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ABSTRACT. A Hessian domain �W; ~D; ~g � ~Ddj� is a ¯at statistical manifold, and level

surfaces of j are 1-conformally ¯at statistical submanifolds of �W; ~D; ~g�. In this paper

we consider a foliation de®ned by level surfaces of j and its orthogonal foliation, and

then we investigate divergences restricted to leaves of these foliations.

1. Introduction

Statistical manifolds have been studied in terms of information geometry.

Dualistic structures of statistical manifolds play important roles on statistical

inference, control systems theory, and so on [1] [12]. It is known that a

Hessian structure is a dually ¯at structure and gives, for examples geometry

of an exponential family [14]. Applications of the dually ¯at structures of

submanifolds are in [4] [12]. Non-¯at statistical manifolds are studied in [6] [7]

[8]. It seems that there are not results on statistical submanifolds without

dually ¯at structures. So, we treat non-¯at dualistic structures on submani-

folds, especially on level surfaces of Hessian domain, and show 1-conformal

¯atness, if considering a Hessian domain as a ¯at statistical manifold.

Let j be a function on a domain W in a real a½ne space An�1. Denoting

by ~D the canonical ¯at a½ne connection on An�1, we set ~g � ~Ddj and suppose

that ~g is non-degenerate. Then a Hessian domain �W; ~D; ~g� is a ¯at statistical

manifold. In [15] we proved that n-dimensional level surfaces of j are

1-conformally ¯at statistical submanifolds of �W; ~D; ~g�. Using this fact, we

show that dual-projectively equivalent a½ne connections can be led on a leaf of

a foliation F de®ned by n-dimensional level surfaces of j on W. In addition

we study the orthogonal foliation F? of F.

We also discuss divergences on leaves of the foliations F and F? in § 4.

Nagaoka and Amari ®rst studied divergences of ¯at statistical manifolds in view

of statistics [1]. Kurose de®ned the canonical divergences of 1-conformally ¯at

statistical manifolds [7]. In this paper we show that, for M A F, Kurose's
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divergence of a 1-conformally ¯at statistical submanifold �M;D; g� coincides

with the restriction of Nagaoka and Amari's divergence of �W; ~D; ~g�. In § 5,

we give the decomposition of the divergence of �W; ~D; ~g� with respect to

orthogonal foliations F and F?, and see that the projection of a point in W to

M along a leaf of F? is given by minimization of the divergence. Finally we

give a gradient system using the divergence. Gradient systems are important to

study relation with information geometry and integrable dynamical systems [4]

[10].

An original reason for our investigation of divergences is that divergences

are canonical contrast functions, which generate statistical manifolds. On

contrast functions and minimum contrast leaves, see [2] [9]. Divergences of

conformally-projectively ¯at statistical manifolds are described in [8]. Shima

studied the Riemannian foliations on Hessian domains deeply in [13].

2. Statistical manifolds and Hessian domains

We recall properties of statistical manifolds, Hessian domains, and a½ne

di¨erential geometry.

Let ~D and fx1; . . . ; xn�1g be the canonical ¯at a½ne connection and the

canonical a½ne coordinate system on An�1, i.e., ~Ddxi � 0. If the Hessian
~Ddj �Pi; j�q2j=qxiqx j�dxidx j is non-degenerate for a function j on a

domain W in An�1, we call �W; ~D; ~g � ~D dj� a Hessian domain. For a torsion-

free a½ne connection ` and a pseudo-Riemannian metric h on a manifold N,

the triple �N;`; h� is called a statistical manifold if `h is symmetric. If the

curvature tensor R of ` vanishes, �N;`; h� is said to be ¯at. A Hessian

domain �W; ~D; ~g � ~Ddj� is a ¯at statistical manifold. Conversely, a ¯at

statistical manifold is locally a Hessian domain [1] [13].

For a statistical manifold �N;`; h�, let ` 0 be an a½ne connection on N

such that

Xh�Y ;Z� � h�`X Y ;Z� � h�Y ;` 0X Z�; X ;Y ;Z A X�N�;

where X�N� is the set of all tangent vector ®elds on N. The a½ne connection

` 0 is torsion free, and ` 0h symmetric. Then ` 0 is called the dual connection of

`, the triple �N;` 0; h� the dual statistical manifold of �N;`; h�, and �`;` 0; h�
the dualistic structure on N, respectively. The curvature tensor of ` 0 vanishes

if and only if one of ` does, and then �`;` 0; h� is called the dually ¯at

structure.

Let A�n�1 and fx�1 ; . . . ; x�n�1g be the dual a½ne space of An�1 and the dual

a½ne coordinate system of fx1; . . . ; xn�1g, respectively. We de®ne the gradient

mapping ~i from W to A�n�1 by
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x�i � ~i � ÿ qj

qxi
; �1�

and a ¯at a½ne connection ~D 0 on W by

~i�� ~D 0~X
~Y � � ~D�~X~i�� ~Y� for ~X ; ~Y A X�W�;

where ~D�~X~i�� ~Y� is covariant derivative along ~i induced by the canonical ¯at

a½ne connection ~D� on A�n�1. Then �W; ~D 0; ~g� is the dual statistical manifold

of �W; ~D; ~g�. We set x 0i � x�i � ~i � ÿ�j=xi�. Then fx 01; . . . ; x 0n�1g is the a½ne

¯at coordinate system with respect to ~D 0, i.e., ~D 0dx 0i � 0. Remark that a

straight line with respect to an a½ne coordinate fx1; . . . ; xn�1g (resp.

fx 01; . . . ; x 0n�1g) is a ~D- (resp. ~D 0-) geodesic, where we call a geodesic relative to
~D (resp. ~D 0) a ~D- (resp. ~D 0-) geodesic. If ~i is invertible, we can de®ne a

function on W� � ~i�W� called the Legendre transform j� of j by

j� � ~i � ÿ
X

i

xix 0i ÿ j:

For a A R, statistical manifolds �N;`; h� and �N;`; h� are said to be

a-conformally equivalent if there exists a function f on N such that

h�X ;Y � � e fh�X ;Y�;

h� X̀ Y ;Z� � h� X̀ Y ;Z� ÿ 1� a

2
df�Z�h�X ;Y�

� 1ÿ a

2
fdf�X�h�Y ;Z� � df�Y�h�X ;Z�g

for X ;Y ;Z A X�N�. A statistical manifold �N;`; h� is called a-conformally

¯at if �N;`; h� is locally a-conformally equivalent to a ¯at statistical manifold.

Statistical manifolds �N;`; h� and �N;`; h� are a-conformally equivalent if and

only if the dual statistical manifolds �N;` 0; h� and �N;` 0; h� are �ÿa�-conformally

equivalent. Especially, a statistical manifold �N;`; h� is 1-conformally ¯at if

and only if the dual statistical manifold �N;` 0; h� is �ÿ1�-conformally ¯at [7].

Henceforth, we suppose that ~g is positive de®nite.

Let ~E be the gradient vector ®eld of j on W de®ned by

~g� ~X ; ~E� � dj� ~X� for ~X A X�W�;
where X�W� is the set of all tangent vector ®elds on W. We set

Wo � fp A W j djp 0 0g;

E � ÿdj� ~E�ÿ1 ~E on Wo:
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For p A Wo, Ep is perpendicular to TpM with respect to ~g, where M HWo is a

level surface of j containing p and TpM is the set of all tangent vectors at p

on M.

Let x be a canonical immersion of an n-dimensional level surface M into

W. For ~D and an a½ne immersion �x;E�, we can de®ne the induced a½ne

connection DE , the a½ne fundamental form gE on M by

~DX Y � DE
X Y � gE�X ;Y �E for X ;Y A X�M�:

For M, we denote by �M;D; g� the statistical submanifold realized in �W; ~D; ~g�,
which coincides with the manifold �M;DE ; gE� induced by an a½ne immersion

�x;E� [15].

An a½ne immersion �x;E� is non-degenerate equia½ne, and �M;D; g� is a

1-conformally ¯at statistical manifold [7]. In fact, we have:

Theorem 2.1. ([15]) Let M be a simply connected n-dimensional level

surface of j on an �n� 1�-dimensional Hessian domain �W; ~D; ~g � ~Ddj� with a

Riemannian metric ~g, and suppose that nV 2. If we consider �W; ~D; ~g� a ¯at

statistical manifold, �M;D; g� is a 1-conformally ¯at statistical submanifold of

�W; ~D; ~g�, where we denote by D and g the connection and the Riemannian metric

on M induced by ~D and ~g.

3. Foliations by level surfaces

We denote by F and F? a foliation on Wo de®ned by level surfaces of j

and a foliation by the ¯ow of ~E, respectively. In this section we relate these

orthogonal foliations with the dualistic structure � ~D; ~D 0; ~g�.
Let M; M̂ be two leaves of F, and �M;D; g�; �M̂; D̂; ĝ� two statistical

submanifolds of �W; ~D; ~g�. We denote by E the vector ®eld on Wo de®ned in

§ 2, and by i; î the restriction of ~i to M; M̂, respectively. Non-degenerate a½ne

immersions �x;E�; �x̂;E� realize �M;D; g�; �M̂; D̂; ĝ� in An�1, where x; x̂ are

canonical immersions of M; M̂ into W, respectively.

Then i is the conormal immersion for x. In fact, denoting by ha; bi a

pairing of a A A�n�1 and b A An�1, we have

hi�p�;Ypi � 0 for Yp A TpM; hi�p�;Epi � 1

for p A M, considering TpAn�1 with An�1. Moreover, i satis®es that

hi��Y�;Ei � 0; hi��Y�;Xi � ÿg�Y ;X�

and

~D�X i��Y� � i��D 0X Y � ÿ g 0�X ;Y�i
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for X ;Y A X�M�, where D 0 is the dual connection of D and g 0 the second

fundamental form. Since g is non-degenerate, an immersion i : M !
A�n�1 ÿ f0g is a centro-a½ne hypersurface. Similarly a conormal immersion

î : M̂ ! A�n�1 ÿ f0g for x̂ is also a centro-a½ne hypersurface [11].

We set �el��p� � el� p� for p A M and the function l on M such that

el�p�i�p� A î�M̂�. We de®ne a mapping p : M ! M̂ by

î � p � eli:

We denote by D 0 an a½ne connection on M de®ned by

p��D 0X Y� � D̂ 0p��X�p��Y � for X ;Y A X�M�;
and by g a Riemannian metric on M such that

g�X ;Y� � elg�X ;Y �: �2�
Theorem 3.1. For a½ne connections D 0;D 0 on M, we have

( i ) D 0 and D 0 are projectively equivalent.

(ii) �M;D 0; g� and �M;D 0; g� are �ÿ1�-conformally equivalent.

Proof. By de®nition of p, D 0 is the connection on M induced by

eli. Since D 0 is induced by i, from a property of centro-a½ne hypersurfaces, it

follows (cf. [11]) that

D 0X Y � D 0X Y � dl�X �Y � dl�Y �X : �3�
Thus (i) holds.

Statistical manifolds �M;D 0; g� and �M;D 0; g� are by de®nition �ÿ1�-
conformally equivalent if they satisfy (2) and (3). Thus (ii) holds. r

We denote by D an a½ne connection on M de®ned by

p��DX Y� � D̂p��X�p��Y � for X ;Y A X�M�:
From duality of D̂ and D̂ 0, D is the dual connection of D 0 on M. Then the

next theorem holds.

Theorem 3.2. For a½ne connections D;D on M, we have

( i ) D and D are dual-projectively equivalent.

(ii) �M;D; g� and �M;D; g� are 1-conformally equivalent.

Proof. We have

g�DX Y ;Z� � g�DX Y ;Z� ÿ dl�Z�g�X ;Y� �4�
which is equivalent to that (3) holds [7]. A½ne connections D and D are by

de®nition dual-projectively equivalent if g�DX Y ;Z� � g�DX Y ;Z�ÿ k�Z�g�X ;Y�
for some 1-form k [5]. Thus (i) holds.
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Statistical manifolds �M;D; g� and �M;D; g� are 1-conformally equivalent

if they satisfy (2) and (4). Thus (ii) holds. r

For F?, we have:

Proposition 3.3. Every leaf of the foliation F? in the introduction is a
~D 0-geodesic on Wo under a certain parametrization.

Proof. It su½ces to see that any integral curve of ~E is a ~D 0-geodesic.

To see it, we consider the ¯ow de®ned by

dxi

dt
� ~E i �i � 1; . . . ; n� 1�; �5�

where ~E1; . . . ; ~E n�1 are functions on W such that ~E � ~E i�q=qxi�. By de®nition

we have ~E i � ~gij�qj=qx j�, where ~gij � ~g�q=qxi; q=qx j� and �~gij� is the in-

verse matrix of �~gij�. Since x 0i � ÿqj=qxi, we have dxi=dt � ÿ~gijx 0j , i.e.,

ÿ~gij�dx j=dt� � x 0i . Moreover ~gij � q2j=qxiqx j implies ~gij � ÿqx 0i=qx j and

dx 0i
dt
� x 0i �i � 1; . . . ; n� 1�:

Thus, for an initial point x 0�0� � fx 01�0�; . . . ; x 0n�1�0�g A Wo, the integral curve of

the ¯ow (5) is described by

x 0i �t� � etx 0i �0�:

Hence the integral curve of ~E is a straight line with respect to an a½ne

coordinate fx 01; . . . ; x 0n�1g, and the image of the integral curve is a ~D 0-geodesic

on Wo under a certain parametrization. r

In [1] orthogonal foliations are constructed only by ¯at submanifolds, and

we extended to the case of 1-conformally ¯at statistical submanifolds. From

the proof of Proposition 3.3, we can obtain a leaf of F? by a dilation of a

position vector of a point in W� � ~i�W�.
Corollary 3.4. For p A L A F? we have

~i�L� � fet~i�p�jt A RgVW�:

4. Divergences and orthogonal foliations

First we de®ne divergences of statistical manifolds.

Definition 4.1. ([1]) The divergence r of a ¯at statistical manifold

�W; ~D; ~g� is de®ned by
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r�p; q� � j�p� � j��~i�q�� �
Xn�1

i�1

xi�p�x 0i �q� for p; q A W;

where j� is the Legendre transform of j.

Definition 4.2. ([7]) Let �N;`; h� be a 1-conformally ¯at statistical

manifold realized by a non-degenerate a½ne immersion �v; x� into An�1, and w

the conormal immersion for v. Then the divergence rconf of �N;`; h� is

de®ned by

rconf �p; q� � hw�q�; v�p� ÿ v�q�i for p; q A N:

The de®nition of rconf is independent of the choice of a realization of �N;`; h�.
It is known that an arbitrary statistical manifold is induced by a contrast

function [9]. These divergences are contrast functions of a ¯at statistical

manifold and of a 1-conformally ¯at statistical manifold.

For M A F, we denote by rconf the divergence of �M;D; g� induced by a

non-degenerate equia½ne immersion �x;E� by De®nition 4.2. Since �M;D; g�
is a submanifold of �W; ~D; ~g � ~Ddj�, we can de®ne the divergence rsub of

�M;D; g� by the restriction of the divergence of �W; ~D; ~g� de®ned by De®nition

4.1, i.e., rsub�p; q� � r�p; q�. Then we obtain:

Theorem 4.3. For a 1-conformally ¯at statistical submanifold �M;D; g� of

�W; ~D; ~g�, two divergences rconf and rsub coincide each other.

For p A W and q A M, we set ~r�p; q� � hi�q�; x�p� ÿ x�q�i, where i is the

conormal immersion for x. The function ~r�p; �� is called the a½ne distance

function for �x;E� from p. For the proof of Theorem 4.3, we describe the

divergence r by the a½ne distance function ~r.

Lemma 4.4. we have

r�p; q� � j�p� ÿ j�q� � ~r�p; q� for p A W; q A M:

Proof. Since j��i�q�� � ÿPn�1
i�1 xi�q�x 0i �q� ÿ j�q�, it follows that

r�p; q� � j�p� ÿ j�q� �
Xn�1

i�1

x 0i �q��xi�p� ÿ xi�q��: �6�

Equations
Pn�1

i�1 x 0i �q��xi�p� ÿ xi�q�� � hi�q�; x�p� ÿ x�q�i � ~r�p; q� imply

Lemma 4.4. r

Proof of Theorem 4.3. For p; q A M, j�p� � j�q� holds. Since

rsub�p; q� � r�p; q� and rconf �p; q� � ~r�p; q�, by Lemma 4.4 we have

rsub�p; q� � rconf �p; q�: r
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Let us denote both rsub and rconf by the same notation r.

We can apply Lemma 4.4 to a point q A Wo. For a point r A W such that

djr � 0, x 0i �r� � 0 holds, and thus we have j��i�r�� � ÿj�r� by the de®nition of

the Legendre transform. Hence we have by De®nition 4.1:

Corollary 4.5. For p A W and r A W such that djr � 0, we have

r�p; r� � j�p� ÿ j�r�:

5. Projection by the minimum divergence

We shall describe the decomposition of the divergence of a ¯at statistical

manifold �W; ~D; ~g� with respect to orthogonal foliations F and F?.

Theorem 5.1. Let �M;D; g� be a 1-conformally ¯at statistical submanifold

of an �n� 1�-dimensional Hessian domain �W; ~D; ~g � ~Ddj�, where M is an

n-dimensional level surface of j, and let p; q A M, r A W. If a tangent vector

at q, of the ~D 0-geodesic through q and r, is perpendicular to TqM with respect to

~g, we have

r�p; r� � mr�p; q� � r�q; r�; �7�
where ~i is the gradient mapping of j de®ned by (1) in § 2 and ~i�r� � m~i�q�, m A R.

Proof. Recall that i is the restriction of ~i to M, and using x 0i � x�i � ~i and

De®nition 4.1, we have

r�p; q� � r�q; r�

� j�p� ÿ j�r� �
Xn�1

i�1

�x 0i �r� ÿ x 0i �q���xi�q� ÿ xi�p�� �
Xn�1

i�1

x 0i �r��xi�p� ÿ xi�r��

� j�p� ÿ j�r� � h~i�r� ÿ ~i�q�; x�q� ÿ x�p�i� h~i�r�; x�p� ÿ x�r�i:
By Lemma 4.4, r�p; r� � j�p� ÿ j�r� � h~i�r�; x�p� ÿ x�r�i holds. Thus we get

r�p; r� � r�p; q� � r�q; r� � h~i�r� ÿ ~i�q�; x�p� ÿ x�q�i:
From Corollary 3.4 the trajectory C A W of the ~D 0-geodesic, through q; r and

perpendicular to TqM, satis®es that

fet~i�q�jt A RgVW�H~i�C�:
Thus there exists a real number m such that ~i�r� � m~i�q�. Since r�p; q� �
h~i�q�; x�p� ÿ x�q�i, we have

h~i�r� ÿ ~i�q�; x�p� ÿ x�q�i � �mÿ 1�r�p; q�:
Thus, we obtain Theorem 5.1. r
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By this decomposition we can obtain the projection of a point in Wo to

M A F along a leaf of F?.

Corollary 5.2. Let M be an arbitrary leaf of F and r in Wo �
fp A W j djp 0 0g. Then the unique minimizer of a function r��; r� on M is the

intersection point of Lr and M, where Lr is the leaf of F? including r.

Proof. Let q be the intersection of Lr and M. Since both q and r are in

Lr, there exists a positive number m which satis®es (7). From positivity of

divergences the point q is the unique minimizer of a function r��; r�. r

We denote by r 0 the divergence of the dual statistical manifold �W; ~D 0; ~g�
of �W; ~D; ~g�. Then r�p; q� � r 0�q; p� holds. Therefore, on the same as-

sumption of Theorem 5.1, it follows that

r 0�r; p� � r 0�r; q� � mr 0�q; p�:
Recalling that divergences are contrast functions, by virtue of Corollary 5.2, we

can call leaves of F? minimum contrast leaves with respect to the dual

divergence r 0 [2].

Finally, we give examples of the gradient ¯ow along geodesics relative to

the dual connection.

On dynamical systems constrained to ¯at submanifolds, Fujiwara and

Amari showed the following theorem and its applications to engineering.

Theorem 5.3. ([4, Theorem 2]) Let N � fpxjx A X HRng be a sub-

manifold embedded in a ¯at manifold ~N with respect to a dualistic structure

� ~̀ ; ~̀ 0; ~h�, and �`;` 0; h� the induced dualistic structure on N. If N is ~̀-

autoparallel, then for r A ~N the gradient ¯ow de®ned by

dx i

dt
� ÿ

Xn

j�1

hij q

qx j
r�px; r� �i � 1; . . . ; n�

converges to a unique stationary point independent of the initial point along a ` 0-
geodesic, where x � �x1; . . . ; xn� is a `-a½ne coordinate such that `X �q=qx j� � 0

for X A X�N�, hij � h�q=qx i; q=qx j�, �hij� � �hij�ÿ1, and r is the divergence of

� ~N; ~̀ ; ~h�. Then the stationary point q A M is the unique one such that

r�p; r� � r�p; q� � r�q; r�:
A ~̀-autoparallel statistical submanifold of a ¯at statistical manifold

� ~N; ~̀ ; ~h� is ¯at, and its divergence coincides with the restriction of the di-

vergence of � ~N; ~̀; ~h� [1]. These facts imply Theorem 5.3.

We shall investigate a dynamical system constrained to a 1-conformally

¯at statistical submanifold. Let �M;D; g� be a 1-conformally ¯at statisti-
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cal submanifold of an �n� 1�-dimensional Hessian domain �W; ~D; ~g � ~Ddj�,
where M is an n-dimensional level surface of j. We assume that �M;D; g�
is 1-conformally equivalent to a ¯at statistical manifold �M;D; g�, and that

a function f on an open subset U of M satis®es that

g�X ;Y � � e fg�X ;Y �;
g�DX Y ;Z� � g�DX Y ;Z� ÿ df�Z�g�X ;Y �

for X ;Y ;Z A X�U�. We treat an a½ne coordinate system fx1; . . . ; xng on U

such that D dxi � 0 for i � 1; . . . ; n. Let r be a point in a leaf Lq for q A U .

We consider r��; r� as a function on U of variables x1; . . . ; xn and denote by

r�px; r� its value at p A U , where r is the divergence of �W; ~D; ~g�. We set

gij � g�q=qxi; q=qx j� for i; j � 1; . . . ; n and �gij� � �gij�ÿ1 on U, and then we

obtain:

Corollary 5.4. The gradient ¯ow de®ned by

dxi

dt
� ÿ

Xn

j�1

gij q

qx j
r�px; r� �i � 1; . . . ; n� �8�

converges to the point q following a D 0-geodesic, if U includes the trajectory of

the D 0-geodesic from an initial point to q.

Proof. Let m be the positive number such that ~i�r� � m~i�q�. By Theorem

5.1, r�p; r� � mr�p; q� � r�q; r� holds. Denoting by r the divergence of

�M;D; g�, we have r�p; q� � ef�q�r�p; q� by [7]. Thus the gradient ¯ow (8) is

equivalent to

dxi

dt
� ÿmeÿf�q�Xn

j�1

gij q

qx j
r�px; q� �i � 1; . . . ; n�:

Let D 0 be the dual a½ne connection of D, and fx 01; . . . ; x 0ng the dual a½ne

coordinate system of fx1; . . . ; xng. Since gij � qx 0i=qx j, we have

dx 0i
dt
� ÿmeÿf�q� q

qxi
r�px; q� �i � 1; . . . ; n�:

Considering the proof of Theorem 5.3 (see [4]), we have

dx 0i
dt
� ÿmeÿf�q��x 0i ÿ x 0i �q�� �i � 1; . . . ; n�:

Setting A � meÿf�q� > 0, we obtain

x 0i � x 0i �q� � �x 0i �p0� ÿ x 0i �q��eÿAt �i � 1; . . . ; n�;
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where p0 A U is an initial point of (8). Thus the ¯ow (8) converges to q

following a straight line with respect to a coordinate system fx 01; . . . ; x 0ng.
Since D 0 is ¯at and D 0 dx 0i � 0, the line is a pseudo-geodesic with respect to D 0.
From projective equivalence with D 0 and D 0, a pseudo-geodesic with respect to

D 0 is one with respect to D 0. Hence the ¯ow (8) converges to q following a

D 0-geodesic, independent of an initial point. r
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