On Rational Elliptic Surfaces With Dihedral Group Action

Shinzo Bannai

March 9, 2011
Outline

1. Background

2. Dihedral group actions on Rational Elliptic Surfaces

3. Sketch of Proof
Let

- X, Y: normal algebraic varieties over \mathbb{C}.
- $\pi : X \to Y$: surjective finite morphism.

Then π induces an inclusion of function fields

$$\pi^* : \mathbb{C}(Y) \hookrightarrow \mathbb{C}(X)$$

Definition

π is said to be a G-cover if

- $\mathbb{C}(X)/\mathbb{C}(Y)$ is a Galois extension.
- $\text{Gal}(\mathbb{C}(X)/\mathbb{C}(Y)) \cong G$.
Fact

If $\pi : X \to Y$ is a G-cover then

- G is a finite group.
- X is a G-variety (i.e. there exists a G-action on X.)
- $X/G \cong Y$.
- π is the quotient morphism.
- $\mathbb{C}(X)^G \cong \mathbb{C}(Y)$.
Fact

Conversely given a normal G-variety X, then the quotient morphism and variety

$$\pi : X \rightarrow X/G$$

is a G-cover.
Fact

Conversely given a normal G-variety X, then the quotient morphism and variety

$$\pi : X \to X/G$$

is a G-cover.

- G-covers and G-varieties are essentially the same.
Fact

Conversely given a normal G-variety X, then the quotient morphism and variety

$$\pi : X \to X/G$$

is a G-cover.

- G-covers and G-varieties are essentially the same.
- To study G-covers and to study Galois Theory for function fields are essentially the same.
Fact

Conversely given a normal G-variety X, then the quotient morphism and variety

$$\pi : X \rightarrow X/G$$

is a G-cover.

- G-covers and G-varieties are essentially the same.
- To study G-covers and to study Galois Theory for function fields are essentially the same.

\Rightarrow Birational geometry of G-varieties
Fundamental Problems

The Inverse Galois Problem

For a given normal variety Y and a given finite group G, find a normal variety X and a surjective finite map

$$\pi : X \to Y$$

such that $\pi : X \to Y$ is a G-cover.
Fundamental Problems

The Inverse Galois Problem

For a given normal variety Y and a given finite group G, find a normal variety X and a surjective finite map

$$\pi : X \rightarrow Y$$

such that $\pi : X \rightarrow Y$ is a G-cover.

- Give a criterion for (X, π) to exist in terms of data on Y.

Fundamental Problems

The Inverse Galois Problem

For a given normal variety Y and a given finite group G, find a normal variety X and a surjective finite map

$$\pi : X \to Y$$

such that $\pi : X \to Y$ is a G-cover.

- Give a criterion for (X, π) to exist in terms of data on Y.
- Give an explicit method to construct such (X, π).
 (Not just the existence of X.)
Fundamental Problems

The Inverse Galois Problem

For a given normal variety Y and a given finite group G, find a normal variety X and a surjective finite map

$$\pi : X \to Y$$

such that $\pi : X \to Y$ is a G-cover.

- Give a criterion for (X, π) to exist in terms of data on Y.
- Give an explicit method to construct such (X, π).
 (Not just the existence of X.)
- Give a description of the moduli space of such (X, π).
The "pull-back" construction by M. Namba

Given a G-cover

$$\pi : X \to Y$$

and a G-indecomposable rational map

$$Y' \to Y$$

a G-cover cover

$$\pi' : X' \to Y'$$

can be constructed.
Given $\pi : X \to Y$ and $\psi : Y' \to Y$:
Given $\pi : X \to Y$ and $\psi : Y' \to Y$:

![Diagram](image_url)
Given $\pi : X \to Y$ and $\psi : Y' \to Y$:
Given $\pi : X \rightarrow Y$ and $\psi : Y' \rightarrow Y$:
The pull back construction allows us to construct new G-covers form the data of known Galois covers.

Difficulties

- We need to find a simple G-cover $\pi : X \rightarrow Y$ to start with.
- The existence of $\psi : Y' \rightarrow Y$ depends on the choice of $\pi : X \rightarrow Y$.

Even if it is possible to construct a G-cover over Y', it may not be obtained as a pull-back of $\pi : X \rightarrow Y$.
Let \(\pi : X \rightarrow Y \) be a \(G \)-cover.

Definition (Informal)

\(\pi : X \rightarrow Y \) is said to be a **versal** \(G \)-cover if every \(G \)-cover \(\pi' : X' \rightarrow Y' \) can be obtained by pulling-back \(\pi : X \rightarrow Y \).
Let \(\pi : X \rightarrow Y \) be a \(G \)-cover.

Definition (Informal)

\(\pi : X \rightarrow Y \) is said to be a **versal** \(G \)-cover if every \(G \)-cover \(\pi' : X' \rightarrow Y' \) can be obtained by pulling-back \(\pi : X \rightarrow Y \).

Find versal \(G \)-covers with a simple structure
Known Facts

- Versal G-covers exist for all finite groups G.
Known Facts

- Versal G-covers exist for all finite groups G.
- If $G \cong C_n$ or D_{2n} (n: odd),
 \[
 \pi : \mathbb{P}^1 \rightarrow \mathbb{P}^1 / G \cong \mathbb{P}^1
 \]
 is versal.
Known Facts

- Versal G-covers exist for all finite groups G.
- If $G \cong C_n$ or D_{2n} (n: odd),
 \[\pi : \mathbb{P}^1 \rightarrow \mathbb{P}^1/G \cong \mathbb{P}^1 \]
 is versal.
- If $G \cong D_{2n}$ (n: even), and
 \[\pi : X \rightarrow Y \]
 is versal, then $\dim X \geq 2$. Further if $\dim X = 2$ then X, Y are rational surfaces.
Known Facts

- Let $\pi: X \to Y$ and $\pi': X' \to Y'$ be birationally equivalent G-covers. Then π is versal if and only if π' is versal.

Definition

$\pi: X \to Y$, $\pi': X' \to Y'$ are said to be birationally equivalent if there exists a G-equivariant birational map $\phi: X \dashrightarrow X'$.
Problem

- Classify rational G-surfaces up to birational equivalence.
Problem

- Classify rational G-surfaces up to birational equivalence.
- Identify which of them are versal/non-versal G-covers.
Problem

- Classify rational G-surfaces up to birational equivalence.
- Identify which of them are versal/non-versal G-covers.
Problem

- Classify rational G-surfaces up to birational equivalence.
- Identify which of them are versal/non-versal G-covers.

Today we consider rational elliptic surfaces with relative D_{2n}-action.
The birational classification of (minimal) rational G-surfaces is known due to Dolgachev-Iskovskikh. It is based on the following facts.

Theorem (Manin: G-equivariant Mori-theory for surfaces)

Let G be a finite group and X be a minimal G-surface. Then one of the following holds:

- $\text{Pic}^G(X) \cong \mathbb{Z}^2$ and X has a G-minimal conic bundle structure.
- $\text{Pic}^G(X) \cong \mathbb{Z}$ and X is a G-minimal del-Pezzo surface.
Theorem (Iskovskikh: Factorization theorem)

Let X_1, X_2 be G-surfaces. Then any G-equivariant birational map

$$\phi : X_1 \rightarrow X_2$$

can be factored into a finite composition of “Links”.

This is an G-equivariant analogue of the famous Noether’s factorization theorem for birational transformations of \mathbb{P}^2.

Fact

All “Links” are classified.
The classification is done in the following steps.

1. Find minimal G-surfaces.
 - Consider a rational surface.
 - Determine $\text{Aut}(X)$.
 - Find finite subgroups G of $\text{Aut}(X)$ that act minimally on X.

2. Use the classification of “Links” to distinguish non-birationally equivalent surfaces.
The classification is “surface” centered, and does not contain much information on non-minimal G-surfaces.

It is hard to read off the birational equivalence classes for a fixed group G. The following problem is posed in Dolgachev-Iskovskikh.

Problem (Moduli Problem)

*Give a finer geometric description of the algebraic variety parametrizing birational equivalence classes of rational G-surfaces for fixed G.***
Theorem

The algebraic variety parameterizing the birational equivalence classes of rational elliptic surfaces with a relative D_8-action is a nodal rational curve.

- The birational equivalence class corresponding to the node is versal.
- There is one non-versal equivalence class.
- It is unknown for the other cases.
Automorphisms of Rational Elliptic Surfaces

Let S be a smooth projective surface, C be a smooth curve.

Definition

S is said to be an elliptic surface over C if there is a surjective morphism

$$f : S \to C$$

such that

1. general fibers are smooth curves of genus 1,
2. no fibre contains an exceptional curve of the first kind,
3. $f : S \to C$ has a section,
4. S has at least one singular fiber.
Since \(f : S \rightarrow C \) has a section

\[
O : C \rightarrow S.
\]

Then the generic fiber \(E \) of \(f : S \rightarrow C \) becomes an elliptic curve over \(\mathbb{C}(C) \), and

\[
\{ \text{sections of } f : S \rightarrow C \} \overset{1:1}{\longleftrightarrow} \{ \mathbb{C}(C)\text{-rational points of } E \}
\]

Definition (Mordell-Weil group)

The Mordell-Weil group of \(f : S \rightarrow C \) is defined by

\[
\text{MW}(S) := \{ \text{sections of } f : S \rightarrow C \}
\]

The group structure is defined by the elliptic curve structure of \(E \).
Definition

An automorphism $\phi : S \to S$ is said to be a relative automorphism of $f : S \to C$ if it preserves the fibration, i.e.

$$f \circ \phi = f$$

The group of relative automorphisms of $f : S \to C$ is denoted by $\text{Aut}_C(S)$.

Lemma

$$\text{Aut}_C(S) \cong \text{Aut}_O(S) \ltimes \text{MW}(S)$$
Lemma

Let $\text{Aut}_O(E) = \mathbb{Z}/2\mathbb{Z} = \langle \iota, \iota^2 = 1 \rangle$. Then the elements of finite order in $\text{Aut}_C(S)$ consist of

- $\text{MW}(S)_{\text{tor}}$: the torsion elements of $\text{MW}(S)$.
- $\{\iota \circ s | s \in \text{MW}(S)\}$: a translation followed by the involution.

Note that $\iota \circ s$ has order 2.

$$(\iota \circ s)^2 = \iota \circ s \circ \iota \circ s = \iota \circ \iota \circ (s) \circ s = 1$$
Lemma

Let τ be an n-torsion element of $\text{MW}(S)$. Let $\sigma = \iota \circ s$ for some section s. Then

$$< \sigma, \tau > \cong D_{2n}.$$

Conversely any relative D_{2n} action is generated by τ, σ of the above form.

- Conjugate subgroups give rise to isomorphic D_{2n}-surfaces.
Lemma

$i \circ s$ and $i \circ s'$ are conjugate in $\text{Aut}_C(S)$ if and only if

$$s - s'$$

is 2-divisible in $MW(S)$.

Let τ be an n-torsion element of $MW(S)$. There are essentially two types of relative D_{2n}-actions on S.

(i) $D_{2n} = \langle \iota, \tau \rangle$

(ii) $D_{2n} = \langle \iota \circ s, \tau \rangle$ for s that is not 2-divisible
Lemma (Miranda-Persson)

Let S be a rational elliptic surface with n torsion ($n \geq 4$). Then the Mordell-Weil group $MW(S)$ of S is one of the following.

<table>
<thead>
<tr>
<th>n</th>
<th>$MW(S)$</th>
<th>Number of surfaces</th>
<th>Type of S</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>$\mathbb{Z}/6\mathbb{Z}$</td>
<td>1</td>
<td>No. 66</td>
</tr>
<tr>
<td>5</td>
<td>$\mathbb{Z}/5\mathbb{Z}$</td>
<td>1</td>
<td>No. 67</td>
</tr>
<tr>
<td>4</td>
<td>$\mathbb{Z}/4\mathbb{Z}$</td>
<td>2</td>
<td>No. 70, 72</td>
</tr>
<tr>
<td></td>
<td>$\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$</td>
<td>1</td>
<td>No. 74</td>
</tr>
<tr>
<td></td>
<td>$\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$</td>
<td>∞</td>
<td>No. 58</td>
</tr>
</tbody>
</table>

The type of S is the number in Oguiso-Shioda’s list of Mordell-Weil lattices of rational elliptic surfaces.
Lemma

The relative automorphism group $\text{Aut}_C(S)$ and the number of conjugacy classes of dihedral subgroups of $\text{Aut}_C(S)$ are as follows:

<table>
<thead>
<tr>
<th>n</th>
<th>$\text{MW}(S)$</th>
<th>$\text{Aut}_C(S)$</th>
<th>conj. class. of D_{2n}</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>$\mathbb{Z}/6\mathbb{Z}$</td>
<td>D_{12}</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>$\mathbb{Z}/5\mathbb{Z}$</td>
<td>D_{10}</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>$\mathbb{Z}/4\mathbb{Z}$</td>
<td>D_8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>$\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$</td>
<td>$\mathbb{Z}/2\mathbb{Z} \times (\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z})$</td>
<td>4*</td>
</tr>
<tr>
<td></td>
<td>$\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$</td>
<td>$\mathbb{Z}/2\mathbb{Z} \times (\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z})$</td>
<td>2**</td>
</tr>
</tbody>
</table>

\((*) : < \iota, \tau >, < \iota, \tau' >, < \iota \circ s, \tau >, < \iota \circ s, \tau' > \)

\((**) : < \iota, \tau >, < \iota \circ s, \tau > \)
In total we have two infinite families and 4 sporadic isomorphism classes of rational elliptic surfaces with relative D_8-action.

Infinite families: 58-(i), 58-(ii)

Sporadic cases: 70, 72, 74-(i), 74-(ii)
In total we have two infinite families and 4 sporadic isomorphism classes of rational elliptic surfaces with relative D_8-action.

Infinite families: 58-(i), 58-(ii)

Sporadic cases: 70, 72, 74-(i), 74-(ii)

Which of these D_8-surfaces are birationally equivalent?
Theorem

Every rational elliptic surface with relative D_8 action is birationally equivalent as a D_8-surface to exactly one of the surfaces of the following types.

1. $\mathbb{P}^1 \times \mathbb{P}^1$ with D_8-action (I).
 - 74-(i)
2. $\mathbb{P}^1 \times \mathbb{P}^1$ with D_8-action (II).
 - 70, 72, 74-(ii), 58-(ii)
3. D_8-minimal del Pezzo surface of degree 4.
 - 58-(i)

 Each surface of this type is birational equivalent if and only if they are isomorphic as elliptic surfaces.
Let \(([x_0, x_1], [y_0, y_1])\) be homogeneous coordinates of \(\mathbb{P}^1 \times \mathbb{P}^1\).

- **action (I)**
 \[
 \begin{align*}
 \sigma : \quad & ([x_0, x_1], [y_0, y_1]) \\
 & \mapsto ([y_0 - \sqrt{-1}y_1, \sqrt{-1}y_0 - y_1], [x_0 - \sqrt{-1}x_1, \sqrt{-1}x_0 - x_1]) \\
 \tau : \quad & ([x_0, x_1], [y_0, y_1]) \mapsto ([y_1, y_0], [x_0, x_1])
 \end{align*}
 \]

- **action (II)**
 \[
 \begin{align*}
 \sigma : \quad & ([x_0, x_1], [y_0, y_1]) \mapsto ([y_0, y_1], [x_0, x_1]) \\
 \tau : \quad & ([x_0, x_1], [y_0, y_1]) \mapsto ([y_1, y_0], [x_0, x_1])
 \end{align*}
 \]
Sketch of Proof

- **Step 1:**
 For each surface S and D_{2n}-action, look for D_{2n}-orbits consisting of (-1)-curves, and blow them down to obtain a birationally equivalent minimal D_{2n}-surface.
 - The Mordell-Weil lattice of S.

- **Step 2:**
 Apply Dolgachev-Iskovskikh's classification.
 - fixed curves
 - classification of links
Case of type No. 58

Step 1
It is known that rational elliptic surfaces of type No. 58 has singular fibres

\[l_4, l_4, l_2, l_1, l_1 \]

and

\[MW(S) \cong \mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z} \]

Let

- \(O \): the zero section of \(S \).
- \(\iota \): involution of \(S \) (with respect to the zero section).
- \(t \): four torsion element of \(MW(S) \).
- \(s \): generating section. i.e. a section such that

\[\langle s, t \rangle = MW(S) \]
There are two conjugacy classes of D_8 actions (in $\text{Aut}_C(S)$) on S represented by,

- Case 1: $D_8 = \langle \iota, t \rangle$
- Case 2: $D_8 = \langle \iota \circ s, t \rangle$
The orbit of sections differ from case 1 and case 2. Let s' be any section. Then the D_8-orbit of s' and O is as follows:

1. $D_8 = \langle \nu, t \rangle$.

 \[
 \text{Orb}_{D_8}(s') = \{ \pm s', \pm (s' + t), \pm (s' + 2t), \pm (s' + 3t) \}
 \]

 \[
 \text{Orb}_{D_8}(O) = \{ O, t, 2t, 3t \}
 \]

2. $D_8 = \langle \nu \circ s, t \rangle$

 \[
 \text{Orb}_{D_8}(s') = \{ s', s' + t, s' + 2t, s' + 3t, -s' - s, -s' - s + t, -s' - s + 2t, -s' - s + 3t \}
 \]

 \[
 \text{Orb}_{D_8}(O) = \{ O, t, 2t, 3t, -s, -s + t, -s + 2t, -s + 3t \}
 \]
Lemma

In both case 1 and 2,

- The sections in \(\text{Orb}_{D_8}(O) \) are mutually disjoint.
- The sections in \(\text{Orb}_{D_8}(s') \) are not mutually disjoint if \(s' \neq O, t \).

By blowing down the 4 (resp. 8) curves in \(\text{Orb}_{D_8}(O) \) we obtain minimal \(D_8 \)-surfaces.

Lemma

The minimal rational \(D_8 \) surface obtained by blowing down \(\text{Orb}_{D_8}(O) \) for each action is:

1. del Pezzo surface of degree 4 with \(D_8 \) action.
2. \(\mathbb{P}^1 \times \mathbb{P}^1 \) with \(D_8 \) action.
Step 2
It remains to determine the corresponding birational equivalence class according to Dolgachev-Iskovskikh’s classification.

- **Case 1**: del Pezzo surface of degree 4 with D_8-action.

Lemma (J. Blanc)

Let S, S' be a del Pezzo surface of degree 4 with minimal D_8 action and let $\phi : S \dasharrow S'$ be a G-equivariant birational map. Then ϕ is an isomorphism.

Corollary

Let S, S' be rational elliptic surfaces of type 58 with D_8-action of type (I). Then S, S' are birationally equivalent if and only if they are isomorphic as elliptic surfaces.
• **Case 2:** $\mathbb{P}^1 \times \mathbb{P}^1$ with D_8 action.

There are several distinct minimal D_8 actions on $\mathbb{P}^1 \times \mathbb{P}^1$. To determine which D_8-action we get, we make the following observation:

Define a D_8-action on $\mathbb{P}^1 \times \mathbb{P}^1$ by

$$
\begin{align*}
\sigma : ([x_0, x_1], [y_0, y_1]) &\rightarrow ([y_0, y_1], [x_0, x_1]) \\
\tau : ([x_0, x_1], [y_0, y_1]) &\rightarrow ([y_1, y_0], [x_0, x_1])
\end{align*}
$$

Let f_1, f_2, f_3 be D_8-invariant curves of bi-degree $(2, 2)$ defined by

- $f_1 = x_0 x_1 y_0 y_1$
- $f_2 = x_0^2 y_0^2 + x_0^2 y_1^2 + x_1^2 y_0^2 + x_1^2 y_1^2$
- $f_3 = x_0 x_1 y_0^2 + x_0 x_1 y_1^2 + x_0^2 y_0 y_1 + x_1^2 y_0 y_1$

Let $\Lambda = \{ \alpha f_1 + \beta f_2 + \gamma f_3 \}$ be the D_8 invariant linear system of curves generated by f_1, f_2, f_3.
Fact

- A general member of Λ is a smooth D_8-invariant curve of genus 1.
- A general sub-pencil λ of Λ determines a D_8-invariant pencil of curves of genus 1.
- By blowing up the base points of λ we obtain a elliptic surface with D_8 action.
Lemma

Every rational elliptic surface S with four torsion can be obtained by blowing up a D_8-invariant sub-pencil λ of Λ.

Lemma

S_λ and $S_{\lambda'}$ are isomorphic if and only if p_λ and $p_{\lambda'}$ lie on the same member of the pencil generated by C and $L_1 + L_2$.

Lemma

The D_8 action of $\mathbb{P}^1 \times \mathbb{P}^1$ lifts to S and coincides with the D_8-action $\langle i \circ s, t \rangle$ of type (ii).

Corollary

Every elliptic surface with D_8-action of type (ii) are birationally equivalent.
Theorem

The algebraic variety parameterizing the birational equivalence classes of rational elliptic surfaces with a relative D_8-action is a nodal rational curve.

- The birational equivalence class corresponding to the node is versal.
- There is one non-versal equivalence class.
- It is unknown for the other cases.
$\mathbb{P}^1 \times \mathbb{P}^1$

$\mathbb{P}^1 \times \mathbb{P}^1 / (\sigma \tau) = \mathbb{P}^1 \times \mathbb{P}^1$

$\mathbb{P}^1 \times \mathbb{P}^1 / (\sigma \tau, \sigma \tau^3) = \mathbb{P}^1 \times \mathbb{P}^1$

$\mathbb{P}^1 \times \mathbb{P}^1 / D_8 = \mathbb{P}^2$
\(\mathbb{P}^1 \times \mathbb{P}^1 \)

\[\xrightarrow{} \]

\(\mathbb{P}^1 \times \mathbb{P}^1 / D_8 = \mathbb{P}^2 \)
$\mathbb{P}^1 \times \mathbb{P}^1$
$P^1 \times P^1 \to P^1 \times P^1 / (\sigma \tau) = P^1 \times P^1$
$P^1 \times P^1$ \hspace{2cm} \xrightarrow{} \hspace{2cm} P^1 \times P^1/(\sigma \tau) = P^1 \times P^1$
$P^1 \times P^1 \rightarrow P^1 \times P^1 / (\sigma \tau) = P^1 \times P^1$
$P^1 \times P^1 \rightarrow P^1 \times P^1 / (\sigma \tau) = P^1 \times P^1$

$P^1 \times P^1 / (\sigma \tau, \sigma T^3) = P^1 \times P^1$
$P^1 \times P^1$ \rightarrow P^1 \times P^1 / (\sigma \tau) = P^1 \times P^1$

$P^1 \times P^1 / (\sigma \tau, \sigma \tau^3) = P^1 \times P^1$
$P^1 \times P^1$ \rightarrow \quad \text{Diagram with a curve flattening to a line.} \quad \text{Diagram with a line}

$P^1 \times P^1 / (\sigma \tau) = P^1 \times P^1$

$P^1 \times P^1 / (\sigma \tau, \sigma \tau^3) = P^1 \times P^1$
\[
P^1 \times P^1 \xrightarrow{\sigma T, \sigma T^3} P^1 \times P^1 / (\sigma T, \sigma T^3) = P^1 \times P^1
\]
$\mathbb{P}^1 \times \mathbb{P}^1$ \(\xrightarrow{} \) \(\mathbb{P}^1 \times \mathbb{P}^1 / (\sigma \tau) = \mathbb{P}^1 \times \mathbb{P}^1 \)

\[P^1 \times P^1 / (\sigma \tau) = P^1 \times P^1 \]

\[P^1 \times P^1 / (\sigma \tau, \sigma \tau^3) = P^1 \times P^1 \]

\[P^1 \times P^1 / D_8 = P^2 \]
\[\mathbb{P}^1 \times \mathbb{P}^1 \]
$P^1 \times P^1$
$\mathbb{P}^1 \times \mathbb{P}^1$

\mathbb{P}^2