Takeshi Nosaka
On the fundamental 3-classes of knot group representations
In this talk, I discuss the fundamental (relative) 3-classes of knots (
or hyperbolic links), and relatively consider the push-forwards with
respect to every link-group representation. The main result is that I
provided algebraic descriptions of the push-forwards, which are
constructed from only link diagrams. The point is an observation of a
bridge between the relative group homology and quandle homology.
Furthermore, I briefly mention the fundamental 3-classes of finite (
branched) covering spaces.