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Abstract. A theorem of Hardy asserts that a function and its Fourier transform

cannot both be very small. We prove analogues of Hardy’s theorem for the Harish-

Chandra transform for spherical functions on a non-compact semisimple Lie group and

the Helgason transform on a Riemannian symmetric space of the non-compact type.

Introduction

Hardy’s theorem for the Fourier transform [10] asserts that f and its

Fourier transform f̂f cannot both be very small. More precisely, if f is a mea-

surable function on the real line such that f ðxÞ ¼ Oðe�ð1=2Þx2Þ and f̂f ðxÞ ¼
Oðe�ð1=2Þx2Þ as jxj ! y, then f ðxÞ is a constant multiple of e�ð1=2Þx2

.

It follows easily from Hardy’s result that if a and b are positive numbers,

ab > 1=4, f ðxÞ ¼ Oðe�ax2Þ, and f̂f ðxÞ ¼ Oðe�bx2Þ as jxj ! y, then f ¼ 0 almost

everywhere. Sitaram and Sundari [16] generalize the result for semisimple Lie

groups under some restrictions on groups or functions. Subsequently, similar

results for general cases were proved independently by Cowling, Sitaram, and

Sundari [5], Ebata, Eguchi, Koizumi, and Kumahara [7], and Sengupta [14].

In this paper, we give an analogue of Hardy’s original result for functions

on a Riemannian symmetric space of the noncompact type. It is crucial in

Hardy’s theorem that the Fourier transform of the heat kernel

1ffiffiffiffiffiffiffi
4pt

p e�x2=ð4tÞ

on the real line is e�tx2
. Similar result is no longer true for the heat kernel on

a Riemannian symmetric space of the noncompact type. Our idea is to use the

heat kernel and its transform for estimating functions. Using known estimates

for the heat kernel, some connections between results of us and those of

Sitaram and Sundari will be discussed.
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The result for SLð2;RÞ=SOð2Þ was given in our previous paper [15].

We are grateful to the referee, whose suggestions improved the presen-

tation of the paper.

1. The Harish-Chandra transform

In this section, we review on the elementary spherical function and the

Harish-Chandra transform on a Riemannian symmetric space of the non-

compact type. We refer the reader to Helgason [11] for details.

Let G be a noncompact connected semisimple Lie group with finite center

and K be a maximal compact subgroup. Let G ¼ NAK be corresponding

Iwasawa decomposition and g ¼ n þ a þ k be corresponding decomposition of

its Lie algebra. For g A G, let AðgÞ A a denote the unique element such that

g A NeAðgÞK . Let S denote the set of roots of g with respect to a and Sþ

denote the set of positive roots. Then n is the direct sum of the root spaces

for all positive roots. Let r ¼ 1
2

P
a ASþ maa, where ma denotes the multiplicity

of a. Let a	 denote the dual of a and a	
C its complexification. Let W denote

the Weyl group for S.

A function f on G is said to be spherical if f ðkgk 0Þ ¼ f ðgÞ for all k;

k 0 A K and g A G. As usual, we identify functions on G=K with right K-

invariant functions on G and those on KnG=K with bi-K-invariant functions

on G.

For l A a	
C, the function defined by

flðgÞ ¼
ð
K

eðilþrÞðAðkgÞÞ dk; g A Gð1:1Þ

is called the elementary spherical function. Here dk denotes the Haar measure

on K with total measure 1. fl is a spherical function on G and satisfies

jflðaÞja fi Im lðaÞa emaxw AW ð�w Im lðlog aÞÞf0ðaÞ; a A A:ð1:2Þ

Let CðKnG=KÞ denote the space of spherical functions f on G such that

sup
g AG

jð1þ jgjÞqf0ðgÞ
�1ðDf ÞðgÞj < yð1:3Þ

for each integer qb 0 and each invariant di¤erential operator D on G. Here

jgj ¼ jlog aj if g A KaK .

For f A CðKnG=KÞ, we define the Harish-Chandra transform ~ff ðlÞ by

~ff ðlÞ ¼
ð
G

f ðgÞf�lðgÞdg; l A a	
C:ð1:4Þ

Here dg denotes the (suitably normalized) Haar measure on G.
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By the restriction mapping G ! A, CðKnG=KÞ is isomorphic to the space

SW ðAÞ of W-invariant rapidly decreasing functions on A.

The following theorem is due to Harish-Chandra.

Theorem 1.1. For f A CðKnG=KÞ,

f ðgÞ ¼ 1

jW j

ð
a	

~ff ðlÞflðgÞjcðlÞj
2
dl;ð1:5Þ

where cðlÞ is the Harish-Chandra c-function.

The Harish-Chandra transform extends to an isometry of L2ðKnG=KÞ onto

L2ða	=W ; jcðlÞj�2dlÞ.

Explicit formula for cðlÞ is given by Gindikin and Karpelevič. For

details, we refer to Helgason [11, Ch. IV], Gangolli and Varadarajan [9,

Chapter 6], and references therein.

2. The heat kernel

Our main tool we shall use is the following ht, which is an analogue of

the heat kernel on the real line.

For t > 0, define the function htðgÞ on G by

htðgÞ ¼
1

jW j

ð
a	
expð�tðjlj2 þ jrj2ÞÞflðgÞjcðlÞj

�2
dl:ð2:1Þ

We state some properties of ht, which is due to Gangolli [8, Proposition

3.1].

Proposition 2.1. The function ht has the following properties:

ht A CðKnG=KÞ;ð2:2Þ
~hhtðlÞ ¼ expð�tðjlj2 þ jrj2ÞÞ;ð2:3Þ

Lht ¼
qht

qt
;ð2:4Þ

ht 	 hs ¼ hsþt t; s > 0:ð2:5Þ

Here L denotes the Laplace-Beltrami operator on G=K and 	 denotes the con-

volution product on G=K .

Moreover, there is an estimate of the heat kernel obtained by Anker [1, 2].

For any t0 > 0 there exists C > 0 such that

htðexp HÞaCt�n=2ð1þ jHj2Þðn�rÞ=2 exp �jrj2t� hr;Hi� jHj2

4t

 !
ð2:6Þ
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for all 0 < t < t0 and H A aþ, where n ¼ dim G=K and r ¼ dim a, and aþ

denotes the closure of the positive Weyl chamber in a.

3. An analogue of Hardy’s theorem

We now state and prove an analogue of Hardy’s theorem for the Harish-

Chandra transform.

Theorem 3.1. Let t be a fixed positive constant. If f is a K-invariant

measurable function on G=K satisfying

j f ðaÞjaChtðaÞ for all a A Að3:1Þ

and

j ~ff ðlÞjaC expð�tjlj2Þ for all l A a	;ð3:2Þ

where C is a positive constant, then f is a constant multiple of ht.

Proof. The proof goes along the line of the first proof of Hardy [10]

in the Euclidean case that is based on the Phragmén-Lindelöf theorem.

By (1.2) and (2.6), ~ff is holomorphic on a	
C, if f satisfies (3.1). By (3.1)

and (2.3), we have

j ~ff ðlÞjaC

ð
G

htðgÞf�i Im lðgÞdgð3:3Þ

¼ C expððjIm lj2 � jr2jÞtÞ

¼ C 0 expðjIm lj2tÞ

for all l A a	
C, where C and C 0 are some constants.

Since ~ff satisfies estimates (3.2) and (3.3), it follows from [16, Lemma 2.1]

that

~ff ðlÞ ¼ C expð�tjlj2Þ; l A að3:4Þ

for some constant C, hence f is a constant multiple of ht by (2.3). r

In the Euclidean case, Hardy proved more general result: Let m be a

non-negative integer. If f and f̂f are both Oðxme�ð1=2Þx2Þ as jxj ! y, then

f ðxÞ ¼ pðxÞe�ð1=2Þx2
, where pðxÞ is a polynomial of degree m.

We do not know whether an analogous result is true or not for the Harish-

Chandra transform. Here we give a family of functions which satify condi-

tions weaker than (3.1) and (3.2).

Proposition 3.2. Let pðaÞ be a W-invariant polynomial function on A and
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define f by f ðkak 0Þ ¼ pðaÞhtðaÞ for all k; k 0 A K and a A A. Then for any fixed

t > 0, f satisfies

j f ðaÞjaCegjlog ajhtðaÞ for all a A Að3:5Þ

and

j ~ff ðlÞjaC expðdjlj � tjlj2Þ for all l A a	;ð3:6Þ

where C, g, and d are positive constants.

Proof. (3.5) is obvious. By (2.3) and [4, Theorem 6.2 (6.8)],

~ff ðlÞ ¼ Lpðexpð�ðjlj2 þ jrj2ÞtÞÞ;

where Lp is a di¤erence operator which is a product of the Damazure-Lusztig

operators. Thus ~ff is of the form

~ff ðlÞ ¼ QðlÞ expð�jlj2tÞ;

where QðlÞ is an analytic function of at most exponential growth. r

4. The case of the Helgason transform

In this section, we prove an analogue of Hardy’s theorem for functions

on G=K .

First, we review on the Helgason transform on G=K . For details, see

Helgason [12, Chapter III].

Let M denote the centralizer of A in K and Aðx; bÞ denote the function

on G=K � K=M defined by AðgK ; kMÞ ¼ Aðk�1gÞ.
Let CðG=KÞ denote the space of Cy-functions on G=K satisfying (1.3)

for each integer qb 0 and each invariant di¤erential operator D on G. For

f A CðG=KÞ, the Helgason transform ~ff ðl; bÞ is defined by

~ff ðl; bÞ ¼
ð
G=K

f ðxÞeð�ilþrÞðAðx;bÞÞ dx; l A a	
C; b A K=M:ð4:1Þ

Here dx denotes the (suitably normalized) invariant measure on G=K . If f A
CðKnG=KÞ, then the Helgason transform ~ff ðl; bÞ does not depend on b A K=M

and coincides with the Harish-Chandra transform ~ff ðlÞ.

Theorem 4.1. For f A CðG=KÞ,

f ðxÞ ¼ 1

jW j

ð
a 	

ð
K=M

eðilþrÞðAðx;bÞÞ ~ff ðl; bÞjcðlÞj�2dldb; x A G=K :ð4:2Þ

We now state and prove an analogue of Hardy’s theorem for the Helgason

transform.
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Theorem 4.2. Let t be a fixed positive constant. If f is a measurable

function on G=K satisfying

j f ðgÞjaChtðgÞ for all g A Gð4:3Þ

and

j ~ff ðl; bÞjaC expð�tjlj2Þ for all l A a	; b A K=M;ð4:4Þ

where C is a positive constant, then ~ff ðl; bÞ ¼ hðbÞ expð�tjlj2Þ, where h is a

bounded function on K=M.

Proof. The proof is similar to that of Theorem 3.1. We give an outline

of the proof. By (4.3), ~ff ðl; bÞ is holomorphic in l A a	
C with

j ~ff ðl; bÞjaC 0 expðjIm lj2tÞ;ð4:5Þ

hence it follows from (4.4) and (4.5) that

r~ff ðl; bÞ ¼ hðbÞe�tjlj2 ; h A LyðK=MÞ:ð4:6Þ

Dym and McKean [6] stated Hardy’s result in the following form: Let a

and b be positive constants and assume that f is a function on the real line

satisfying

j f ðxÞjaCe�ax2

and

j f̂f ðyÞjaCe�by2

for some positive constant C. Then

(1) If ab > 1=4, then f ¼ 0.

(2) If ab ¼ 1=4, then f is a constant multiple of e�ax2

.

(3) If ab < 1=4, then there are infinitely many f that are linearly inde-

pendent.

We give an analogue of (1) for the Helgason transform.

Corollary 4.3. Let a and b be positive constants and assume that f is a

measurable function on G=K satisfying

j f ðgÞjaCh1=ð4aÞðgÞ for all g A Gð4:7Þ

and

j ~ff ðl; bÞjaC expð�bjlj2Þ for all l A a	; b A K=M;ð4:8Þ

where C is a positive constant. If ab > 1=4, then f ¼ 0 almost everywhere.
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Proof. Since b > 1=ð4aÞ, f satisfies the assumptions of Theorem 4.2 with

t ¼ 1=ð4aÞ, and hence ~ff ðl; bÞ ¼ hðbÞ expð�jlj2=ð4aÞÞ, which contradicts (4.8).

This corollary also follows from (2.6) and [16, Theorem 4.1]. r

An analogue of (3) of the above statement of Dym and McKean might

be true for the Helgason transform. Here we give an a‰rmative answer for

some symmetric spaces, where conjectural lower bounds for the heat kernel is

true.

Corollary 4.4. Assume that G is complex, G=K is of rank one, or

G ¼ SLð3;RÞ. Let a and b be positive constants. Suppose f is a measurable

function on G=K satisfying (4.7) and (4.8), where C is a positive constant. If

ab < 1=4, then there are infinitely many such f that are linearly independent.

Proof. A lower bound for the heat kernel is known for each of symmetric

space cited above (see [3] and references therein). Choose a 0 such that a <

a 0 < 1=ð4bÞ. Let pðaÞ be a W-invariant polynomial function on A and define

f by f ðkak 0Þ ¼ pðaÞh1=ð4a 0ÞðaÞ for all k; k 0 A K and a A A. It follows from

Proposition 3.2 and [3, (3)] that each f satisfies (4.7) and (4.8). Therefore the

desired result follows. r

Corollary 4.5. Assume that G is complex, G=K is of rank one, or

G ¼ SLð3;RÞ. Let a and b be positive constants. Suppose f is a measurable

function on G=K satisfying

j f ðkak 0ÞjaCe�ajlog aj2 for all k; k 0 A K ; a A Að4:9Þ

and (4.8), where C is a positive constant. If ab < 1=4, then there are infinitely

many such f that are linearly independent.

Proof. Choose a 0 such that a < a 0 < 1=ð4bÞ. By (2.6), there is a con-

stant C 0 such that

h1=ð4a 0Þðkak 0ÞaC 0e�ajlog aj2

for all k; k 0 A K and a A A. Therefore, by Corollary 4.4, there are infinitely

many independent f satisfying f ðkak 0ÞaCe�ajlog aj2 and (4.8). r

Remark 4.6. After we have finished our work, Mr. Mitsuhiko Ebata

kindly sent a copy of preprint of Narayanan and Ray [13]. They also give

an attention to the heat kernel and prove that Theorem 4.2 remains to be true

if (4.3) is replaced by

j f ðkak 0ÞjaCe�ajlog aj2f0ðaÞð1þ jlog ajÞ r for all k; k 0 A K ; a A A;

where r is a positive constant.
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