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Foreword

Aim:

To present a unified picture for the mapping class groups of
punctured surfaces together with Thompson’s groups T & F; and

To define a simultaneous generalization of them.

These groups will be presented as the isotropy groups of a (disconnected)
groupoid ΠMCG.

ΠMCG is a subgroupoid of a bigger (disconnected) groupoid OMG.

Thompson’s group V appears as an isotropy group of OMG

Outer automorphism groups of free groups also appear as an
isotropy group of OMG.

Our construction gives a common generalization of these groups as well.
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Basic object

I will talk a lot about an oriented surface of genus g and with at least
one puncture, denoted as

S = S
g
n (n ≥ 1)

and about its mapping class group, denoted as

Mod(S)
(I don’t consider compact surfaces-at least not today)
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Rough Idea

bu noktadan sonra bir daha geri donmene gerek yok artik. Dogru gidecek
sekilde ayarla.. (A quick tour of my talk)

A flip is an operation which replaces an H-shaped part of a trivalent
fatgraph spine G of S by an I-shaped graph, producing a new spine G′, as
below:

 

Fact: (Mosher) Flips on trivalent fatgraph spines of S generates a
groupoid MCG whose isotropy groups are isomorphic to Mod(S).
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Rough Idea

Main Observation. Flips induce isomorphisms of fundamental
groupoids of the trivalent fatgraphs they relate (viewed as abstract
fatgraphs, i.e. graphs without embeddings)

Warning. Flips do not induce homeomorphisms of the fatgraphs they
relate. In fact they are “atomic” discontinuous modifications of
fatgraphs.

Hence we have a groupoid ΠMCG whose objects are trivalent fatgraphs
and morphisms are flip-induced isomorphisms between their fundamental
groupoids. The idea is to prove that these two groupoids are isomorphic:

ΠMCG 'MCG

And we have our unified picture:
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Rough Idea

If G ↪→ S is a finite trivalent fatgraph spine, then

(isotropy group) AutΠMCG(G) ' Mod(S)

If F is the infinite trivalent planar tree, then

(isotropy group) AutΠMCG(F) ' T

If T is the infinite rooted trivalent planar tree, then

(isotropy group) AutΠMCG(T ) ' F

For other infinite graphs, this construction permits us to define their
Mapping Class/Thomson hybrid groups.

Mapping class groupoids and Thompson’s groups



Rough Idea

If G ↪→ S is a finite trivalent fatgraph spine, then

(isotropy group) AutΠMCG(G) ' Mod(S)

If F is the infinite trivalent planar tree, then

(isotropy group) AutΠMCG(F) ' T

If T is the infinite rooted trivalent planar tree, then

(isotropy group) AutΠMCG(T ) ' F

For other infinite graphs, this construction permits us to define their
Mapping Class/Thomson hybrid groups.

Mapping class groupoids and Thompson’s groups



Rough Idea

If G ↪→ S is a finite trivalent fatgraph spine, then

(isotropy group) AutΠMCG(G) ' Mod(S)

If F is the infinite trivalent planar tree, then

(isotropy group) AutΠMCG(F) ' T

If T is the infinite rooted trivalent planar tree, then

(isotropy group) AutΠMCG(T ) ' F

For other infinite graphs, this construction permits us to define their
Mapping Class/Thomson hybrid groups.

Mapping class groupoids and Thompson’s groups



Rough Idea

If G ↪→ S is a finite trivalent fatgraph spine, then

(isotropy group) AutΠMCG(G) ' Mod(S)

If F is the infinite trivalent planar tree, then

(isotropy group) AutΠMCG(F) ' T

If T is the infinite rooted trivalent planar tree, then

(isotropy group) AutΠMCG(T ) ' F

For other infinite graphs, this construction permits us to define their
Mapping Class/Thomson hybrid groups.

Mapping class groupoids and Thompson’s groups



Mapping Class Groups
Definitions...

S = Sg
n : An oriented surface (real 2-manifold) of genus g and with

n > 0 punctures

Mod(S) = Homeo∗(S)/ ∼: The mapping class group of S , i.e. the
group of isotopy classes of orientation-preserving homeomorphisms of S
preserving the free homotopy classes of loops around the punctures.

Out(Fd) = Aut(Fd)/Inn(Fd): the group of outer automorphisms of a
free group Fd of rank d .

(π1(Sg
n ) ' Fd with d = 2g + n − 1.)
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Thompson’s groups
More definitions...

Thompson’s groups T,V,F:

T ' PPSL2(Z): Thompson’s group of piecewise-PSL2(Z)
homeomorphisms of the circle with break points at rationals.

V: Thompson’s group of piecewise-PSL2(Z) bijections of the circle
with break points at rationals.

F: Thompson’s group of piecewise-PSL2(Z) homeomorphisms of
the unit interval with break points at rationals.

Fact. T and V are finitely-presented simple infinite groups.
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Groupoids
Even more definitions...

Groupoid: A small category in which every morphism is an isomorphism.

If X is a groupoid and a is an object, then MorX(a, a) is always a group,
called the isotropy group of X at a.

One usually assumes that X is connected: between any two objects,
there is a morphism.

Fact. Isotropy groups of a connected groupoid are all isomorphic, i.e.

X connected =⇒ MorX(a, a) ' MorX(b, b) ∀a, b ∈ Obj(X)

(these isomorphisms are not canonical)
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Groupoids-Example I

Groupoid Example I.

Let S be a (nice) topological space. Its fundamental groupoid Π1(S)
admits the points of S as its objects. Morphisms from x to y are
homotopy classes of paths from x to y .

If S is connected then so is Π1(S).

The isotropy group of Π1(S) at x ∈ S is just π1(S , x).
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Groupoids-Example II

Groupoid Example II.

If G is any group acting freely on a set X from the left, then there is the
associated groupoid [G\X ] whose object set is the set of orbits G\X
and such that

Mor(Gx ,Gy) = {G (a, b) : a ∈ Gx , b ∈ Gy}

The composition of G (a, b) and G (b, c) is defined to be G (a, c).

Fact: Isotropy groups of [G\X ] are all isomorphic to G .
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Groupoids-Example III

Fact. The mapping class group Mod(S) acts freely on the set of isotopy
classes of trivalent fatgraph spines of S with a doe (distinguished
oriented edge).

The associated groupoid is called the Mapping Class Groupoid and
denoted MCG(S).

=⇒ The isotropy groups of MCG(S) are all isomorphic to Mod(S)

But what is a trivalent fatgraph spine of S with a doe ?

Something like this. To be more precise...
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Fatgraphs
Definitions

A (topological) graph is a one-dimensional CW-complex comprised
of vertices and edges;

a fatgraph or ribbon graph is a topological graph together with a
cyclic ordering of edges emanating from each vertex.

Definition

An ideal arc of S is an embedded arc connecting punctures in S ,
which is not homotopic to a point relative to punctures.

An ideal cell decomposition of S is a collection of ideal arcs so
that each region complementary to arcs is a polygon with vertices
among the punctures.

A maximal ideal cell decomposition is called an ideal
triangulation.

What is a maximal ideal cell decomposition?
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Triangulation-Example

Here is a triangulation of the torus

(the vertices of the triangulation are viewed as punctures-or ideal points.)

By Fashionslide at English Wikipedia, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=65977373
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Spines

Let G ↪→ S be an embedding of a topological graph G.

Definition

G ↪→ S is called a spine of S if it is dual to an ideal cell decomposition.

How the dual graph is constructed ?
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Spines

Facts

Every spine G ↪→ S is a strong deformation retract of S .

Every spine G ↪→ S acquires a natural fatgraph structure from the
orientation of S .

A spine dual to an ideal triangulation is a trivalent fatgraph.

Isotopies of S acts on the set of all trivalent fatgraph spines of S .

Denote the set of spines modulo isotopy as

SPINE(S) :=
{
ϕ : G ↪→ S : is a spine

}
/isotopy. (1)

The isotopy class of a spine G ↪→ S is denoted as [G ↪→ S ] and is again
called a spine.

What kind of a set is SPINE(S) ?
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Spines

Further Facts...

Mod(S) acts by post-composition on SPINE(S), though not freely.

Every automorphism of G extends to an element of Mod(S), which
in turn fixes [G ↪→ S ].

The Mod(S)-orbit of a fatgraph spine [G ↪→ S ] is just the fatgraph
G (modulo Aut(G)).

This fatgraph G is the combinatorial type of the fatgraph spine
G ↪→ S .

Pitfall. We want to consider the groupoid associated to the
Mod(S)-action on the set SPINE(S); however, this action is not free.
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Spines with a doe

We can remedy the non-freeness of the Mod(S)-action by considering the
enlarged set

SPINEdoe(S) :=
{
ϕ : (G, ~e) ↪→ S : is a spine with a doe

}
/isotopy, (2)

where ~e is a distinguished oriented edge of G.

The isotopy class of a spine (G, ~e) ↪→ S is denoted as [(G, ~e) ↪→ S ].

Fact. The Mod(S) action on SPINEdoe(S) is free. Whence
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Definition

The Mapping Class Groupoid MCG(S) is the groupoid associated to
the Mod(S) action on SPINEdoe(S). (Mosher)

In other words,

MCG(S) := [SPINEdoe(S)/Mod(S)]
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The Mod(S)-orbit of a fatgraph spine [G ↪→ S ] is just the
combinatorial fatgraph with a doe [G, ~e] =⇒
the objects of MCG(S) are isotopy classes of trivalent fatgraphs

[G, ~e] with a doe. (just trivalent graphs without the embedding)

Morphisms are of MCG(S) the Mod(S)-orbits of the pairs

([(G, ~e) ↪→ S ], [(G′, ~e′) ↪→ S ]).

Isotropy groups of MCG(S) are isomorphic to Mod(S).

This last proposition is almost tautological, based on the freeness
of the Mod(S) action.
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Flips

Given an ideal triangulation of S with an arc of this triangulation, one
obtains a new ideal triangulation by applying a a flip, as below

 

A flip can be viewed as an operation on the trivalent fatgraph spines dual
to the triangulation, which is also called a flip. (or“H-I move” ).

Lemma

(Whitehead) Any two trivalent fatgraph spines of S are connected via a
finite sequence of flips.
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Whitehead’s lemma provides the non-trivial content of this story.

Flips are well-defined on isotopy classes of spines with a doe, i.e. if we
define

X := {((G, e), f ) : (G, e) ∈ SPINE(S) and f is an edge of G},

then we may define ϕ as a map X → X (of order 4).

Corollary

MCG(S) is generated by flips and doe moves.

What is a doe move?
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The celebrated pentagon relation

Remark. MCG(S) is not freely generated by flips and doe moves.
Among others, one has the famous pentagon relation
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Remark Another way to obtain a free Mod(S)-action is to consider
labeled trivalent fatgraph spines (spines with an enumeration of their
edges).

Penner gave a complete presentation of the groupoid associated to this
action.
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Main observation, again

A fatgraph flip does not define nor is defined by some homeomorphism
between the graphs in question. In contrast with this,

Lemma

Flips induce isomorphisms of fundamental groups of fatgraphs; i.e. for
every pair of edges e, f of G, there are isomorphisms

φe : π1(G, f )→ π1(G′, φe(f )) (3)

More naturally, flips induce isomorphisms of fundamental groupoids

φe : Π1(G)→ Π1(G′) (4)

Proof.....
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Main theorem

Hence, it is natural to define the groupoid ΠMCG(S), whose objects are
combinatorial types of fatgraph spines of S and whose morphisms are
flip-induced isomorphisms between their fundamental groupoids.

Note that these isomorphisms respects the relations inside MCG(S):

Theorem

If S is finite, then MCG and ΠMCG(S) are canonically isomorphic.
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Idea of proof.

A tedious idea would be to find a presentation of MCG(S) and show that
the natural map between ΠMCG(S) and MCG(S) is an isomorphism.

A better ide is to apply the fundamental groupoid functor to the
construction of MCG.

First, every fatgraph spine with a doe ϕ : (G, ~e) ↪→ S gives rise to an
isomorphism (homotopy equivalence) of groupoids

ϕ∗ : Π1(G, ~e) ↪→ Π1(S). (5)

Isotopies of S acts on the set of such isomorphisms and we have the
corresponding set

ΠSPINEdoe(S) :=
{
ϕ∗ : Π1(G, ~e) ↪→ Π1(S) : ϕ ∈ SPINEdoe(S)

}
/isotopy,

(6)

Mod(S) acts freely on ΠSPINEdoe(S).

Since ΠSPINEdoe and SPINEdoe are in canonical bijection; and since the
Mod(S) action on them respects this bijection, the result follows.
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More generally, define the groupoid ΠMCG(G), whose objects are
fatgraphs with a doe that can be obtained from G by a finite sequence of
flips doe moves and morphisms are isomorphisms between their
fundamental groupoids induced by these operations.

Theorem

If F is the infinite planar trivalent tree, then ΠMCG(F) has just one
object and it is isomorphic to Thompson’s group.

Proof.(with Ayberk Zeytin) The action on the fundamental groupoid of
F extends to an action on the space of ends (∼ paths to infinity) ∂F .
There is an identification ∂F → S1 (the circle) via continued fractions,
which is compatible with the flip action. The resulting flip action is
precisely PPSL2(Z), i.e. the Thompson’s group T .
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Charks

Another instance to which we may apply the previous theorem is...

Definition

A a chark G is a trivalent fatgraph with just one cycle and with no
pending vertices. We also require that this cycle do not encircle a
puncture.

In other words, a chark has just one cycle and otherwise it looks like the
infinite planar tree:
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Charks

At this point we make contact with arithmetic, which was our point of
departure in this adventure:

Every chark (without a doe) represents in a natural way the class of
a binary quadratic form, such that;

Each doe can be identified with a binary quadratic form in this class.

Lemma

The flip action is transitive on the set of charks.
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To repeat things, we may identify the objects of ΠMCG(G) with the set
of binary quadratic forms in a natural way.

(Here, G is any chark.)

The isotropy groups of the groupoid ΠMCG(G) appears to be T× T.
(on-going work)
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We expect to obtain true hybrids of mapping class groups and Thompson
groups for more sophisticated graphs (i.e. pair of pants graphs). We
haven’t studied these cases in depth yet.

It appears to be an important and difficult problem to determine the
isotropy groups of the groupoids so obtained.
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Shuffles

A shuffle is an operation which modifies a trivalent fatgraph at a given
vertex as follows:
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Shuffles

Shuffles don’t modify the underlying topological graph =⇒ induce
trivial isomorphisms of their fundamental groupoids

Shuffles change the genus and the number of punctures of G.

By applying finitely many flips and shuffles to G, we can obtain
every trivalent fatgraph whose π1 is isomorphic to π1(G), if π1(G) is
finitely generated.

Remark. Shuffles can be defined on trivalent fatgraph spines as well;
however, they change the ambient surface.
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The Outer Mapping Groupoid

Definition

The objects of the outer mapping groupoid OMG are fatgraphs G with a
doe, and

MorOMG(G,G′) :={
isomorphisms induced by flips, shuffles & doe moves ΠG1 → ΠG

′

1

}
.

If G is finite with d = 2g + n − 1, then the connected component of G
inside OMG contains the groupoids ΠMCG(Sn

g ) with d = 2g + n − 1 as
a subgroupoid.
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Speculative part

Theorem

If G ↪→ S is a finite trivalent fatgraph spine, then

(isotropy group) AutOMG(G) ' Out(π1(S))

If F is the infinite trivalent planar tree, then

(isotropy group) AutOMG(F) ' V

For other infinite graphs, this construction permits us to define their
Outer/Thomson hybrid groups.

(not completely proven yet)
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Branched covers
Where are they hidden?

A trivalent fatgraph is (almost) the same thing as a subgroup of PSL2(Z).

The set of subgroups constitute a category (a poset) under the inclusion
of subgroups, denoted Sub.

Hence the objects sets of ΠMCG and ΠMCG can be identified with the
category Sub.

The category Sub. is reverse-equivalent to the category Cov of trivalent
fatgraphs under fatgraph coverings. These fatgraphs are nothing but
dessins.
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In turn, this category is equivalent to the category of surfaces under
branched coverings at the punctures. This appearance of branched
coverings is not forced; these coverings are important from the arithmetic
point of view.

The structures of ΠMCG and ΠMCG groupoids are compatible with
this structure. (Connection with branched coverings of moduli spaces
along the compactification locus)

Which permits to pass to the limit and define the profinite case.

At this point we are on the verge of the Grothendieck-Teichmüller theory.
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