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Monodromy of isometric deformations of CMC surfaces
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Abstract. We investgate relationship between the monodromy of isometric defor-

mation of CMC-surfaces in the space forms and that of the canonical deformation of

CMC surfaces into the other space forms. As an application, we show that the number

of isometric closed CMC-surfaces is ®nite.

1. Introduction

It is well known that an arbitrary simply connected domain D of CMC-H

(i.e. Constant Mean Curvature H ) surfaces in the space form M 3�c� of con-

stant curvature c has the following two special properties:

( i ) it admits a real-analytic isometric deformation preserving mean cur-

vature function in M 3�c�. We call it H-deformation of the surface;

(ii) it can be isometrically immersed in other space form M 3�t� as a

CMC-
����������������������
H 2 � cÿ t
p

surface. We call it t-deformation.

In fact, t-deformation can be viewed as a deformation of the original

surface: We consider the following 1-parameter family of Riemannian metrics

gt � 4

4� tjxj2
 !2X3

j�1

�dxj�2

of constant sectional curvature t, de®ned on

R3�t� � fx A R3 : jxj < 2=
�����jtjp g (if t < 0),

R3 (if tb 0)

(
;

where jxj �
����������������������������������������
jx1j2 � jx2j2 � jx3j2

q
. When t � 0, it is just the Euclidean metric

and when t0 0, they can be regarded as the stereographic image of 3-sphere or

3-hyperboloid of radius 1=
�����jtjp

in Minkowski 4-space. By this parametrization

of the metrics, we can view the CMC-surfaces in any space form in R3 and

then t-deformation is a real analytic deformation. If the surface is not simply

connected, the H-deformation and t-deformation are not single-valued on the
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surface, but de®ned on the universal cover of the surface. We shall prove the

following:

Theorem 1. Let �S2; ds2� be a Riemannian 2-manifold and F : S2 !
M 3�c� �c A R� an isometric immersion of constant mean curvature H. If

t-deformation is single valued on S2, so is H-deformation. Moreover the

converse is also true unless the original surface is minimal in �R3; g0�.
It should be remarked that the theorem requires neither compactness

nor completeness of the surface. When ca 0 and jHj � �����jcjp
, the theorem

has been proved in [12]. The converse assertion of the theorem for Eucli-

dean minimal surface does not hold in general. (An H-deformable complete

minimal surface not preserving t-monodromy is known. See O3 of [12].) On

the other hand, we can construct many non-trivial complete minimal surfaces

which admits single-valued t-deformation as a dressing up procedure of the

Enneper surface. (See [9].) When cb 0, the construction of CMC surfaces

via the Gauss maps is known [1, 2, 4, 5, 10, 11] and the theorem can be proved

easily. Thus the essential part of the proof lies in the case c < 0.

As an application, we shall prove

Corollary 2. Let �S2; ds2� be a closed Riemannian 2-manifold and x :

S2 !M 3�c� �c A R� an isometric immersion of constant mean curvature H, then

the number of congruent classes

Nx :� ]fx : �S2; ds2� !M 3�c�; isometric CMC-H immersiong
is ®nite. In particular, there exists no global non-trivial isometric deformations

of CMC surfaces preserving the mean curvature.

The assertion of the Corollary for cb 0 has been pointed out in [2]. When H

is not constant, Lawson and Tribuzy [8] have shown that the number of iso-

metric immersions with the same mean curvature H on a compact Riemannian

2-manifold is at most two. The existence of closed surfaces with Nx � 2 in

M 3�0� is an important open problem (see [6]).

2. Proofs

Let �S2; ds2� be a Riemannian 2-manifold and

F � Fc : S2 !M 3�c�
be an isometric immersion with constant mean curvature H. As pointed out in

the introduction, the t-deformation

Ft : S2 ! R3�t� �taH 2 � c�
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is real analytic with respect to t. So is the monodromy

rt : p1�S2� ! Isom�R3�c��HConf�S3�:

The real analyticity of rt is of crucial importance in this paper.

The case c � 0. When H � 0, the assertion has been proved in [12]. So we

may assume H 0 0. Then the Gauss map g of F is a non-holomorphic har-

monic map into S2. It is well known that non-holomorphic harmonic map

into S2 has the associated S1-family �gy�y AS 1 , which are not-single valued on

S2. Let

r̂y : p1�S2� ! SO�3�

be the monodromy representation of �gy�y AS1 . Since the Gauss maps of H-

deformations of F are in the same associated family �gy�y AS 1 , ry is identity for

all y A S1 if H-deformations of F are single valued. On the other hand if

ry � id for all y, then all H-deformations are single valued since qr̂y=qy � 0.

(See O5 of [5] or [2].) Thus F has single valued H-deformation i¨ �gy�y AS1 are

all single valued. The t-deformation Ft �t > 0� of F corresponds to the pair of

harmonic maps �g; ga� where a � arg�
���������������
H 2 ÿ c
p

� ic�. Moreover, the mono-

dromy representation rt satis®es rt�p1�S2�� � fGidg i¨ �gy�y AS 1 are all single

valued on S2. (See [5] or [2].) Since r0�p1�S2�� � fidg and rt is real analytic

with respect to t, rt�p1�S2�� � fÿidg never holds. So F has single valued H-

deformation i¨ rt�p1�S2�� � fidg for tb 0. In this case, we have rt�p1�S2�� �
fidg for t < 0 because of the real analyticity of rt with respect to t. This

proves the assertion.

The case c > 0. In the above discussion, we use the fact that the mono-

dromy of CMC-H surface in M 3�c� for c > 0 can be controlled by the pair

of harmonic maps in the same associated S1-family. We also use the fact in

this case. Let �g1; g2� be the pair of harmonic maps associated with F. Then

the H-deformations of F correspond to the pairs �gy
1 ; g

y
2 �y AS 1 . Thus F has

single valued H-deformation i¨ �gy�y AS 1 are all single valued. On the other

hand, the t-deformations of F correspond to the pairs �g1; g
y
2 �y AS 1 . So F has

single valued t-deformation i¨ �gy�y AS 1 are all single valued. This proves the

assertion.

The case c < 0. Without loss of generality we set c � ÿ1. For jHj � 1 the

assertion has been proved in [12]. So we may assume H 0 1. As a homo-

thetic change of the metric of the ambient space M 3�t�, the t-deformation

Ft : S2 !M 3�t�
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of the CMC-H surface F � Fc can be realized as CMC-h surfaces in M 3�ÿ1�
whenever t < 0, where

h �
��������������������������
�H 2 � cÿ t�

jtj

s
:

We denote this normalization of Ft into M 3�ÿ1� by F̂h where the range of the

new parameter h is given by

MaxfH 2 � c; 0ga h <y:

We call the family �F̂h� the normalized t-deformation of F in M 3�ÿ1�. This

normalized t-deformation does not realize t-deformation for tb 0. However

by the real analyticity of the t-deformation, t-deformation is single valued i¨ so

is normalized t-deformation.

We now set

s0 � 1 0

0 1

� �
; s1 � 0 1

1 0

� �
;

s2 � 0 ÿi

i 0

� �
; s3 � 1 0

0 ÿ1

� �
:

We shall identify the Lorentz space R3;1 with the space of 2� 2 Hermitian

matrices X t � X

X �
X4

j�0

Xjsj $ X � �X0;X1;X3� A R3;1

with the scalar product

fX ;Yg � ÿ 1

2
tr�Xs2Y ts2�:

The hyperbolic 3-space M 3�ÿ1� consists of the Hermitian matrices X satisfying

det�X � � 1; tr�X� > 0:�1�

The cases H > 1 and H < 1 can be treated exactly in the same way using

the corresponding formulas for the immersion F and the Gauss map N (see (2)

and (3) below and formulas in p. 155 of [3]). We present the proof for the

case H > 1.

Lemma 3. Let F̂h be the normalized t-deformations of F in M 3�ÿ1� and

Fy �y A S1� be the H-deformations of F. Suppose the original surface F has
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single valued H-deformations (resp. t-deformations). Then N̂tF̂
ÿ1
t (resp. NyFÿ1

y )

are single-valued on S2 for all t (resp. for all y).

Proof. Let

F0 � F0�x; y; l� : ~S ! GL�2;C� �l A Cnf0g�
be the family of maps de®ned in Theorem 14.3 in [4], which are the solution of

the frame equations (the system (1.8) and (1.9) in [4]) on S2. They have real

determinant and are holomorphic with respect to the spectral parameter

l. Then

Fl � Fÿ1
0 s2F0s2�2�

gives a CMC-coth�logjlj� immersion de®ned on ~S2. When coth�logjl0j� � H,

Fl0
coincides with the original surface F. Here Fl for l � l0eiy �y A �0; 2p��

corresponds to the H-deformation of F and Fl for l A Rnf0g corresponds to the

t-deformation of F. The normal vector N of the surface Fl is given by

Nl � Fÿ1
0 s3s2F0s2:�3�

Thus we have

NlFÿ1
l � Fÿ1

0 s3F0:�4�
The monodromy of F0 is a holomorphic function of l. If F possesses single

valued H-deformations (resp. t-deformations), the monodromy is trivial for

all jlj � l0 (resp. l A R). Due to the analyticity it is trivial for all l A Cnf0g.
This proves the assertion. r

To complete the proof of the theorem, it is now su½cient to prove the

following

Lemma 4. If NlFÿ1
l �l A Cnf0g� is single-valued on S2, so is Fl.

Proof. Let M be the monodromy of F0 along a loop on S2

F0 ! F0M:

Formula (4) implies that �NFÿ1;M� � 0. Suppose that the matrix M is not

identity. For the traceless part M0 of M we have

�NFÿ1;M0� � 0:

By (1), the orthogonality of N and F yields

0 � fN;Fg � ÿ 1

2
�Ns2F ts2� � ÿ 1

2
tr�NFÿ1�:
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So there exists a smooth function u A Cy�S2� such that

NFÿ1 � uM0:�5�

Taking the determinant of both sides, we conclude that u is a constant function

which can be included into M0. The relation (5) yields

s3F0 � F0M0:

Without loss of generality one can normalize F0�z0� � s0 at some point z0 A
S2. This implies �F0; s3� � 0, i.e. F0 is diagonal for all points of S2, which is

impossible. Thus M � s0. r

(Proof of Corollary.) The assertion has been pointed out for the case cb 0 in

[2]. So we assume c < 0. There are no closed CMC surface when H 2 � ca

0. So we may set H 2 � c > 0 and suppose Nx �y. Since H-deformation is

real analytic with respect to the deformation parameter, Nx �y implies the

surface has single valued H-deformations. Then by Theorem 1, the corre-

sponding t-deformation f0 in M 3�0� is single-valued and H-deformation of f0

are all single valued on the surface. But it contradicts that the corollary holds

for cb 0. So we can conclude Nx <y. r
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