Alex Degtyarev

Smooth models of singular $K 3$-surfaces

According to a recent paper by Shimada and Shioda, the famous Fermat quartic

$$
X_{48}: \quad z_{0}^{4}+z_{1}^{4}+z_{2}^{4}+z_{3}^{4}=0
$$

has another smooth projective model $X_{56} \subset \mathbb{P}^{3}$, which is Cremona, but not projectively equivalent to X_{48}. We will start with showing that X_{48} and X_{56} are all smooth spatial models of X_{48}, a fact especially surprising considering that there are thousands of singular models. Generalizing, we will discover that there are relatively few smooth quartics of the form $X(T) \subset \mathbb{P}^{3}$, where $X(T)$ is a singular $K 3$-surface and $\operatorname{det} T \leq 80$. This classification sheds new light on the problem of counting lines in smooth quartics: all models found have many lines, and the champion, Schur's quartic

$$
X_{64}: \quad z_{0}\left(z_{0}^{3}-z_{1}^{3}\right)=z_{2}\left(z_{2}^{3}-z_{3}^{3}\right)
$$

containing 64 lines, can alternatively be characterized as the singular K3surface of the smallest discriminant (which equals 48) admitting a smooth embedding to \mathbb{P}^{3}.

In spite of the previous result, the number of smooth spatial models of a given singular $K 3$-surface $X(T)$ may grow very fast as $\operatorname{det} T \rightarrow \infty$; a few examples will be considered. In particular, if $\operatorname{det} T=163$ (a case important for counting lines defined over \mathbb{Q}), there are over 3200 distinct models.

We conclude by obtaining a similar classification for a few other commonly studied polarizations ($h^{2}=2,6$, or 8$)$ and stating conjectures concerning the number of lines:

- a smooth sextic curve in \mathbb{P}^{2} has at most 72 tritangents;
- a smooth sextic surface in \mathbb{P}^{4} has at most 42 lines;
- a smooth octic surface in \mathbb{P}^{5} has at most 36 lines.

These numbers are those realized by the singular $K 3$-surfaces of the smallest discriminant (108,39 , and 32 , respectively) admitting corresponding models.

All results are obtained by embedding the definite part h^{\perp} of the NéronSeveri lattice of X to an appropriate Niemeier lattice.

