Corks, exotic 4-manifolds and knot concordance

Kouichi Yasui
Hiroshima University

March 10, 2016
I. Background and Main results
 Exotic 4-manifolds represented by framed knots
 Application to knot concordance

II. Brief review of corks

III. Proof of the main results
1.A. Exotic framed knots

Problem
Does every smooth 4-manifold admit an exotic (i.e. homeo but non-diffeo) smooth structure?

We consider a special class of 4-manifolds:

A framed knot (i.e. knot + integer) in S^3 gives a 4-mfd by attaching $2\text{-handle } D^2 \times D^2$ to D^4 along the framed knot.

A pair of framed knots in S^3 is said to be *exotic* if they represent homeo but non-diffeo 4-mfds.

Problem
Find exotic pairs of framed knots!

Remark. \exists framed knot admitting NO exotic framed knot
1.A. Exotic framed knots

Problem
Find exotic pairs of framed knots!

Theorem (Akbulut ’91)
∃ an exotic pair of -1-framed knots.

Theorem (Kalmár-Stipsicz ’13)
∃ an infinite family of exotic pairs of -1-framed knots.

Remark. Framings of these examples are all -1. For each pair, one 4-mfd is Stein, but the other is non-Stein.
1.A. Exotic framed knots

Theorem (Y)

\[\forall n \in \mathbb{Z}, \exists \text{ infinitely many exotic pairs of } n\text{-framed knots.} \]

Furthermore, both knots in each pair gives Stein 4-mfds.

Moreover, we give machines which produce vast examples.

Recall:

A knot \(P \) in \(S^1 \times D^2 \) induces a **satellite map**

\[P : \{ \text{knot in } S^3 \} \to \{ \text{knot in } S^3 \} \]

by identifying reg. nbd of a knot with \(S^1 \times D^2 \) via 0-framing.
1.A. Exotic framed knots

Machines producing vast examples:

Main Theorem (Y)

$\forall n \in \mathbb{Z}, \exists$ satellite maps P_n, Q_n s.t.

for any knot K in S^3 with

$2g_4(K) - 2 = \overline{ad}(K)$ and $n \leq \hat{tb}(K),$

n-framed $P_n(K)$ and $Q_n(K)$ are an exotic pair.

Remark.

For each n, there are many K satisfying the assumption.

If K satisfies the assumption, then $P_n(K)$ and $Q_n(K)$ satisfy.
1.A. Different viewpoint: exotic satellite maps

For a satellite map $P : \{\text{knot}\} \rightarrow \{\text{knot}\}$ and $n \in \mathbb{Z}$, we define a **4-dimensional n-framed satellite map**

$$P^{(n)} : \{\text{knot in } S^3\} \rightarrow \{\text{smooth 4-mfd}\}$$

by $P^{(n)}(K) =$ 4-manifold represented by n-framed $P(K)$.

$P^{(n)}$ and $Q^{(n)}$ are called smoothly the same, if $P^{(n)}(K)$ and $Q^{(n)}(K)$ are diffeo for any knot K.

New difference between smooth and topological categories:

Theorem (Y)

$$\forall n \in \mathbb{Z}, \exists \text{ 4-dim } n\text{-framed satellite maps}$$

which are topologically the same but smoothly distinct.
1.A. Different viewpoint: exotic satellite maps

For a satellite map $P : \{ \text{knot} \} \rightarrow \{ \text{knot} \}$ and $n \in \mathbb{Z}$, we define a 4-dimensional n-framed satellite map $P^{(n)} : \{ \text{knot in } S^3 \} \rightarrow \{ \text{smooth 4-mfd} \}$ by $P^{(n)}(K) =$ 4-manifold represented by n-framed $P(K)$.

$P^{(n)}$ and $Q^{(n)}$ are called topologically the same, if $P^{(n)}(K)$ and $Q^{(n)}(K)$ are homeo for any knot K.

New difference between smooth and topological categories:

Theorem (Y)

$\forall n \in \mathbb{Z}, \exists 4$-dim n-framed satellite maps which are topologically the same but smoothly distinct.
1.B. Application to knot concordance

\(n \)-surgery on a knot \(K \) in \(S^3 := \text{boundary of the 4-mfd} \)

represented by \(n \)-framed \(K \).

Two oriented knots \(K_0, K_1 \) are \textbf{concordant} if

\[
\exists S^1 \times I \hookrightarrow S^3 \times I \quad \text{s.t.} \quad S^1 \times i = K_i \times i \quad (i = 0, 1).
\]

\textbf{Conjecture} (Akbulut-Kirby 1978)

If 0-surgeries on two knots in \(S^3 \) give the same 3-mfd, then the knots (with relevant ori) are concordant.

\textbf{Remark}. Quotation from Kirby’s problem list (’97):

all known concordance invariants of the two knots are the same.
1.B. Application to knot concordance

Conjecture (Akbulut-Kirby 1978)

If 0-surgeries on two knots in S^3 give the same 3-mfd, then the knots (with relevant ori) are concordant.

Theorem (Cochran-Franklin-Hedden-Horn 2013)

∃ infinitely many pairs of non-concordant knots with homology cobordant 0-surgeries.

Theorem (Abe-Tagami)

If the slice-ribbon conjecture is true, then the Akbulut-Kirby conjecture is false.
1.B. Application to knot concordance

Conjecture (Akbulut-Kirby 1978)

If 0-surgeries on two knots in S^3 give the same 3-mfd, then the knots (with relevant ori) are concordant.

Theorem (Y)

\exists infinitely many counterexamples to AK conjecture.

In fact, our exotic 0-framed knots are counterexamples.

Corollary (Y)

Knot concordance invariants g_4, τ, s are NOT invariants of 3-manifolds given by 0-surgeries on knots.
1.B. Application to knot concordance

Conjecture (Akbulut-Kirby 1978)

If 0-surgeries on two knots in S^3 give the same 3-mfd, then the knots (with relevant ori) are concordant.

Simple counterexample

\[P_0(T_{2,3}) \quad \text{and} \quad Q_0(T_{2,3}) \]
1.B. Application to knot concordance

Conjecture (Akbulut-Kirby 1978)

If 0-surgeries on two knots in S^3 give the same 3-mfd, then the knots (with relevant ori) are concordant.

Question.
If two 0-framed knots in S^3 give the same smooth 4-mfd, are the knots (with relevant ori) concordant?

Remark
Abe-Tagami’s proof shows the answer is no, if the slice-ribbon conjecture is true.
2. Brief review of corks

C: cpt contractible 4-mfd, $\tau: \partial C \to \partial C$: involution,

Definition

(C, τ) is a **cork** $\iff \tau$ extends to a self-homeo of C, but cannot extend to any self-diffeo of C.

Suppose $C \subset X^4$.

The following operation is called a **cork twist** of X:

$$X \rightsquigarrow (X - C) \cup_{\tau} C.$$
2. Brief review of corks

Theorem (Curtis-Freedman-Hsiang-Stong ’96, Matveyev ’96)

Let $X, Y :$ simp. conn. closed ori. smooth 4-mfds

If Y is an exotic copy of X,
then Y is obtained from X by a cork twist.

Smooth structures are determined by corks !!

Remark

Cork twists do NOT always produce exotic smooth structures.
2. Brief review of corks: examples

Definition \(L = K_0 \sqcup K_1 \) is a symmetric Mazur link if

- \(K_0 \) and \(K_1 \) are unknot, \(lk(K_0, K_1) = 1 \).
- \(\exists \) involution of \(S^3 \) which exchanges \(K_0 \) and \(K_1 \).

A symmetric Mazur link \(L \) gives a contractible 4-mfd \(C_L \) and an involution \(\tau_L : \partial C_L \to \partial C_L \).

![Diagram](image)
2. Brief review of corks: examples

Definition $L = K_0 \sqcup K_1$ is a symmetric Mazur link if

- K_0 and K_1 are unknot, $lk(K_0, K_1) = 1$.
- \exists involution of S^3 which exchanges K_0 and K_1.

Theorem (Akbulut ’91) There exists a cork.
2. Brief review of corks: examples

Theorem (Akbulut-Matveyev ’97, cf. Akbulut-Karakurt ’12)
For a symmetric Mazur link L, (C_L, τ_L) is a cork if C_L becomes a Stein handlebody in a ‘natural way’.

Theorem (Akbulut ’91, Akbulut-Y ’08).
(W_n, f_n) is a cork for $n \geq 1$.

\[W_n := n \rightarrow n+1 \]

Theorem(Y)
For a symmetric Mazur link L, (C_L, τ_L) is NOT a cork if L becomes a trivial link by one crossing change.
2. Brief review of corks: examples

Theorem (Akbulut-Matveyev ’97, cf. Akbulut-Karakurt ’12)
For a symmetric Mazur link L, (C_L, τ_L) is a cork if C'_L becomes a Stein handlebody in a ‘natural way’.

Theorem (Y)
For a symmetric Mazur link L, (C_L, τ_L) is NOT a cork if L becomes a trivial link by one crossing change.

![Cork vs Non-Cork Diagrams](image-url)
2. Brief review of corks: applications

Theorem (Akbulut ’91, Akbulut-Matveyev 97’)

\[\exists \text{ exotic pair of simp. conn. 4-manifold with } b_2 = 1. \]

\[X_1 \quad \quad X_2 \]

Stein

minimal

non-minimal

cork twist

exotic

non-Stein
2. Brief review of corks: applications

2-handlebody := handlebody consisting of 0-, 1-, 2-handles.

Thm (Akbulut-Y ’13)

∀X: 4-dim cpt ori 2-handlebody with $b_2(X) \neq 0$, $\forall n \in \mathbb{N}$,

∃X_1, X_2, \ldots, X_n: 4-mfds admitting Stein str. s.t.

- X_1, X_2, \ldots, X_n are pairwise exotic.
- $H_*(X_i) \cong H_*(X)$, $\pi_1(X_i) \cong \pi_1(X)$, $Q_{X_i} \cong Q_X$,
 \[H_*(\partial X_i) \cong H_*(\partial X). \]
- Each X_i can be embedded into X.

Cor (Akbulut-Y ’13)

For a large class of 4-manifolds with ∂, their topological invariants are realized as those of arbitrarily many pairwise exotic 4-mfds.
2. Brief review of corks: applications

Thm (Akbulut-Y '13)

Z, Y: cpt conn. ori. 4-mfds, $Y \subset Z$.

$Z - \text{int } Y$ is a 2-handlebody with $b_2 \neq 0$.

Then $\forall n \in \mathbb{N}$, $\exists Y_1, Y_2, \ldots, Y_n \subset Z$: cpt 4-mfds s.t.

- Y_i is diffeo to Y_j ($\forall i \neq j$).
- (Z, Y_i) is homeo but non-diffeo to (Z, Y_j) ($i \neq j$).
- $H_*(Y_i) \cong H_*(Y)$, $\pi_1(Y_i) \cong \pi_1(Y)$, $Q_{Y_i} \cong Q_Y$, $H_*(\partial Y_i) \cong H_*(\partial Y_i)$.

Cor (Akbulut-Y '13) Every cpt. ori. 4-manifold Z admits arbitrarily many pairwise exotic embedding of a 4-mfd into Z.
3. Proof: new presentations of cork twists

Lemma (Y). \((V_m, g_m)\) is a cork for \(m \geq 0\).

\[
\begin{array}{c}
\text{Remark. } (V_{-1}, g_{-1}) \text{ is NOT a cork.}
\end{array}
\]

Definition

\[
\begin{array}{c}
\text{Definition}
\end{array}
\]

\[
\begin{array}{c}
\text{Definition}
\end{array}
\]
Theorem (Y) [hook surgery]

There exists a diffeomorphism $g_m^* : \partial V_m \to \partial V_m^*$ s.t.

- g_m^* sends the knot γ_K to γ_K^* for any knot K in S^3.
- $g_m^* \circ g_m^{-1} : \partial V_m \to \partial V_m^*$ extends to a diffeo $V_m \to V_m^*$.

![Diagram](image)
Theorem (Y) [hook surgery]

There exists a diffeomorphism \(g_m^* : \partial V_m \to \partial V_m^* \) s.t.

- \(g_m^* \) sends the knot \(\gamma_K \) to \(\gamma_K^* \) for any knot \(K \) in \(S^3 \).
- \(g_m^* \circ g_m^{-1} : \partial V_m \to \partial V_m^* \) extends to a diffeo \(V_m \to V_m^* \).

Corollary \(X : 4\text{-}mfd, V_m \subset X \).

The cork twist \((X - V_m) \cup_{g_m} V_m \) is diffeomorphic to the hook surgery \((X - V_m) \cup_{g_m^*} V_m^* \).
3. Proof: satellite maps

Machines producing vast examples:

Main Theorem (Y)

\[\forall n \in \mathbb{Z}, \exists \text{ satellite maps } P_n, Q_n \text{ s.t.} \]

for any knot \(K \) in \(S^3 \) with

\[2g_4(K) - 2 = \overline{ad}(K) \text{ and } n \leq \hat{tb}(K), \]

\(n \)-framed \(P_n(K) \) and \(Q_n(K) \) are an exotic pair.
3. Proof: satellite maps

\(P_{m,n}, Q_{m,n} : \) (pattern) knots in \(S^1 \times D^2 \)

The case \(m = 0 \):

\(P_{0,n}, Q_{0,n} : \)
3. Proof: satellite maps

\(P_{m,n}, \ Q_{m,n} \) : (pattern) knots in \(S^1 \times D^2 \)

Remark.

- \(Q_{m,n}(K) \) is concordant to \(K \).
- \(g_4(Q_{m,n}(K)) = g_4(K), \quad g_4(P_{m,n}(K)) \leq g_4(K) + 1 \).

Definition.

\(P_{m,n}^{(n)}(K) := 4\text{-manifold represented by } n\text{-framed } P_{m,n}(K) \).

\(Q_{m,n}^{(n)}(K) := 4\text{-manifold represented by } n\text{-framed } Q_{m,n}(K) \).
Lemma.

\[
\binom{P_{m,n}(K)}{Q_{m,n}(K)} \cong \binom{K}{K}
\]

Therefore \(P_{m,n}^{(n)}(K) \) is homeo to \(Q_{m,n}^{(n)}(K) \)
\(\mathcal{L}(K) := \{ \text{Legendrian knot isotopic to } K \} \)
\(\overline{ad}(K) := \max \{ \text{ad}(\mathcal{K}) := \text{tb}(\mathcal{K}) - 1 + |r(\mathcal{K})| \mid \mathcal{K} \in \mathcal{L}(K) \} \)
\(\hat{\text{tb}}(K) := \max \{ \text{tb}(\mathcal{K}) \mid \mathcal{K} \in \mathcal{L}(K), \text{ad}(\mathcal{K}) = \overline{ad}(K) \} \)
\(g_s^{(n)}(K) := \min \{ g(\Sigma) \mid [\Sigma] \text{ is a generator of } H_2(K^{(n)}) \} \)

Fact (adjunction inequality).
For \(n < \hat{\text{tb}}(K) \), \(\overline{ad}(K) \leq 2g_s^{(n)}(K) - 2 \).

Main Theorem (Y)
Fix \(m \geq 0 \). Assume a knot \(K \) and \(n \in \mathbb{Z} \) satisfies
\[2g_4(K) - 2 = \overline{ad}(K) \text{ and } n \leq \hat{\text{tb}}(K). \]
Then \(P_{m,n}^{(n)}(K) \) and \(Q_{m,n}^{(n)}(K) \) are homeo but not diffeo.
Main Theorem (Y)

Fix $m \geq 0$. Assume a knot K and $n \in \mathbb{Z}$ satisfies

$$2g_4(K) - 2 = \overline{ad}(K) \text{ and } n \leq \hat{tb}(K).$$

Then $P_{m,n}^{(n)}(K)$ and $Q_{m,n}^{(n)}(K)$ are homeo but not diffeo.

By finding Legendrian realization of $P_{m,n}(K)$, we see

$$\overline{ad}(P_{m,n}(K)) \geq \overline{ad}(K) + 2, \quad \hat{tb}(P_{m,n}(K)) \geq n + 2.$$

$$\implies g_s^{(n)}(P_{m,n}(K)) = g_4(K) + 1$$

Since $g_s^{(n)}(Q_{m,n}(K)) \leq g_4(K), \quad P_{m,n}^{(n)}(K) \not\cong Q_{m,n}^{(n)}(K)$.