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of its complement is veering.
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We completely determine, for each hyperbolic fibered |

two-bridge link, whether the canonical decomposition
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Theorem (Epstein-Penner, 1988)

Each cusped hyperbolic manifold of finite volume
| admits a canonical decomposition into ideal
| polyhedra.
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Theorem (Agol, 2011)

For each punctured surface bundle over S* with a pA
monodromy, there exists a unique veering and
“layered” 1deal triangulation of the bundle.
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Are the veering ideal triangulations geometric? l
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Theorem (Hodgson-Rubinstein-Segerman-Tillmann, 2011)

Each veering triangulation admits a strict angle structure.
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Theorem (Hodgson-Issa-Segerman, 2016)
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Ja non-geometric veering ideal triangulation.
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Which canonical decompositions are veering?
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The canonical decomposition of each once-punctured |
torus bundle over S'is veering and layered.

N
Theorem (S., 2015) I 223
| The canonical decomposition of each hyperbolic h
| fibered two-bridge link complement is layered.
. 1]

m — — —

The canonical decomposition of a hyperbolic fibered |
two-bridge link K (r) (0 < |r| < 1/2) is veering
<— the slope r has the continued fraction h
expansion +(2,2,...,2|.
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Taut angle structure (1)

an 1deal tetrahedron is taut

<d:ef> 1. Each face is assigned a co-orientation so that two co-
orientations point inwards and the others point outwards.

2. Each edge of the tetrahedron is assigned an angle of
either 7 or 0 according to whether the co-orientations on

the adjacent faces are same or different.




Taut angle structure (2)

M : a compact oriented 3-mfd with toral boundary

An ideal triangulation of M is taut

def . . :
<= 1. Ja co-orientation assigned to each faces s.t. each

ideal tetrahedron is taut.
2. The sum of the angles around each edge is 2.




Veering structure

A taut triangulation of M is veering

f .
£% Jan assignment of two colors, red and blue, to all

ideal edges so that every ideal tetrahedron can be
sent by an orientation-preserving homeomorphism
to

This is called a veering structure of the taut triangulation.



What is the meaning of veering

Theorem (Hodgson-Rubinstein-Segerman-Tillmann, 2011)

A taut triangulation of M is veering

<— Each edge of the taut triangulation is one of the
following two types: I




Veering tetrahedron and co-orientation

D : taut triangulation of M
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Veering tetrahedron and co-orientation

D : taut triangulation of M
T :triangulation of 0 M induced by D
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Veering tetrahedron and co-orientation

D : taut triangulation of M
T :triangulation of 0 M induced by D
D*: 2-dim cell complex dual to D
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Veering tetrahedron and co-orientation

D : taut triangulation of M
T :triangulation of 0 M induced by D
D*: 2-dim cell complex dual to D

/ I T e
~ *\\
f 7T \

induce
D e

dual dual

N NV

D :induce> T
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Veering tetrahedron and co-orientation

D : taut triangulation of M

T :triangulation of 0 M induced by D

D*: 2-dim cell complex dual to D

T*: 2-dim cell decomposition of OM dual to 7
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Veering tetrahedron and co-orientation
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Veering tetrahedron and co-orientation

D : taut triangulation of M

T :triangulation of 0M induced by D

D*: 2-dim cell complex dual to D

T*: 2-dim cell decomposition of OM dual to 7
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| Each face of 7 has precisely one | ]
minimal vertex and precisely one |

| maximal vertex.
L

e e S ————




Veering tetrahedron and co-orientation

A face of 7 " is left-to-right (resp. right-to-left)

def

<= e« The left-side of the face is “attractive” (resp.

“repulsive”).

 The right-side of the face is “repulsive” (resp.

“attractive”).
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Method for checking if a triangulation is veering

Proposition
o

D : taut triangulation of M |

| - . :
D 1S veering

| <= Each face of 7" is either left-to-right or |
right-to-left.

Moreover, an ideal edge of D 1ntersect1ng

| left-to- right (resp. right-to-left) face is |

blue-colored (resp. red-colored).
L I |
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Idea of the proof of the main theorem

|

T

The canonical decomposition of a hyperbolic fibered
two-bridge link K(r) (0 < |r| < 1/2) 1s veering

<= the slope r has the continued fraction
expansion £(2,2,...,2].
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Guéritaud and Futer have proved that the canonical
decompositions of the hyperbolic two-bridge link
complements are equal to the ideal triangulations
given by [Sakuma-Weeks].
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Idea of the proof of the “only if” part

The canonical decomposition of K (r) is NOT veering.
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Idea of the proof of the “only if” part

The canonical decomposition of K (r) is NOT veering.

(0< ’7“‘ <1/2,7“7£::

epe— - ,//
(given by SnapPy)



Idea of the proof of the “if” part

The canonical decomposition of K (r) is veering.
(0 = ’7“‘ i 1/2, r = ::[2,2,...,2])
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Idea of the proof of the “if” part

The canonical decomposition of K (r) is veering.
(0 = ’7“‘ i 1/2, r = ::[2,2,...,2])
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Idea of the proof of the “if” part

The canonical decomposition of K (r) is veering.
(0 = ’7“‘ i 1/2, r = ::[2,2,...,2])
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Future work (1)

Theorem (Dicks-Sakuma, 2010)
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For a once-punctured torus bundle, the cusp triangulation |

induced by the canonical decomposition with the “layered
structure” combinatorially determines the fractal
tessellation with the “colored structure”, and vice versa.
In particular, two tessellations share the same vertex set.
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Future work (2)

e
Guéritaud has established a beautiful relation between

| veering and layered triangulation of hyperbolic

| punctured surface bundles and the associated CT-maps.
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l by using the main theorem

The fractal tessellation and the canonical decomposition
of the complement of the two-bridge link K (r) with
r==(2,2,...,2|are intimately related.




Future work (3)
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For » with 0 < |r| < 1/2 and r # £[2,2,...,2],
does there exist a relation between the fractal

| tessellation and the canonical decomposition of the
complement of a hyperbolic fibered two-bridge link

K(r)?
- 1
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Thank you for your attention!



