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G -covers

Let

X , Y : normal algebraic varieties over C.

π : X → Y : surjective finite morphism.

Then π induces an inclusion of function fields

π∗
: C(Y ) �→ C(X )

Definition

π is said to be a G -cover if

C(X )/C(Y ) is a Galois extension.

Gal(C(X )/C(Y )) ∼= G .
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Fact

If π : X → Y is a G-cover then

G is a finite group.

X is a G-variety (i.e. there exists a G-action on X .)

X/G ∼= Y .

π is the quotient morphism.

C(X )G ∼= C(Y ).
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Fact

Conversely given a normal G-variety X , then the quotient

morphism and variety

π : X → X/G

is a G-cover.

G -covers and G -varieties are essentially the same.

To study G -covers and to study Galois Theory for function

fields are essentially the same.

⇒ Birational geometry of G -varieties
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Fundamental Problems

The Inverse Galois Problem

For a given normal variety Y and a given finite group G , find a

normal variety X and a surjective finite map

π : X→Y

such that π : X → Y is a G -cover.

Give a criterion for (X ,π) to exist in terms of data on Y .

Give an explicit method to construct such (X ,π).

(Not just the existence of X .)

Give a description of the moduli space of such (X ,π).
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Fundamental Problems

The ”pull-back” construction by M. Namba

Given a G -cover

π : X → Y

and a G -indecomposable rational map

Y
� ��� Y

a G -cover cover

π�
: X

� → Y
�

can be constructed.
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Given π : X → Y and ψ : Y � ��� Y :

Ȳ � ×Y X

X
�

Ȳ � X

Y
� Y

❄
π

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣✲ψ
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The pull back construction allows us to construct new G -covers

form the data of known Galois covers.

Difficulties

We need to find a simple G -cover π : X → Y to start with.

The existence of ψ : Y � ��� Y depends on the choice of

π : X → Y .

Even if it is possible to construct a G -cover over Y �, it may

not be obtained as a pull-back of π : X → Y .
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Let π : X → Y be a G -cover.

Definition (Informal)

π : X → Y is said to be a versal G -cover if

every G -cover π� : X � → Y � can be obtained by pulling-back

π : X → Y .

Find versal G-covers with a simple structure
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Known Facts

Versal G -covers exist for all finite groups G .

If G ∼= Cn or D2n (n: odd),

π : P1 → P1/G ∼= P1

is versal.

If G ∼= D2n (n: even), and

π : X → Y

is versal, then dim X ≥ 2. Further if dim X = 2 then X ,Y are

rational surfaces.
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Known Facts

Let π : X → Y and π� : X � → Y � be birationally equivalent

G -covers. Then π is versal if and only if π� is versal.

Definition

π : X → Y , π� : X � → Y � are said to be birationally equivalent if

there exists a G -equivariant birational map φ : X ��� X �.

X X
�

Y Y
�

❄
π

♣ ♣ ♣ ♣ ♣ ♣ ♣✲φ

❄
π�

♣ ♣ ♣ ♣ ♣ ♣ ♣✲
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Problem

Classify rational G -surfaces up to birational equivalence.

Identify which of them are versal/non-versal G -covers.

Today we consider rational elliptic surfaces with relative

D2n-action.
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Birational classification of rational G -surfaces

The birational classification of (minimal) rational G -surfaces is

known due to Dolgachev-Iskovskikh. It is based on the following

facts.

Theorem (Manin: G -equivariant Mori-theory for surfaces)

Let G be a finite group and X be a minimal G-surface. Then one

of the following holds:

Pic
G
(X ) ∼= Z2 and X has a G-minimal conic bundle structure.

Pic
G
(X ) ∼= Z and X is a G-minimal del-Pezzo surface.
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Theorem (Iskovskikh: Factorization theorem)

Let X1,X2 be G-surfaces. Then any G-equivariant birational map

φ : X1 ��� X2

can be factored into a finite composition of “Links”.

This is an G -equivariant analogue of the famous Noether’s

factorization theorem for birational transformations of P2.

Fact

All “Links” are classified.
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The classification is done in the following steps.

1 Find minimal G -surfaces.

Consider a rational surface.

Determine Aut(X ).

Find finite subgroups G of Aut(X ) that act minimally on X .

2 Use the classification of “Links” to distinguish

non-birationallly equivalent surfaces.
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The classification is “surface” centered, and does not contain

much information on non-minimal G -surfaces.

It is hard to read off the birational equivalence classes for a

fixed group G . The following problem is posed in

Dolgachev-Iskovskikh.

Problem (Moduli Problem)

Give a finer geometric description of the algebraic variety

parametrizing birational equivalence classes of rational G-surfaces

for fixed G.
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Theorem

The algebraic variety parameterizing the birational equivalence

classes of rational elliptic surfaces with a relative D8-action is a

nodal rational curve.

The birational equivalence class corresponding to the node is

versal.

There is one non-versal equivalence class.

It is unknown for the other cases.
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Automorphisms of Rational Elliptic Surfaces

Let S be a smooth projective surface, C be a smooth curve.

Definition

S is said to be an elliptic surface over C if there is a surjective

morphism

f : S → C

such that

1 general fibers are smooth curves of genus 1,

2 no fibre contains an exceptional curve of the first kind,

3 f : S → C has a section,

4 S has at least one singular fiber.
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Since f : S → C has a section

O : C → S .

Then the generic fiber E of f : S → C becomes an elliptic curve

over C(C ), and

{sections of f : S → C} 1:1←→ {C(C )-rational points of E}

Definition (Mordell-Weil group)

The Mordell-Weil group of f : S → C is defined by

MW(S) := {sections of f : S → C}

The group structure is defined by the elliptic curve structure of E .
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Definition

An automorphism φ : S → S is said to be a relative automorphism

of f : S → C if it preserves the fibration, i.e.

f ◦ φ = f

The group of relative automorphisms of f : S → C is denoted by

AutC (S).

Lemma

AutC (S) ∼= AutO(S) � MW(S)
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Lemma

Let AutO(E ) = Z/2Z =< ι, ι2 = 1 >. Then the elements of finite

order in AutC (S) consist of

MW(S)tor: the torsion elements of MW (S).

{ι ◦ s|s ∈ MW (S)}: a translation followed by the involution.

Note that ι ◦ s has order 2.

(ι ◦ s)
2

= ι ◦ s ◦ ι ◦ s = ι ◦ ι ◦ (−s) ◦ s = 1
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Lemma

Let τ be an n-torsion element of MW (S). Let σ = ι ◦ s for some

section s. Then

< σ, τ >∼= D2n.

Conversely any relative D2n action is generated by τ,σ of the

above form.

Conjugate subgroups give rise to isomorphic D2n-surfaces.
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Lemma

i ◦ s and i ◦ s � are conjugate in AutC (S) if and only if

s − s
�

is 2-divisible in MW (S).

Let τ be an n-torsion element of MW (S). There are essentially

two types of relative D2n-actions on S .

(i) D2n = �ι, τ�
(ii) D2n = �ι ◦ s, τ� for s that is not 2-divisible
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Lemma (Miranda-Persson)

Let S be a rational elliptic surface with n torsion (n ≥ 4). Then

the Mordell-Weil group MW (S) of S is one of the following.

n MW (S) Number of surfaces Type of S

6 Z/6Z 1 No. 66

5 Z/5Z 1 No. 67

Z/4Z 2 No. 70, 72

4 Z/2Z⊕ Z/4Z 1 No. 74

Z⊕ Z/4Z ∞ No. 58

The type of S is the number in Oguiso-Shioda’s list of

Mordell-Weil lattices of rational elliptic surfaces.
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Lemma

The relative automorphism group AutC (S) and the number of

conjugacy classes of dihedral subgroups of AutC (S) are as follows:

n MW (S) AutC (S) conj. class. of D2n

6 Z/6Z D12 1

5 Z/5Z D10 1

Z/4Z D8 1

4 Z/4Z⊕ Z/2Z Z/2Z � (Z/4Z⊕ Z/2Z) 4∗

Z⊕ Z/4Z Z/2Z � (Z⊕ Z/4Z) 2∗∗

(∗) : < ι, τ >,< ι, τ � >,< ι ◦ s, τ >, < ι ◦ s, τ � >

(∗∗) : < ι, τ >,< ι ◦ s, τ >
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In total we have two infinite families and 4 sporadic isomorphism

classes of rational elliptic surfaces with relative D8-action.

Infinite families: 58-(i), 58-(ii)

Sporadic cases: 70, 72, 74-(i),74-(ii)

Which of these D8-surfaces are birationally equivalent?
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Theorem

Every rational elliptic surface with relative D8 action is birationaly

equivalent as a D8-surface to exactly one of the surfaces of the

following types.

1 P1 × P1 with D8-action (I).

74-(i)

2 P1 × P1 with D8-action (II).

70, 72, 74-(ii), 58-(ii)

3 D8-minimal del Pezzo surface of degree 4.

58-(i)

Each surface of this type is birational equivalent if and only if

they are isomorphic as elliptic surfaces.
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Let ([x0, x1], [y0, y1]) be homogeneous coordinates of P1 × P1.

action (I)




σ : ([x0, x1], [y0, y1])

→
�
[y0 −

√
−1y1,

√
−1y0 − y1], [x0 −

√
−1x1,

√
−1x0 − x1]

�

τ : ([x0, x1], [y0, y1]) → ([y1, y0], [x0, x1])

action (II)�
σ : ([x0, x1], [y0, y1]) → ([y0, y1], [x0, x1])

τ : ([x0, x1], [y0, y1]) → ([y1, y0], [x0, x1])
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Sketch of Proof

Step 1:

For each surface S and D2n-action, look for D2n-orbits

consisting of (-1)-curves, and blow them down to obtain a

birationaly equivalent minimal D2n-surface.

The Mordell-Weil lattice of S .

Step 2:

Apply Dolgachev-Iskovskikh’s classification.

fixed curves

classification of links
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Case of type No. 58

Step 1

It is known that rational elliptic surfaces of type No. 58 has

singular fibres

I4, I4, I2, I1, I1

and

MW (S) ∼= Z⊕ Z/4Z

Let

O: the zero section of S .

ι: involution of S (with respect to the o section).

t: four torsion element of MW (S).

s: generating section. i.e. a section such that.

< s, t >= MW (S)
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There are two conjugacy classes of D8 actions (in AutC (S)) on S

represented by,

Case 1: D8 =< ι, t >

Case 2: D8 =< ι ◦ s, t >
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The orbit of sections differ from case 1 and case 2. Let s � be any

section. Then the D8-orbit of s � and O is as follows:

1 D8 = �ι, t�.

OrbD8(s
�
) = {±s

�,±(s
�
+ t),±(s

�
+ 2t),±(s

�
+ 3t)}

OrbD8(O) = {O, t, 2t, 3t}

2 D8 = �ι ◦ s, t�

OrbD8(s
�
) = {s �, s �

+ t, s �
+ 2t, s �

+ 3t,−s
� − s,−s

� − s + t,

− s
� − s + 2t,−s

� − s + 3t}
OrbD8(O) = {O, t, 2t, 3t,−s,−s + t,−s + 2t,−s + 3t}
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Lemma

In both case 1 and 2,

The sections in OrbD8(O) are mutually disjoint.

The sections in OrbD8(s
�) are not mutually disjoint if

s � �= O, t.

By blowing down the 4 (resp. 8) curves in OrbD8(O) we obtain

minimal D8-surfaces.

Lemma

The minimal rational D8 surface obtained by blowing down

OrbD8(O) for each action is:

1 del Pezzo suraface of degree 4 with D8 action.

2 P1 × P1 with D8 action.
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Step 2

It remains to determine the corresponding birational equivalence

class according to Dolgachev-Iskovskikh’s classification.

• Case 1: del Pezzo surface of degree 4 with D8-action.

Lemma (J. Blanc)

Let S ,S � be a del Pezzo surface of degree 4 with minimal D8

action and let φ : S ��� S � be a G-equivariant birational map.

Then φ is an isomorphism.

Corollary

Let S ,S � be rational elliptic surfaces of type 58 with D8-action of

type (I). Then S ,S � are birationally equivalent if and only if they

are isomorphic as elliptic surfaces.
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• Case 2: P1 × P1 with D8 action.

There are several distinct minimal D8 actions on P1 × P1.

To determine which D8-action we get, we make the following

observation:

Define a D8-action on P1 × P1 by

�
σ : ([x0, x1], [y0, y1]) → ([y0, y1], [x0, x1])

τ : ([x0, x1], [y0, y1]) → ([y1, y0], [x0, x1])

Let f1, f2, f3 be D8-invariant curves of bi-degree (2, 2) defined by

f1 = x0x1y0y1

f2 = x
2
0y

2
0 + x

2
0y

2
1 + x

2
1y

2
0 + x

2
1y

2
1

f3 = x0x1y
2
0 + x0x1y

2
1 + x

2
0y0y1 + x

2
1y0y1

Let Λ = {αf1 + βf2 + γf3} be the D8 invariant linear system of

curves generated by f1, f2, f3.
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Fact

A general member of Λ is a smooth D8-invariant curve of

genus 1.

A general sub-pencil λ of Λ determines a D8-invariant pencil

of curves of genus 1.

By blowing up the base points of λ we obtain a elliptic surface

with D8 action.
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Lemma

Every rational elliptic surface S with four torsion can be obtained

by blowing up a D8-invariant sub-pencil λ of Λ.

Lemma

Sλ and Sλ� are isomorphic if and only if pλ and pλ� lie on the same

member of the pencil generated by C and L1 + L2.

Lemma

The D8 action of P1 × P1 lifts to S and coincides with the

D8-action < i ◦ s, t > of type (ii).

Corollary

Every elliptic surface with D8-action of type (ii) are birationally

equivalent.

Shinzo Bannai On Rational Elliptic Surfaces With Dihedral Group Action



Background

Dihedral group actions on Rational Elliptic Surfaces

Sketch of Proof

Theorem

The algebraic variety parameterizing the birational equivalence

classes of rational elliptic surfaces with a relative D8-action is a

nodal rational curve.

The birational equivalence class corresponding to the node is

versal.

There is one non-versal equivalence class.

It is unknown for the other cases.
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