
Construction of highly symmetric
Riemann surfaces, related manifolds

and some exceptional objects, II

Iain Aitchison
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Strategy for application of transcription complexes

Obtain highly symmetric objects with labels permuted by a natural
symmetry group of the object

The label structure, combined with the combinatorial symmetry, may
encode interesting mathematical structures

This encoding may lead to new representations of mathematical
structure, and relationships between structures

Today:

Construction of some special objects (p = 7, 11)
Klein’s quartic, Weeks-Thurston-Christie 8-component link
New picture for Mathieu group M24, Steiner S(5, 8, 24) (Golay code,
octads)
New Arnold Trinity involving Thurston’s 8-component link
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Warm-up – 5-coloured torus
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Planar tessellation = view from ∞ in hyperbolic 3-space

Expanding horoballs create six 5-coloured cusp tori in a quotient
3-manifold
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Thurston link is an analogue, planar tessellation by hexagons
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6-cusped example: 6 colours, five each picture. Same rule.

Choosing any square, reverse order of 4 neighbours, change square colour

Figure: Six coloured cusps, each giving two repeating 5-cycles
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From one cusp, four cusps visible at a vertex, the other on
the other side. Dual picture is an octahedron, one at each
vertex in hyperbolic 3-space
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5-coloured vertices give 5 regular ideal octahedra defining
quotient manifold, 4 at each edge

40 triangles identified in pairs, creating two immersed totally-geodesic
non-orientable hemi-icosahedra
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Two other 6-component links known with order 120 symmetry – one
described by Weeks, another by Matsuda (Sepak Takraw). Volumes differ.
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Arnold Trinity = this manifold, Klein Quartic (p = 5), and
a genus 26 surface with 60 11-gons of degree 3, 660
automorphisms (p = 5). (Already studied by Klein?)
Transcription rule

Theorem (Aitchison)

Generalizing this construction gives a 3-manifold for p = 5, 7, 11, but not
for larger primes p
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Symmetric Riemann surfaces: context for Klein’s Quartic

Finite groups can be the full group of isometries of some Riemann surface.

Genus 1 – elliptic curve E . (8 triangles)
2-fold branched cover of S2 over vertices of the tetrahedron

Genus 2 – the Bolza surface has order 48 = |S4|. (16 triangles)
2-fold branched cover of S2 over vertices of the octahedron

Genus 3 the order is maximized by the Klein quartic (first Hurwitz
surface), with order 168 = |PSL2(7)|; = PSL2(7) the second-smallest
non-abelian simple group. (24 heptagons)

Genus 4, Bring’s surface, order |S5| = 120. (24 pentagons)
3-fold irregular branched cover of S2 over vertices of the icosahedron

Genus 7 the Macbeath surface (second Hurwitz surface) has order 504
= |PSL(2, 8)|; PSL2(8) the fourth-smallest non-abelian simple group.
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Klein’s Quartic (1878)

x3y + y3z + z3x = 0: genus 3 algebraic curve

Hyperbolic geometry:
24 regular seven-gons 2π/3-angled
84 edges
56 vertices degree 3

(Dually: 56 triangles, 84 edges, 24 degree-7 vertices)

Seven-gon gives 14 (2, 3, 7) triangles: 14× 24 = 168× 2 = 336
allowing orientation-reversing reflection group symmetries

Maximal possible symmetry group order: 168
(Hurwitz: Maximum order for genus g ≥ 3 = 84(g − 1))
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Face transcription: Hexagon example : p = 7

A
CD

E
F G

A B
CD

E
F G

A B
C

D

E

F

G
B

     A:B CDEFG  
to  B:A GEDFC

A B
C

D

E

F

G
A B

C
D

E

F

G

C
EG

A B
D F

     A:C DEFGB
to  C:A BFEGD

     B:C AGEDF
to  C:B FEGDA

 

  

Figure: Working around a vertex, the pattern repeats: degree three vertices.

7-coloured tessellation of the Euclidean plane by continuation :
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Abstract labels can be replaced by integers mod 7, as
occured before. Graph bipartite, vertices define Fano,
A-Fano triples

x a

r d

fm

fm

r d

r d

xt a fm r

xt a m

xt

2 3 4 5 6 0 1 2

2 3 4 5 6 02 3

4 5 6 0 1 2

0 1

43
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Integers modulo 7 defined by labels (addition,
multiplication)
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Hexagons – Face Transcription Rule
A:B CDEFG → B :AGEDFC

A:B CDEFG → B:AGEDFC generates (i) 7-coloured torus (ii) WTC link
as 28 ideal regular tetrahedra, and (iii) the Klein quartic

Theorem

A: The transcription rules generating the WTC link encode the
transcription rules generating the Klein quartic. Conversely B. The
transcription rules generating the Klein quartic encode the transcription
rules generating the WTC link.

KQ: P:Q RSTUVW → Q:P WTSVUR generates Klein quartic and WTC
link complement.
All tetrahedra and face identifications are encoded in the face-colourings

(IRA: Hiroshima 03-2018) Highly symmetric objects II 14 / 62



Constructing the Weeks-Thurston-Christie (WTC) link

As before: 8 cusps labelled by Z/7Z ∪∞ (projective line)
Take a 7-coloured torus, a union of 7 hexagons.
Assign colour ‘∞’ to C∞ = T 2 × [0,∞).
Interpret the 7 hexagon colours of original T 2 := T 2

∞ as 7 distinct
coloured cusps Ci := T 2

i × [0,∞).

Theorem

(a) Given the 7-coloured torus T 2
0 , there is a canonical 7-colouring of each

torus T 2
i such that exactly the colours 0, . . . , î , . . . occur: the colour i is

replaced by the colour ∞. (b) The resulting 3-manifold M3
F is the union

of 28 regular hyperbolic tetrahedra (vertices at ∞) with six tetrahedra
meeting along each edge. (c) M3

F is canonically a complete hyperbolic
3-manifold of volume 14Vol8, where Vol8 is the volume of the figure-8
knot complement in S3. (d) Faces of the tetrahedra canonically define an
immersed totally-geodesic 24-punctured Klein Quartic.
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Paths to left define a vertex labelling. Paths bisecting
hexagons can be labelled accordingly
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Vertices bipartite, define abstract non-associative binary
multiplication. Encoded is the Fano plane

rc 1 2 3 4 5 6 0 ∅
1 ∗ 4 0 ∗2 6 ∗5 ∗3 3∅
2 ∗4 ∗ 5 1 ∗3 0 ∗6 4∅
3 ∗0 ∗5 ∗ 6 2 ∗4 1 5∅
4 2 ∗1 ∗6 ∗ 0 3 ∗5 6∅
5 ∗6 3 ∗2 ∗0 ∗ 1 4 0∅
6 5 ∗0 4 ∗3 ∗1 ∗ 2 1∅
0 3 6 ∗1 5 ∗4 ∗2 ∗ 2∅

This matrix defines OCTONION multiplication, and also encodes the
Galois field GF (8), and the linear Hamming 8-code with check bit.
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Binary composition – all hexagons adjoin all others. Any
ordered pair defines a unique product by taking the third
at a Fano (blue) vertex, signed with anticlockwise positive

2 3 4 5 6 0 1 2

2 3 4 5 6 02 3

4 5 6 0 1 2

0 1

43

Vertices naturally 7-coloured, eg 561, 023 vertices labelled 4, which is
furthest away - neither immediate nor next neighbour.

Hexagons have three bisectors, new edges joining opposite-edge midpoints.
These are naturally coloured by the single Fano vetex color on a unique

side (‘Anti’-Fano product of the other two)
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Paths bisecting hexagons naturally inherit labels. These
paths continue to create three geodesics on the torus, each
with 7 edges naturally 7-coloured. Colourings differ as the
squares of a 7-cycle, an operation of order three.

2 4 5 6 02 310

(0413265)2 = (0123456), (0123456)2 = (0246153), (0246153)2 = (0413265),
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Hamming 8-code words from Z/2Z interpretation: row,
column labels define check-bit, clockwise, anticlockwise
defines +,−. Total of 16 linear code words over Z/2Z

1 1 1 1 1 1 1 1

1 0 1 1 0 1 0 0

1 0 0 1 1 0 1 0

1 0 0 0 1 1 0 1
1 1 0 0 0 1 1 0

1 0 1 0 0 0 1 1
1 1 0 1 0 0 0 1
1 1 1 0 1 0 0 0

This pattern also encodes the Galois field GF (8)
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Hamming Z/2Z 8-code can be considered as Fano lines +
∞, and complements. Symmetric difference of set addition
= Z/2Z arithmetic
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Array encoding multiplication and addition in the Galois
field GF (8) over Z/2Z, x3 = 1 + x , x7 = 1

0 1 1 1 1 1 1 1

x = x1 0 0 0 1 0 1 1

x2 1 0 0 0 1 0 1

x3 1 1 0 0 0 1 0
x4 0 1 1 0 0 0 1

x5 0 0 1 1 0 0 0
x6 0 1 0 1 1 0 0

x7 = 1 = x0 0 0 1 0 1 1 0

Example: x3 + x6 + 0 = x4. Add three rows including 0 to find the result.
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From planar hexagons to Galois field GF (8) – details

α7 − 1 = 0 ⇒ 1 + α + α2 + α3 + α4 + α5 + α6 = 0

1 + α+ α3 = 0 ⇒ α2 + α4 + α5 + α6 = 0 ⇒ α6 = α2 + α4 + α5

α6 = α2 + α4 + α5 ⇒ α = α4 + α6 + α0

n 1 2 3 4 5 6 0
αn α1 α2 α3 α4 α5 α6 α0 sum =

α1 0 0 0 1 0 1 1 α = α4 + α6 + α0 460 = α1

α2 1 0 0 0 1 0 1 α2 = α5 + α0 + α1 501 = α2

α3 1 1 0 0 0 1 0 α3 = α6 + α1 + α2 612 = α + 1
α4 0 1 1 0 0 0 1 α4 = α0 + α2 + α3 023 = α2 + α
α5 1 0 1 1 0 0 0 α5 = α1 + α3 + α4 134 = α2 + α + 1
α6 0 1 0 1 1 0 0 α6 = α2 + α4 + α5 245 = α2 + 1
α0 0 0 1 0 1 1 0 α0 = α3 + α5 + α6 356 = 1

Non-zero elements GF (8)− 0 cyclic order 7. Addition in GF (8) by row
comparison - positions where entries are equal. Eg α3, α6 agree in 230,
sum α4
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8 cusps from local pattern reflection, then applying same
transcription. Pattern is the same, labels/colours change

4 5

2 3

6 0

1 3

8
45

1

60

6

1

3

0

5

3 4 5

0 16 3

3

6

6

1

1 5

0

0

4

4

4 5

Figure: Choose a hexagon: reflect and relabel this colour: example 2, ∞
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7 hexagons: 7 neighbouring face arrangements

Take seven face-labeled hexagons

0 : 132645 1 : 243056 2 : 354160 3 : 46520146

4 : 506312 5 : 610423 6 : 021534

Relabel the central hexagon with ∞.

Reverse the order of the cyclic arrangement:

∞ : 546231 ∞ : 650342 ∞ : 061453 ∞ : 102564

∞ : 213605 ∞ : 324016 ∞ : 435120

Use the same face transcription rule

A : B CDEFG → B : AGEDFC

to tessellate the plane

Get 8 distinct 7-coloured tori, 8 tessellations of the plane by labeled
hexagons, characterised by omitting one of the 8 possible labels.
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8 cusp pictures: relabel fundamental domain hexagons

Figure: Reflection and replacement giving 8 canonical tessellations derived from
the original configuration of seven hexagons. The bottom seven in each column is
derived from the column indicated ‘0’, by reflection and replacement of the
central hexagon: the same applies for any pair choice!
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The Eightfold Way: 8 tessellations by face transcription
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Figure: Choose any coloured octagon A, and one of its coloured hexagons B. Its
ring of hexagons, cyclically reversed, is the ring of hexagons surrounding hexagon
coloured A in the coloured octagon B
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Hyperbolic 3-space – Identifying two half-spaces along a
hexagon

Each hexagon in a torus is surrounded by six others: degree-3 edges
require reversed cyclic order of neighbouring faces.
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Four half spaces meet at ‘tetrahedral’ vertices
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Figure: Four horoballs meet at each vertex. The 2-complex from 8 tori has
(8× 14)/4 = 28 vertices
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Tetrahedra give the dual decomposition

Figure: Each vertex is dual to an ideal tetrahedron: The link complement with 8
cusps is decomposed into (8× 14)/4 = 28 tetrahedra, meeting six around each
edge. Triangle faces of tetrahedra intersect hexagons in line segments dual to
hexagon edges. At each tetrahedron edge we can continue a triangle to an
opposite triangle, to create an immersed punctured surface.
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Identifying 28 tetrahedra
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Figure: tetrahedraglued

(IRA: Hiroshima 03-2018) Highly symmetric objects II 31 / 62



28 two-coloured tetrahedra: 4 families of 7

56 ordered pairs from 8-set = 56 unordered triples from 8-set . Black
numbers indicate k-blocks from Conway-Smith octonions: (their notation
uses ∞ for 0, 0 for 7)

Fano − 0 NFano Fano NFano − 0

026∞ :∞∅ 0625 : 5∅ 3415 :∞Ω 1430 : 5Ω
615∞ :∞∅ 6514 : 4∅ 2304 :∞Ω 032∞ : 4Ω
504∞ :∞∅ 5403 : 3∅ 1263 :∞Ω 621∞ : 3Ω
463∞ :∞∅ 4362 : 2∅ 0152 :∞Ω 510∞ : 2Ω
352∞ :∞∅ 3251 : 1∅ 6041 :∞Ω 406∞ : 1Ω
241∞ :∞∅ 2140 : 0∅ 5630 :∞Ω 365∞ : 0Ω
130∞ :∞∅ 1036 : 6∅ 4526 :∞Ω 254∞ : 6Ω

Two copies - red, blue - of the Steiner triple-system S(3, 4, 8)
Every 3-tuple occurs in one of the blocks of 4 of the 8-tuple
{∞, 1, 2, 3, 4, 5, 6, 00}. Eg 560 in 0625 and 5630
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Six tetrahedra about each ideal edge

Figure: At each tetrahedron edge we can continue a triangle to an opposite
triangle, to create an immersed (totally geodesic) punctured surface.
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14 vertices in each of 8 cusps: 28 tetrahedra, 56 ideal
triangles.
COMPACTIFIED, THESE GIVE THE KLEIN QUARTIC

Figure: For any hexagon in any cusp, a vertex gives two adjacent consecutive
faces, and a corresponding face of a tetrahedron opposite to the cusp vertex. The
corresponding triple occurs in the cusp with label the face adjacent to the
hexagon, next anticlockwise after skipping one adjacent face. Example: cusp 2,
hexagon 6, pair 54, next but one is 1. So cusp 1, hexagon 6 has pair 45, next but
one is 2.
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Each cusp defines 3 seven-cycles : Labelled 7-gons

3 4

10 2

5 6 1526304

1350246

1234560

(abcdefg)
2

= (acegbdf)

Figure: Three directions give 3 7-cycles: rotation by 2π/3 corresponds to squaring
a 7-cycle (period 3)
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Three versions of 7 triangles meet at each ideal vertex
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Figure: Three copies at each cusp of 7 triangles: Dually, three coloured 7-gons for
each of 8 coloured cusps: 24 heptagons glued together, degree three vertices. (All
24 are visible at any chosen cusp! – But how do they fit together?)

(IRA: Hiroshima 03-2018) Highly symmetric objects II 36 / 62



24 coloured 7-gons: adjacent 7-gon labels

Cusp Right Up/Left : τ Down/Left : τ 2

∞ · · · 01234560 · · · · · · 02461350 · · · · · · 04152630 · · ·

1 · · ·∞256340∞· · · · · ·∞530264∞· · · · · ·∞324506∞· · ·

2 · · ·∞360451∞· · · · · ·∞641305∞· · · · · ·∞435610∞· · ·

3 · · ·∞401562∞· · · · · ·∞052416∞· · · · · ·∞546021∞· · ·

4 · · ·∞512603∞· · · · · ·∞163520∞· · · · · ·∞650132∞· · ·

5 · · ·∞623014∞· · · · · ·∞204631∞· · · · · ·∞061243∞· · ·

6 · · ·∞034125∞· · · · · ·∞315042∞· · · · · ·∞102354∞· · ·

0 · · ·∞145236∞· · · · · ·∞426153∞· · · · · ·∞213465∞· · ·
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Domain from any cusp: three 7-gons, and neighbours
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Figure: A fundamental domain for Klein’s quartic: each colour appears three
times, and the neighbouring faces differ by the squaring of a 7-cycle. For each
ring, the region adjoining a vertex opposite has colour the antipode. Each
outward vertex on fills an inward on the next to the left, From any vertex, move
along any edge, turn left: at the next vertex you face the same coloured
face. Similarly for a right turn.
Thus 025 gives a triangle in tetrahedra 0251 and 0256. Every vertex has a
label by one of the 56 ordered pairs of distinct numbers chosen from {∞, . . . , 0},
giving 56 pairs corresponding to 56 5-tuples defining a complementary 3-tuple.
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Klein’s quartic from vertex, edge, face transcription.
Meanings?
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Figure: Three ways to generate the Klein quartic: Edge transcription, vertex
transcription, face transcription. A more useful vertex transcription is:
pq:rstuv → qp:ustrv ; a less useful edge transcription is p:qrstuv → p:trsqvu.
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Edges can be 7-coloured using the octonion structure.
Curtis used colouring to describe symmetric generators for
M24 – but with completely different face labels. Here, three
sets of 8, and cyclic labelling suggests triality underlying
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Three 7-gon edge colour sequences for each cusp form
3-cycles under7-cycle squaring, the infinity cusp in reverse
direction

Cusp Blue/Right Red/Left Green/Center

∞ · · · 0123456 · · · · · · 0246135 · · · · · · 0415263 · · ·

1 · · · 1534206 · · · · · · 1250364 · · · · · · 1326540 · · ·

2 · · · 2645310 · · · · · · 2361405 · · · · · · 2430651 · · ·

3 · · · 3056421 · · · · · · 3402516 · · · · · · 3541062 · · ·

4 · · · 4160532 · · · · · · 4513620 · · · · · · 4652103 · · ·

5 · · · 5201643 · · · · · · 5624031 · · · · · · 5063214 · · ·

6 · · · 6312054 · · · · · · 6035142 · · · · · · 6104325 · · ·

0 · · · 0423165 · · · · · · 0146253 · · · · · · 0215436 · · ·
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Curtis’ MOG = Miracle Octad Generator. Labels from
integers mod 23

Curtis’ edge-colouring of the Klein Quartic corresponds to the octonion
hexagon-edge-bisector colouring described naturally earlier. From any
coloured edge, go left, then right to find the same colour.

(IRA: Hiroshima 03-2018) Highly symmetric objects II 42 / 62



Triality is a non-linear outer automorphism of Spin(8),
whose Lie algebra has Coxeter-Dynkin diagram D4. The
root lattice of D4 corresponds to the tessellation of R4 by
24-cells, and defines an optimal sphere packing. The
24-cell can be constructed from a cuboctahedron. The
three 8-dimensional representations – vector, Spin+ and
Spin- – correspond to the highest weight vectors on the
legs of the Dynkin diagram, and are permuted by
symmetry of the 24-cell and cuboctahedron
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Symmetric generation of the Mathieu group M24

Lemma

A dice-labelled cuboctahedron can be edge 3-coloured invariantly under
diagonal rotation, corresponding to multiplication by 2 mod 7.
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Lemma

The 3-coloured dice-labelled cuboctahedron defines a 12-transposition
involution of 24 edges, swapping opposite coloured, labelled edges of six
squares.

µ0 = (∞1)(24)(35)(60)(∞2)(41)(63)(50)(∞4)(12)(56)(30)
(IRA: Hiroshima 03-2018) Highly symmetric objects II 44 / 62



Symmetric generation of the Mathieu group M24

Theorem (Aitchison)

The Mathieu group M24 has 7 involutary generators defined by
opposite-edge swaps of the six squares of a coloured cuboctahedron. The
seven generators are obtained from a single µ0, defined by the labelling of
a standard dice, by adding integers mod 7.

µ0 =
(∞1)(24)(35)(60)
(∞2)(41)(63)(50)
(∞4)(12)(56)(30)

, µ1 =
(∞2)(35)(46)(01)
(∞3)(52)(04)(61)
(∞5)(23)(60)(41)

, etcetera

Curtis gave seven generators, each an involution of 12 transpositions,
defined in terms of reflections of faces of Klein’s quartic as 24 heptagons.
The proof of the above is a relabelling of the Klein quartic, enabling a
cuboctahedron interpretation of Curtis’ generators, and as such should be
considered a corollary of his work.
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Conway-Sloane, ‘Sphere packings, lattices and groups’

‘ . . . in two dimensions the following familiar hexagonal lattice solves the
packing, kissing, covering and quantizing problems.’

‘In a sense this whole book is simply a search for similar nice patterns in
higher dimensions’ – eg 24 dimensional Leech lattice, etc
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Quotes from The Atlas of Finite Groups

For about a hundred years, the only sporadic simple groups were the
Mathieu groups M11, M12, M22, M23, M24

The group M24 is one of the most remarkable of all finite groups.

Many properties of the larger sporadic groups reduce on examination
to properties of M24. This centenarian group can still startle us with
its youthful acrobatics.

The Leech lattice is a 24-dimensional Euclidean lattice which is easily
defined in terms of the Mathieu group M24.

It hardly needs to be said that the Mathieu group M24 plays a
vital role in the structure of the Monster.
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Some simple groups, timeline, orders

Mathieu group M24, Janko group J1, Monster group M

1861− 73 M24 : 210.33.5.7.11.23

1961 J1 : 23.31.5.7.11.19

(1967 Leech Lattice – Witt 1940?)

1980− 82 M : 246.320.59.76.112.133.17.19.23.29.31.41.47.59.71

Conway et al., The Atlas of Finite Groups

Six pariah groups : Ly O ′N J1 J3 J4 Ru

Associated fields : F5 F7 F11 F4 F2 F2
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26 sporadic simple groups, relationships

Generations: Mathieu – from Leech lattice – from Monster – Pariahs
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Mathieu groups

M11 is the automorphism group of Steiner system S(4, 5, 11)

M12 is the automorphism group of Steiner system S(5, 6, 12)
The automorphism group of the extended ternary Golay code is 2.M12

Codewords with six nonzero digits – positions at which these nonzero
digits occur form the Steiner system S(5, 6, 12).

M22 is the unique index 2 subgroup of the automorphism group of
Steiner system S(3, 6, 22)

M23 is the automorphism group of Steiner system S(4, 7, 23)

M24 is the automorphism group of Steiner system S(5, 8, 24). The
8-element sets of S(5, 8, 24) correspond to octads in the extended
24-dimensional Golay code over Z/2Z
“Looking carefully at Golay’s code is like staring into the sun.”
– Richard Evan Schwartz.
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Steiner systems

Steiner system S(p, q, r) is an r -element set S together with a set of
q-element subsets of S (called blocks) such that each p-element
subset of S is contained in exactly one block.

S(5, 6, 12): 12-point set as the projective line over F11 = Z/11Z ∪∞
Quadratic residues {0, 1, 3, 4, 5, 9} form a block.
Other blocks by applying fractional linear transformations: These
blocks then form a (5,6,12) Steiner system.

S(5, 8, 24)– Particularly remarkable – connected with many of the
sporadic simple groups and with the exceptional 24-dimensional Leech
lattice.
The automorphism group of S(5, 8, 24) is the Mathieu group M24
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Octads of Golay G24 defining S(5, 8, 24)

Theorem (Aitchison)

These 759 octads for S(5, 8, 24) can be described by a naturally coloured
cuboctahedron, defined by the labelling of a standard dice, and by adding
integers mod 7. (24 =8+8+8)
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L (315∞, 05, 21), (315∞, 4∞, 63)
C (546∞, 06, 14), (546∞, 2∞, 35)
R (623∞, 03, 42), (623∞, 1∞, 56)

(4,2,2) elements are of four kinds – three more complicated can be read
off from this picture. Similarly for the other Golay octad types
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Linear codes – Hamming, extended Golay

Golay code can be constructed from three copies of the Hamming
8-code (Tyurin)

(A + X ,B + X ,A + B + X ), A,B Hamming , X ¯Hamming

There are 16 = 24 choices for each of A,B,X resulting in (24)3 = 212

code words as a subset of the possible 224 length-24 words

“The Golay code is probably the most important of all codes for both
practical and theoretical reasons.” – (F. MacWilliams, N. Sloane, The
Theory of Error Correcting Codes, p. 64)

Robert Gallagers tribute: Marcel Golays one-page paper, Notes on
Digital Coding (Proc. IRE, vol. 37, p. 657, 1949) is surely the most
remarkable paper on coding theory ever written

The Golay extended binary code is an error-correcting code capable of
correcting up to three errors in each 24-bit word, and detecting a
fourth. It was used to communicate with the Voyager probes – more
compact than the previously-used Hadamard code.
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The Mathieu groups: Golay, Steiner, Leech, Lie

The automorphism group of the octads of the Golay code is M24.

The Golay code, together with the related Witt design S(5, 8, 24),
features in a construction for the 196560 minimal vectors in the Leech
lattice.

The automorphism group of the Leech lattice is Conway’s group Co1.

Conway’s group is used in the construction of the Monster group.

The transcription-labelled hexagonal tiling and oriented Fano plane
encodes octonion multiplication, as well as for the exceptional Lie
algebra E8

The Leech lattice can be constructed by using three copies of the E8

lattice, in the same way that the binary Golay code can be
constructed using three copies of the extended Hamming code H8.
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Hamming Z/2Z 8-code can be considered as Fano lines +
∞, and complements. Symmetric difference of set addition
= Z/2Z arithmetic
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Adding Hamming F and Anti-Hamming X=A to
understand Golay codewords. Given A,B, C = A+B from
above (hence Fano pattern for adding X)

A

F

(IRA: Hiroshima 03-2018) Highly symmetric objects II 56 / 62



Possible octads are of type (8,0,0), (4,4,0), (4,2,2)
permuted, rotated

(IRA: Hiroshima 03-2018) Highly symmetric objects II 57 / 62



MOG and MAGOG. Analogue of 35 pictures in Curtis
MOG : Graphically Augmented Miracle Octad Generator.
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Arnold Trinity from p = 11: Integers modulo 11 labels,
arithmetic defined as before. No longer a torus, but genus
12 from 11 decagons, 5 at each vertex. Link duals are ideal
icosahedra, 3-manifold ends are no longer cusps
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Analogue of Klein: genus 26, 60 11-gons degree 3, 660
automorphisms. Already studied by Klein? Transcription
rule

Theorem (Aitchison)

This construction gives a 3-manifold for p = 5, 7, 11, but not for larger
primes p
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Concluding remarks I

The results stated on the Mathieu group and Golay code would not
surprise the authors of SPLAG, where ‘a kind of triality’ is mentioned,
and Conway’s Hexacode as an interpretation of Curtis’ MOG is
described. Our version can be construed as an alternative geometric
view of these constructions

In Fulton and Harris’ book on representation-theory of Lie algebras,
they excuse the reader for possibly not understanding their
presentation of Triality, stating that they themselves do not
understand it.

In Hitchin’s interviews with Sir Michael Atiyah, available on youtube,
Atiyah confesses to having no real idea of what a spinor actually is,
despite being able to algebraically/formally manipulate them. He says
’Perhaps Dirac understood, but Dirac is dead’.
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Concluding remarks II

Until 2014, S(5, 8, 24) realized the largest n for an S(n, k , l). It is
now known that there are infinitely many larger ones, but the proof is
not constructive, but probabilistic.

In a similar vein, the construction leading to the third of the Trinity
presented applies equally to the finite fields Fp = Z/pZ for p > 11.
But for general primes p, it is known that F∗p is cyclic, but Artin’s
Conjecture remains unsolved: for any given prime q, there are
infinitely many primes p such that q generates Fp.
The best, and curious, result in this direction is that for any three
distinct primes r , s, t, Artin’s Conjecture is true for one of them.
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