ale+p)(g—1.
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The Painlevé equations

@ The Painlevé equations are 8 types of nonlinear second order ordinary
differential equations with the Painlevé property (its general solution
has no critical singularities that depend on initial values) other than linear
equations, differential equations satisfied by elliptic functions, equations
solvable by quadratures.

@ The Painlevé equations govern the isomonodromic deformation of
certain linear equations.

@ The Painlevé equations can be expressed as Hamiltonian systems.

o These 8 equations are linked by certain limiting processes
(degeneration).

=] =y = = E A
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The first to fifth Painlevé equations can e derived from the sisth Painlevé

equation by degeneration process.
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These degeneration processes correspond to the confluence of the singularities
of corresponding linear equations. (cf. confluence of hypergeometric
functions:Gauss to Kummer, Bessel, Hermite, Airy)

Confluence of Singular Points of linear equations
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Various extensions and analogues of the 2-dimensional Painlevé
equations are known.

The relations among the equations from different origins are not obvious
clear and the overall picture is not clear

Recently, (roughly speaking,) a “classification'' of the 4-dimensional
Painlevé-type equations was accomplished (Sakai [9],
Kawakami-N.-Sakai [3], Kawakami [4]).

The classification is based on the classification of the Fuchsian linear
equations with 4 accessory parameters up to Katz’ operations and the
degeneration processes.

There are 40 types of 4-dimensional Painlevé-type equations in their list.
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Degeneration Scheme of the 4-dimensional Painlevé-type equations (KNS)
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Degeneration Scheme of the 4-dimensional Painlevé-type equations (KNS)
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@ Some of these 40 equations look similar to each other.

eg. H& ! and HY™ pointed out by H. Chiba:

Hézrl,tl =p} - (Qf + tl) p1+Kiqi+pip2 + p2g2 (q1 — g2 + 12) + Oogo,

2
~ q K2
Nt =p? — (Zl + I)Pl - (90 + ?) q1 + pip2 + p2q2 (q1 — q2) + Ooqa.

o Is there any way to distinguish these 40 types of equations?
@ We need to study intrinsic nature (geometry) of these equations.

o Let us first consider easier cases; the autonomous cases(=integrable
cases, the Hitchin systems).
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Integrable system in Liouville’s sense

Definition 1

A Hamiltonian system (M?", w, H) is (completely) integrable in Liouville’s
sense if it possesses n = % dim M (i.e. the maximal number of) independent
integrals of motion, f| = H, f>,..., fu, which are pairwise in involution with
respect to the Poisson bracket; {f;, f;} = 0 for all i, j.

This definition of integrability is motivated by Liouville’s theorem.

Theorem 1 (Arnold-Liouville)

Let (M, w, H) be a completely integrable Hamiltonian system with integrals of
motions f1 = H, ..., f,, and let M jﬁ denote the connected component of a
regular level set that passes through x € M. If M Ji is compact, then there
exists a diffeomorphism from Mjﬁ to the torus T = (R/Z)", under which the
vector fields X¢,, . .., Xy, are mapped to linear (i.e. translation-invariant)
vector fields.
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Example (Harmonic oscillator)
The harmonic oscillator has a Hamiltonian

1, 1
H = -p*+ =a’q’.
P T34

The phase space is fibered into ellipses H = ¢ except for the point (0, 0) which
is a stationary point. In the coordinates p = pcos 6, g = £ sin 0 the flow reads:

p=V2H, 6= at+ 6.
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In the algebraic settings, we allow family of abelian varieties to have
degenerate fibers.

Definition 2

An algebraically completely integrable Hamiltonian system consists of a
proper fiat morphism H: M — B where M is a smooth Poisson variety and B
is a smooth variety such that, over the complement B \ ! of some proper
closed subvariety ! C B, H is a Lagrangian fibration whose fibers are
isomorphic to abelian varieties.

Akane Nakamura2! Autonomous 4-dim. Painlevé 9th March, 2016 19/59



There is a correspondence between

o Lax pair flows of matricial polynomial:

%A(X;t) = [P(A(x; 1), 1)y, A(x, 1)]

and

o linear flows in the Jacobian of the desingularization S of the
compactification of the spectral curve

So = {(x.y) € C* | det(yI — A(x,1)) =0},

through the eigenvector mappings.

Akane Nakamura22 Autonomous 4-dim. Painlevé 9th March, 2016
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The Lax equation

Many integrable systems are known to have Lax pair expressions:

dA(x;t)
dt

+ [A(x;0), B(x;0)] =0, (3)
where A(x;t) and B(x;t) are m by m matrices and x is the spectral parameter.

From this differential equation, tr (A(x; t)k) are conserved quantities of the
system:

%“ (A D) =t (k[AG; 0, BOsn] A *!) = 0.

Therefore, all the eigenvalues and the coefficients of the characteristic
polynomials are all conserved quantities.
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Isomonodoromic and isospectral deformation

Isomonodormic deformation

oY (x,1)
= A(x, )Y (x,1),
aya(; 5 — 8Agt”) - aB{;x’t) +[A(x, 1), B(x,1)] = 0.
= B(x, )Y (x,1), *
ot
Isospectral deformation
A(x; )Y (x;1) =Y (x51)Ao(x3 o),
dA(x;1)
. — +[A(x;1), B(x;1)] = 0.
{dY(x,t) _ BeDY (e, 7 [A(x; 1), B(x;1)]
dt
Remark

o The only difference is the existence of the term ‘g—f in isomonodromic

deformation equation.

@ In fact, we can consider isospectral problems as the special limit of
isomonodromic problem with a parameter 9.
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Isomonodromic deformation to isospectral deformation

To see its connection to the isospectral problem, we restate the
isomonodromic problem as follows:

Y -
58— = A(x, 1Y,
dx

Y .
— = B(x,DY
Y (x,0)Y,

where 7 is a variable which satisfies d—f = 0. The integrability condition
(59 i = = 6‘?[ an is equivalent to the followmg

0A(x,T) 563(}5, f)
ot ox
= (6 = 1): (usual) Isomonodromic deformation

+[A(x, 1), B(x,D)] = 0. “4)
= (6 = 0): Isospectral deformation
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Autonomous limit of Painlevé equation

Example (Autonomous limit of the second Painlevé equation)

We take the second Painlevé equation as an example.

Y i i 3 - ) - _1)
5‘;— = ADY, A = (A5VHx + ATV Hx + ALV (),
X
oY ) : 3 - _
—== BDY B =(ATVOx+BiD).
ot
where
NI AL T Y PN 0 1
Aoo (t)_(O 1)’ Aoo (t)_(—p+q2+f 0 il
A — ~, - 2 f A ~ 1
Ac(X)l)t:( 194 et q ),Bt:( 9 )
O=\p-¢-na-x2 p-a2) PP p-g2-7 0

ACD = UTACDY fori=1,2,3 B =U"'BU, Uz(g (1))
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Example (continued)

The deformation equation (4) is equivalent to the following differential
equations.

dq 5 - dp du
Hoop-g?-i L=opg+o-x, — =0.
a - P ar P o

The first two equations are equivalent to the Hamiltonian system

dq _ 0Hn(6) dp _ _9Hu(d)
dt dp = dt dqg

with the Hamiltonian
Hy(6) :=p* = (¢° + Dp + (k1 — )q.

When 6 = 1, it is the usual Hamiltonian of Hjy.

Akane Nakamura?? Autonomous 4-dim. Painlevé 9th March, 2016
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Example (continued)

Taking the limit 6 — 0, we obtain an integrable system with a Hamiltonian
h = Hu(0) = p* = (¢° + Dp + k14,
and a Lax pair®

dA(x)
dt

+[A(x), B(x)] = 0.
The spectral curve of the Lax pair is

det(yI — A(x)) = y> — (x> + D)y —kjx —h = 0.

4We rewrite A(x) = A(x,f) and B(x) = B(x,1).

&)
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Autonomous limit of 4-dimensional Painlevé-type equation

One of the easiest examples in 4-dimensional Painlevé-type equation is the
first matrix Painlevé equation [Kawakami].

Example (autonomous limit of the first matrix Painlevé equation)

The linear equation is given by
A(x) = (Aox® + A1x + Ay), B(x) = Agx + By,

_ 0O, I _ 0, Q _ —P Q2+f12

_ (02 20 [ @ u _ p1/2 —pau
Bl_(lz 02)’Q_(—Q2/M %)’P_((szZz—Kz)/u P1/2)'

The spectral curve is defined by

det (yly — A(x)) =y* = (2x% + 27x + h) y? + 28 + 2x* + b

+t~2x2+(fh—l<§)x+g=0.
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Example (continued)

The explicit forms of two functionally independent invariants are

h = H"™ =tr (P2 - 0° - iQ)
2
p .
==2py (p2gq2 — K2) + 31 -2qii =291 (47 - @) + 40190,

g =G =qs (pip2+ 347 - 2 + 1) - xap1

(P1p2+ 347 — g2 +7) = 26341

From the similar direct computations, we obtain the following.

Theorem 2 (N.)

As the autonomous limits of 4-dimensional Painlevé-type equations, we obtain
40 types of integrable systems
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Characterization of integrable systems

@ The Fomenko school considered topological classification of
4-dimensional real integrable systems by studying bifurcation diagram
(the set of images of critical points of the momentum mapping).

@ The degeneration of Liouville tori characterize integrable systems.

@ With this guiding principal, what can we conclude for our case, which are
more natural to be considered as complex integrable systems?
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Liouville tori fibration

Let us start from 2-dimensional integrable systems derived as the autonomous
limits of the Painlevé equations. For the generic value h € C, the fiber of the
momentum map

Hy: M - C, (p,q) v~ Hj(p,q)

is an affine part of 1-dimensional complex torus, and can be completed into an
elliptic curve. After extending the base curve to P!, an elliptic surface is
naturally defined as the fibration of the Liouville tori.

Theorem 3

Each elliptic surface thus defined from the Liouville tori fibration of the
autonomous 2-dimensional Painlevé equation has the following type of
singular fiber over oo € P,

’ | Hvi | Hv | Huos) | Huo,) | Huoy | Hv | Hu | Hi |
Kodaira | I, | I | T I L [V || Ir
Dynkin | DV [ DD | DI | DIV | D0 [ED [ ED [ ED
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Example (The autonomous first Painlevé equation)

The Hamiltonian of Py is Hy = p*> — (¢° + 7q). We view it as elliptic curve over
C(h):

X = {(CI,P, h) € A%q,p) XAy | p*=q +ig+ h} — A,
Replacing ¢ = g/h% p = p/h?, h = 1/h, we obtain the co-model:
X2 ={(@ph) € A ;) x AL | P> =@ +Th*G+ R} > AL

After minimal desingularization of the Weierstrass model W = X, uX, - P,
we obtain the the desired elliptic surface.

v
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Example

The discriminant and the j-invariant of 5> = ¢> + 7h*g + h> are
I =h'°Q27 +4P0%), j= BZL_
27 + 483 K2

Thus, the singular fiber of 4 = oo of the Liouville tori fibration has Kodaira
type II*, or Eél) in Dynkin’s notation.

- | *
general 0 I I Il
fiber: 1
elliptic Q
curve
1N 0]
P-I H ' H
H i : )
h+ h- 0o h
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Liouville tori fibration (2-dimensional case)

@ Consider a Hamiltonian of an autonomous 2-dimensional Painlevé
equation in Weierstrass form

p* = ¢ +a(h)g+b(h), (a(h),b(h) € C[h]). (6)

as an elliptic curve over C(h), where 4 is the Hamiltonian.

’ compactification ‘

Weierstrass model: ¢: W — P!,

’ minimal disingularization ‘

Kodaira-Néron model: ¢: S — P!.

Possible singular fibers of elliptic surfaces are classified by Kodaira.

Tate’s algorithm tells the Kodaira type of singular fiber from the
discriminant and the j-invariant of the equation (7).
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Tate’s algorithm

o Tate’s algorithm: compute the type of fiber from
! =4a(h)3 + 27b(h)2 . discriminant of the cubic,

. _4a(h)’
jE—

Jj-invariant

of the equation y> = x3 + a(h)x + b(h).
o The Kodaira types of singular fibers are determined as in the table by the
valuation ord, (! ), ord, (j) of ! and j.

Kod. | Dynkin | ord,(! ) | ord,(j) || Kod. | Dynkin | ord,(! ) | ord, (j)
Iy - 0 >0 | DY 6 >0
Im Agl)_l m —-m I Df‘lr)m 6+m —m
11 - 2 >0 [ v | ED 8 >0
m | AP 3 >0 || m | EY 9 >0
v | Al 4 >0 | EY 10 >0

: Tate’s algorithm and Kodaira types
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For generic value i € C, the fiber of momentum map
Hy: M - C, (p,q)— Hi(p,q),

the fiber is a genus 1 curve. After transforming the curve into the Weierstrass
form, we can follow the same procedure as in the case of Hj, and the result
follows.

Remark

The configurations of the components of the singular fibers are exactly the
same as those of the anticanonical divisors of the corresponding Okamoto’s
space of initial conditions of the Painlevé equations.

Hyi | Hv | Huwmg) | Hmo,) | Hmmog | Hiv | Hon | Hi
QY (D D (D (D (D (D (D

Dyn | DV | D" | D{ DS D’ [ED [ EV | E]

The intersection diagram of the aniticanonical divisors of Okamoto’s space of the 2-dimensional Painlevé

equations
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Degenerations of spectral curves

o For 4-dimensional integrable systems, the Liouville tori are two
dimensional (i.e. compactified to Abelian surfaces)

i M —C* (qupiqp2) = (Hy, H).

— not easy to study their degenerations.

@ Jacobians of spectral curves can be identified with the Liouville tori via
the eigenvector mapping.

@ | bifurcation of Liouville tori

~ | discriminant locus of the spectral curve fibration

o It is easier to study the degeneration of the spectral curves than the
degeneration of the Liouville tori.
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Theorem 4

The elliptic surface constructed as the spectral curve fibration of each

autonomous 2-dimensional Painlevé equation has the singular fiber of the
following type over .

|

| Hvi | Hv | Huwy | Huw, | Huoy | Hv | Hu | Hi |

Kod [ T | T L I, L [v|ur [
Dyn | DV [ D" | DV | DIV | D" |ED | EV | EY

The singular fiber at i = oo of spectral curve fibrations of autonomous 2-dimensional Painlevé equations

Outline of the proof.

@ Derive defining equations of spectral curves from Lax equations.

@ Transform spectral curves into Weierstrass form (using Magma, Sage or
Maple).

@ Compactification and minimal desingularization.

o Compute discriminants and j-invariants and apply Tate’s algorithm to
find the types of singular fibers.
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Spectral curve fibration

Example (spectral curve fibration of the first Painlevé equation)

d*q - 0A 0B
— =6 t— —-0—+[AB]=0,
a2 1T ot ax+[ |
2 2
[P x“+gx+q°+t (0 x+2¢q
A(x)_(x_q » ) B(x)—(1 0 )

The spectral curve associated with its autonomous equation is defined by
det (yI, — A(x)) = 0.

This is equivalent to
v =x3+7x+ H,

where & := Hy = p* — ¢° + fq. We view it as the defining equation of elliptic
curve over A}i.
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Example (continued)

o Let X; be the affine surface defined by equation y* = x> + 7x + h:

Xy ={(r.y.h) € AL x AL |y = x> +ix+h} —> AL

@ Upon replacing 7 = h™!, ¥ = h™2x, ¥ = h=>y we obtain “co-model”:

Xy = {(%5.h) € Al ;) X AL | 377 =2 +ih* 5+ I} — AL

o Weierstrass model ¢: W = X; UX; — P! = Al U A%.

U minimal disingularization ‘

o Kodaira-Néron model ¢: S — P! = A;l U A%.

Akane Nakamura#4! Autonomous 4-dim. Painlevé 9th March, 2016
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The discriminant and the j-invariant are ¥ + 7h*% + h° is

U =4 (i) +27 ()" = B (27 +4P72), orde(!) = 10
Ay R R
77 CR10Q27 +4PBR2) 27 +4PRY

orde(j) = 2.

The surface S — P! has singular fiber of type IT* (or Eél) in Dynkin’s
notation) at & = oo.

....... *
general [\ 1o ' I I
fiber: —
elliptic O
curve
i 0]
P’ I R S
h+ h_ oo h
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Spectral curve fibration (2-dimensional case)

@ Consider a spectral curve of an autonomous 2-dimensional Painlevé
equation in Weierstrass form

yv2 = x> +a(h)x +b(h), (a(h),b(h) € C[h]). (7

as an elliptic curve over C(h), where 4 is the Hamiltonian.

’ compactification ‘

Weierstrass model: ¢: W — P!,

’ minimal disingularization ‘

Kodaira-Néron model: ¢: S — P!.

Possible singular fibers of elliptic surfaces are classified by Kodaira.

Tate’s algorithm tells the Kodaira type of singular fiber from the
discriminant and the j-invariant of the equation (7).
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For generic value & € C, the spectral curve of Hy (J = I, I, III(Dg), 1II(D7),
III(Dg), IV, V,1V) is a genus 1 curve. After transforming the curve into the
Weierstrass form, we can follow the same procedure as in the case of Hj, and
the result follows.

Remark
o The agreements of singular fibers at 7 = oo of the spectral curve
fibrations and the Liouville tori fibrations are not coincidences.
o The Liouville tori are related to the Jacobians of spectral curves through
eigenvector mapping, and taking Jacobian is isomorphism in genus 1
cases.
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Genus 2 fibration and Liu’s algorithm

@ We apply a similar method to our 40 autonomous 4-dimensional
Painlevé-type equations.

@ The number of independent conserved quantities is 2.

@ The diminsion of the Louvielle tori is 2 and the genus of the spectral
curves is 2.

o Let /& be one of the independent conserved quantity of the system. (We
fix the other conserved quantity to the generic value.)

@ We construct spectral curve fibrations from explicit forms of spectral
curves in the Weierstrass form.

6
¥y = ) aihx

i=0

@ Attach another affine model given by x = x/h, y = y/h3, h=1/h.
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o Classification of fibers in pencils of genus 2 curves are given by Ogg [8],
litaka [2] and Namikawa-Ueno [7].

@ There are 120 types in Namikawa-Ueno’s classification.

o Liu [6] gives the genus two counterpart of Tate’s algorithm.

genus of
spectral curve

types of singular
fibers in pencils

algorithm to determine
types of fibers

2-dim. Painlevé 1

Kodaira

Tate’s algorithm

4-dim. Painlevé 2

Namikawa-Ueno

Liu’s algorithm
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List of singular fibers of spectral curve fibrations

Let us denote H| = h, H, = g.
Theorem 5 (N.)

40 types of autonomous 4-dimensional Painlevé type equation define two
rational surfaces with relatively minimal fibrations ¢;: X; — P' (i = 1,2) of
spectral curves of genus 2 as spectral curve fibrations. Their singular fiber at
H| = oo and Hy = co are as in the following tables.

Outline of the proof.

Derive defining equations of spectral curves.

@ Convert spectral curves into Weierstrass form (using Maple).
@ Compactify and consider the minimal desingularization.
o

Compute the discriminant, Igusa invariants and other invariants of the
sextic.

Apply Liu’s algorithm to determine the Namikawa-Ueno type of fiber at
H; =c0 (i =1,2).
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Example

@ The characteristic polynomial of a Lax equation of the Garnier system of
type % is expressed as

2 _ 045 107 3 4 2722 _ 179/2 _ 149/2
v =9x" +9f1x” +3fx"  —hx+g, h= HGar,fl’ g= HGar,fz'

@ Upon replacements X = x/h, y = y/h3, h = 1/h, we have “co”-model:
72 = 9R0x3 + 9F RO x> + 3h8Trx? — W x + gh®.

o Compute Igusa invariants and other invariants of this quintic.

e Namikawa-Ueno type of the fiber at 4 = co is VII*, from Liu’s algorithm.
(Type 22 in Ogg’s notation.)

The numbers in circles: multiplicities of components in the reducible fibers.

“B":(-3)-curve, the rest: (-2)-curves.
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Example (continued)

Similarly, we can associate another surface to each system: spectral curve
fibration with respect to another conserved quantity “g”. After replacing
X =x/g, ¥ =y/g, & =1/gin the above example, we obtain an affine
equation around g = oo;

72 =9gx° +97,3° x> + 35 x? — 3 hx + °.

From Liu’s algorithm, the fiber at g = oo is type VIII — 4 in Namikawa-Ueno’s
notation.

9
VIII - 4: H?

Gar, ty
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Remark

o Its dual graph contains, as a subgraph, the extended Dynkin diagram of
the unimodular integral lattice D7,.

@ Mordell-Weil group of f: X — P! is trivial (Kitagawa [5, Thm 3.1]).

@ It can be thought as a generalization of the fact (Thm4) that the spectral
curve fibration defined by the autonomous Hj (the most degenerated
2-dimensional Painlevé equation) has the singular fiber of type Eg = Dg.

Kodaira type II*(Dynkin type Eg): Hj

“The notation is as in Conway-Sloane [1]. In some literatures, this lattice is
expressed as " 2.
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Spectral curve fibration with respect to Hgy, 7,

[ Ham. [ spectral type [ N-U type [ Dynkin [ # [ Ogg l
HGE T TILILILILLL [ _ Zx@ | 3
HE o (OH(),11,11,11 L, - @Ox@ | 33
Ha o F T ommmm | 1, - Oxr | 3
Ht YL | VT (-1) | EgDs(-D) | 3)x@ | 29a
Hiirr, MHM.MMIT | IVI-(-1) | Ee-Ds-(-1) | 3)x @) | 29
HIZTT T () | I0L-D) | Er-Ds-(-D) | @ x@) | 29

Gury | (2 (WAL | V(1) | Eg-De-(-1) | (3)x (2 | 29
Howy o | (D2 (a1l [ MPG-(-D) | E-De(-1) | O x(2)? | 2%
Hea (WO)IT [ T, BT, CEREEE
Hiarn, (D)D) | I, B ® 5
How W (@ [ g el o 35
HEo [ @@ye | e Exl; @’ | 5
Hepy, (D () | V- | EeEr-D) | ®) m
HIZET (), (1 | W=D | ErE (D) | @7 | 29
Hiqr, @O [ %3 - & T
HEL @ | I - o 1z

The singular fibers at Hgar », = oo of spectral curve fibrations
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Spectral curve fibration with respect to Hgy, 7,

[ Hamiltonian | spectral type | N-U type Dynkin # [ Ogg |
HEDFET T LT T o - D<@ | 33
A IO ORI N N - x| 3
T o0.000 | 1, - Ox2 | 33
Garty (M. T - D<@ | 3
é’m“ (Do (O 1L [ T, - G)x 7 | 33
e IO I - @x@ | 3
it (OXO)ITLIT | IV-E-(-1) | Eg-Ds-(-1) | 3)x @) | 29
é’aft;“ (@O | IFT-—1) | ErDs<-1) | @) x @) | 29
G £ MYX(LMD) | IVAV-(=1) | Ee-Ee-(-1) 3)2 2
o ra ()2 (D) | IVIF(—1) | Eg-Er-(-1) © 2
o (12, ((1)((1)) -1, E7-II; ®) 23
arr (D). (1) 11, Eg I 27 75
Ganry (@)ADH.IT X3 x 531
Hie | @@ Il | VIF - o> =
B 12 @O v - B) 19
Gen s Ny | V4 - © o

The singular fibers at Hp... 7. = oo of spectral curve fibrations
Autonomous 4-dim. Painlevé

Akane Nakamura>?

9th March, 2016

50/59



! .y 141414141 1+1+1+1+1
1"0" 0" "Gar,ty ' Gar,ts
®\ /@ ! .
9 2 0 !'p!q q
" 0
@ @E0 'L a tnl o8
@ #0 0 11 0 &
@ @ 0 0 0 11
for Ine o g
3414141 3414141 L. s g2+l
EEPYRY Héars  » Héarss 1t o

5 5
| | 54141 54141
Yot o . 2 2
WEEE g (1) HZ T HE

$
0 0 I1
®\ @ @ ; 0 ?
9@9999 #1 0 0 0&
®/ 0 0 O

3,3

I I st3+l
TR 272
m-r 50 (r1): HGar,t—'l

! .
I1"1"0' H

2+1+1+1 2+1+1+1
Gar ti ' Gar,t

0
I'n

!
no 11

1
for Il ! 1! m

@, : :

@)@

@

| | . 3+1+1 3+1+1 2+2+1
L I L | H H
v Il' (t1): Gar,ty ' Gar,it; ' Gar,ti

Q. © $
O @

11
"0 !l 0 !nd

z #1 0 O oé

0 0 0 !1
26O for V'l Il m

3
VIR (DD

L ©
@
©_@



| . 4+1 5
X1 3:HAT HS

© ! s
S0 11110

et’ »11 0 0 !1%

b1 1111 of
O—2306E06a0W , | 4

3
m* v gl 1A H8*2 ! L.y 2t
H 1 y H | H
Gar,t1 Gar,t1 =t 2 HGar,t*z

oo
@
@
&11é1+a 7
@
OO0
©

AN
, . @O0
"0 0 !1 0

" 0
"0 1111 !n!l 1%
b1 0 o 1 &

00 0 1
VI Q)i HE? HES
® ! $
11011 0
2 @ "0 0 0 ll%
#1 0 0 0&
O3B0 ; , ,
! $
0 0 1 0
@ ® "0 11 1 !n%
DBy @E- DD+ 0 1 11
00 0 !1
for 11V 1 11},
n!!lw:Hé;i

@



VI v (1) H3'?

Gar,t5
® @ | .
11011 0
© © »0 11 0 !1%
b1 0 o 08
O3 @ &0 5 | ¢ o0
VI W2

Y Gar,tz'  Gar,t
|

! $
0 1111 0
@ "11 1 0 !1%
0
DB D ©®-G @@ D#1 1111 0
1

0 0 o0
5,3
WSt (L) HE 2
1 ! 3
00!1 0
2 © 55000!1%
OO @O @@ Do o o
01 0 0
V!:Hgar,t*g
! $
0 0 11 0
@ »0 0 11 11%
b111 0 of
-6 "' °
9
VIL 4iHE
"1 011 0°
® fiooow%
#1 0 0 1&
()19 D@D |, .,



Spectral curve fibration of Fuji-Suzuki equations with respect to H

l Ham. ‘ spectral type ‘ N-U type ‘ Dynkin ‘ # ‘ Ogg ‘
HYS [ 2121111111 | I - a6 | 41
i | anmarit | oy, ; an | a1
Hi | (21111 1, - a7 41
)

HS;Z} (I (1), (1)1 43 - (19) 41
iy

HI%st (1)37 (ID)(1) H4_4 - (20) 41
Ea

HI%FSj (D3, (1)1 s - Q1) 41
e

Hyggs | (D3, (13 113 - (18) | 4

HEy | QLT | s ; )% (2) | 41a

Y it [ vy [E-1y | a3) | 41b

The singular fibers at H = oo of spectral curve fibrations

of autonomous 4-dimensional (degenerate) Fuji-Suzuki equations
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Spectral curve fibration of Fuji-Suzuki equations with respect to G

’ Ham. \ spectral type \ N-U type \ Dynkin ‘ # ‘ Ogg ‘
G [ 2121111111 il - G2 | 22
Ghd | anm.21,111 | 1 (par[5) - © | 43
Gy [ (DD, D(D) | I (par[5]) - OREE
Gé%:zz (11)(1), (1)21 | 13 (par[5]) - 32| 43
GE%;S% ()3, (11)(1) | Iy (par[5]) - © | 43
Gyre | (5. (1l | 105 (parlS)) . ©) | 43
Gird | (Ds(D)s | I (par[S)) i 32 | 43
GLy | QML | IV-I-(=1) | As-Es-(=1) | (6) | 42
Gy | (D))ITT [ 1X-4 : 5 1 44

The singular fibers at G = oo of spectral curve fibrations
of autonomous 4-dimensional (degenerate) Fuji-Suzuki equations
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Spectral curve fibration of Sasano equations with respect to H

Ham. \ spectral type \ N-U type Dynkin \ # \ Ogg ‘

HY® | 3122221111 [ -L-0] 4-Ds-0 [ B x 22| 2

He' | 11,2222 [ 5-F-0] 4-Ds-0 | G)x@ | 2

H524 2)2),11HAa) | Is - I; -0 Ay —Dg—-0 3) x (2)2 2
3+2 .

Hee | 1l @@) ] | 5-T-0| AA-D;-0 | ®)x@ | 2
L)

2 | 03,20 | 5--0| 4-Dg-0 | ®x@? | 2
242

Higo | (0s@) | B-It-0| A-Dy=0 | B)x4) | 2
3.3

HZS (1) L-1:-0| A -Djp-0 | @x2?% | 2

The singular fibers at H = co of spectral curve fibrations

of autonomous 4-dimensional (degenerate) Sasano equations
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Spectral curve fibration of Sasano equations with respect to G

[ Ham. [ spectraltype | N-Utype | # | Ogg |
Gge | 3122221111 I 2% 4
GDs | (1,222 | T, (par4]l) | 4) | 5
G?ﬁ (2)(2),(111)(1) | II, (par[4]) | (2)> | 5
G:2 | (1, @@ | L paran | @ | s
6.2 | (sl@@ | L parap | @ | s
G:2 | we@@ | mspartan | @ | s
Giil | @un | meopardap | @2 ] s

The singular fibers at G = oo of spectral curve fibrations

of autonomous 4-dimensional (degenerate) Sasano equations
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Spectral curve fibration of Matrix Painlevé equations with respect to H

Ham. [ spectral type | N-Utype Dynkin | # [ Ogg |
Hyt 222222211 [ Tp-T; -1 [Tp-Dy—1] (2> [ 14
HY (112222 | Iy-T' -1 [Ig-Ds-1] ) | 14
11}4;(‘;)6) Q.11 | Ip-L-1 |[Ig-Dg—1 [ (2)? | 14
Miby | @@,y | h-I-1 |I-D;-1] 4 | 14
Hﬁ%g) (2)a, (11), - -1 [Ip-Ds—-1[ (2% | 14
HN @)A22, | Ig-Iv =1 | In-Es—1 | 3) | 14
HYt @uatny) | -mr-1 | Ip-E-1] 2) | 14
HYt (an») | Ip-m -1 | Ip-Eg-1| 0 14

Akane Nakamura>?

The singular fibers at H = co of spectral curve fibrations

of autonomous 4-dimensional Matrix Painlevé equations
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Spectral curve fibration of Matrix Painlevé equations with respect to G

Ham. [ spectraltype | N-Utype | Dynkin [ # | Ogg |
G 222222211 | 2I5-0 [2D4—0] (2)* | 24a
G (2)(11)2222 [ 2I; -0 [2Ds-0| (4) | 24
GMat 2.1 | 2I;-0 [2Ds-0] (2)* | 24

11(Dg)
G @@, (1), | 2,-0 [2D;-0 | (4) | 24
G T @ (1), ;-0 | 2D5-0 | 27 | 24

GN' [ (@)((11),22, [ 2IVF -0 [ 2Es-0 [ (3) | 26
Gyt T (@)D | 20 -0 [ 2E;-0 | 2) | 27
G™ (1)), | 2F-0 [2Es-0| 0 | 28

The singular fibers at G = oo of spectral curve fibrations
of autonomous 4-dimensional Matrix Painlevé equations
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Remark:compactification of the affine Liouville tori and
degeneration of curves of genus two

@ The generic fiber of moment map is an affine part of an Abelian
surface.

@ The affine part of an Abelian variety corresponds to the Taylor series
with 4 free parameters.

@ Such affine surfaces can be compactified by adjoining divisors
(corresponding to the Laurent solutions with 3 free parameters) and
points (corresponding to the Laurent solutions with 2 free parameters).

@ Each irreducible components of the divisors to be adjoined is a curve of
genus 2 (except the case of the Matrix Painlevé equations).

@ Such genus 2 component have the same Namikawa-Ueno types
degeneration at H; = oo and H, = oo, as in the case of the spectral curve
fibrations.
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Isomonodromic deformation equations:

0A(x,T) _ 6(9B(x, f)

+ [A(x, D), B(x,1)] =0

ot 0x
l ‘Isospectral limit (6 — 0) ‘
Isospectral deformation equations: % +[A(x),B(x)] =0 J
Spectral curve:  det(yl — A(x)) =0 J

l

Spectral curve fibration: f(x, y, h) = 0, where A is a non-Casimir conserved
quantity (h € P') + compactification + minimal desingularization

i ‘ Tate or Liu’s algorithm

Singular fibers of the spectral curve fibration (Kodaira or Namikawa-Ueno
type) J
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Future work

@ The spaces we actually want to know are the 4-dimensional phase spaces.

@ We can think of these phase spaces as the relative compactified Jacobian
of the spectral curve fibrations.

@ How can we distinguish these 4-dimensional phase spaces?
@ What are their Mordell-Weil lattices?

@ Can we classify a certain class of 4-dimensional integrable systems
(autonomous limit of the 4-dimensional Painlevé-type equations) from
geomtry?

o Can we classify the 4-dimensional Painlevé-type equations from
geometry?
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