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ABSTRACT. We study asymptotic behavior of solutions of a class of second order
quasilinear ordinary differential equations. All solutions are classified into six types by
means of their asymptotic behavior. Necessary and/or sufficient conditions are given
for such equations to possess a solution of each of the six types.

0. Introduction

In this paper we consider second order quasilinear ordinary differential
equations of the form

a1 —1
(A) (11" = po)ly" 'y,
where we always assume that

o, > 0 are constants;
p e Clty,0), and p(¢) >0 on [t, 00), > 0.

For simplicity we often employ the notation
x7 = |x|"'x = |x|” sgn x, xeR,y >0,
in terms of which (A) can be expressed as

(»)™) = p(y™.

By a solution of (A) on an interval J < [f,00) we mean a function
y : J — R which is of class C! together with |y’|“_1y’, and satisfies (A) at every
point of J.

We here call equation (A) super-homogeneous or sub-homogeneous accord-
ingasa<pfora>f. If a=p, (A)is often called half-linear. In this paper
our attention is mainly paid to the super-homogeneous and sub-homogeneous
cases, and the half-linear case is almost excluded from our consideration.
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The purpose of the paper is to investigate the structure of the set of
solutions of (A). If a solution y of (A) exists on an interval of the form
[t1,0),t1 > 1, and is eventually nontrivial, then it is called proper. A
nontrivial solution which is not proper is called singular. Further, a singular
solution y is classified into two types. One type consists of solutions existing
on finite intervals of the form [f1,1%), t; <t < co. The other type consists
of solutions y such that they exist on infinite intervals of the form [¢;, c0),
ti =t(y), and y#0 on [f,00), but y =0 near +oo. Proper solutions are
classified according to their asymptotic behavior as ¢ — oo, and it will be
shown below that each proper solution satisfies one of four different features.
Thus every solution of (A) is classified into six types. In this paper we present
necessary and/or sufficient conditions for the existence of solutions of each of
the six types, and clarify the structure of the set of solutions of (A).

If « =1, then equation (A) reduces to the Emden-Fowler equation

(B) y" = p(t)| "y

In this case, asymptotic theory for solutions was discussed in detail, for ex-
ample, by Kiguradze [3], Taliaferro [6], and Wong [7] for the superlinear case
f > 1, and by Chanturiya [2] for the sublinear case 0 < f# < 1. The results
in the present paper give an extension of the results for the Emden-Fowler
equation (B).

Some parts of the results in this paper can be obtained also from those of
Mirzov [5] which is concerned with the first order Emden-Fowler system

(C) { u = pi(0)|ua) " ua,

u) :pz(t)|u1|;'rlu1.

For the above system (C), it is assumed that 1; > 0, p; € C[ty, o0) and p;(¢) > 0,
t>1ty, i=1,2. Ttis clear that, for a solution y of (A), (uj,u2) = (y,(y')™) is
a solution of (C) with A =1/a, ., =8, pr=1 and p, = p. Conversely, let
(u1,u2) be a solution of (C). If [* pi(¢)dt = oo (which is essentially assumed
in [5]), then v(r) = u(¢) with 7= J;é p1(s)ds satisfies the equation

(©) (181°719) = g(0)el ™,

where 0 =1/4;, q(tr) =p2(¢)/pi(t) and -=d/dr. Note that the r-interval
[t9, 00) for (C) corresponds to the z-interval [0, c0) for (C). Therefore equation
(C) is of the form (A). In this sense, equation (A) and system (C) are the
same.

The results for (A) may be obtained through the results for (C). But it is
certain that direct consideration for (A) is easier to handle and gives a definite

theory. Thus in this paper we discuss equation (A) directly. As stated above,
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some of our results can be obtained also from those of Mirzov [5], but the
proofs of the corresponding results in [5] are different from those in the present
paper.

The organization of the paper is as follows. In Section 1 we give a clas-
sification of all (local) solutions of (A). It will be found that all solutions of
(A) are classified into six types in our context. In Sections 2 and 3, we state
the main results for the super-homogeneous case and for the sub-homogeneous
case, respectively. The proofs of all theorems in Sections 2 and 3 are given
in Sections 6 and 7, respectively. In Section 4 we give basic results mainly
concerning local properties of solutions of (A). Section 5 is devoted to con-
structing nonnegative solutions y of (A) with the particular property that
»(t) =0, p'(r) <0 near co. Such solutions are called nonnegative nonincreas-
ing solutions, and play important roles to prove our main results in Sections 6
and 7.

1. The classification of all solutions of (A)
To classify all solutions of (A) we need the following simple lemma.

LemMA 1.1.  Let y be a local solution of (A) near t =T > ty, and [T, w),
o < o0, be its right maximal interval of existence. Then we have either y(t) >0
near w, or y(t) <0 near w. That is, y does not change strictly its sign infinitely
many times as t 1 .

The classification of all (local) solutions of (A) are given on the basis of
Lemma 1.1. Since the proof is easy, we leave it to the reader.

ProposITION 1.2.  Each local solution y # 0 of (A) falls into exactly one of
the following six types:

(i) (singular solution of the first kind; type (S1)) there exists t; > ty such
that

y#0 for t<t, and y=0 for t>t;

(i) (decaying solution; type (D)) y can be continued to oo, and satisfies
y(0)y'(t) <0 for all large t, and

lim y(7) = 0;

t— o0

(iii) (asymptotically constant solution; type (AC)) y can be continued to
0o, and satisfies y(t)y'(t) <0 for all large t, and

lim y(1) € R\{0}:
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(iv) (asymptotically linear solution; type (AL)) y can be continued to oo,
and satisfies y(t)y'(t) > 0 for all large t, and
tlim @ e R\{0};
(v) (asymptotically superlinear solution; type (AS)) y can be continued to
0o, and satisfies y(t)y'(t) > 0 for all large t, and
(1)

lim —= = +o0;

t—owo  f

(vi) (singular solution of the second kind; type (S2)) y has the finite escape
time, that is, there exists ty > ty such that

lim y(¢) = +co.
t—1—0
2. Main results for the super-homogeneous equation

Below we list our main results for the case of o < . Throughout this
section we assume that o < f5.

THEOREM 2.1. Equation (A) has no solutions of type (Si).

THEOREM 2.2. Equation (A) has a solution of type (D) if and only if

t

: ( : p(s)ds)l/“dt = . (2.1)

THEOREM 2.3.  Equation (A) has a solution of type (AC) if and only if

: ( wp(s)ds>l/xdt < 0. (2.2)

t

THEOREM 2.4. Equation (A) has a solution of type (AL) if and only if
J Pp(t)dt < oo. (2.3)

THEOREM 2.5. Equation (A) has a solution of type (AS) if (2.3) holds.
THEOREM 2.6. Equation (A) does not have solutions of type (AS) if

1+p

li¥ninf t " p(t) > 0.

THEOREM 2.7. Equation (A) does not have solutions of type (AS) if there
are constants p >0 and o€ (0,1) satisfying

lim inf t”J sPrte= =1 p(s)]%ds > 0 (2.4)

t— 00 ¢
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and

{,Ba+ap120, (2.5)

l—g—oa0g—ap=>0.

Remark 2.8. The set of all pairs (p,0) € (0,00) x (0,1) satisfying in-
equalities (2.5) is not empty. In fact, the pair (p,0) = ((f — «)/(af + 22 + 1),
(¢ +1)/(f 420+ 1)) belongs to it.

THEOREM 2.9. Equation (A) has solutions of type (S,).
ExaMpLE 2.10. Let o < 5. Consider equation (A) with p(¢) = ¢
(P17 =y, izl oeR (2.6)

For this equation we have the following results:

(i) (2.6) has a solution of type (D) if and only if ¢ > —a — 1 (Theorem
2.2);

(i) (2.6) has a solution of type (AC) if and only if ¢ < —o — 1 (Theorem
2.3);

(iif) (2.6) has a solution of type (AL) if and only if ¢ < —f — 1 (Theorem
2.4);

(iv) (2.6) has a solution of type (AS) if and only if ¢ < —f — 1 (Theorems
2.5 and 2.6).

ReEmARK 2.11. Theorems 2.6 and 2.7 have the same conclusion that there
are not solutions of type (AS). Generally, Theorem 2.6 is easier to apply than
Theorem 2.7. However, Theorem 2.7 is still valid for the case that p is non-
negative. For example, it is found by this extended version of Theorem 2.7
that the equation

P = +sin )y 'y, =1,

does not have solutions of type (AS). Theorem 2.6 can not be applied to this
equation.

REMARK 2.12. Theorems 2.3, 2.4 and 2.6 can be obtained also from the
results by Mirzov [5] in which the Emden-Fowler system (C) is considered.
Theorems 2.1 and 2.9 are also given in [1].

3. Main results for the sub-homogeneous equation

Below we list our main results for the case of o > . Throughout this
section we assume that o > f.

THEOREM 3.1. Equation (A) has solutions of type (S1).
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THEOREM 3.2. Equation (A) has a solution of type (D) if
0 © 1/a
J (J p(s)ds) dt < oo. (3.1)
t

THEOREM 3.3.  Eguation (A) does not have solutions of type (D) if

liminf ¢'**p(¢) > 0. (3.2)

t— o0

THEOREM 3.4.  Equation (A) does not have solutions of type (D) if there
are constants p >0 and o € (0,1) satisfying

lim inf ¢7* J 572071 p(5)]%ds > 0 (3.3)

t— o0 ¢
and

{ﬂa+a+p—1£0,

34
l—0g—oac+ap <0. (34)

REMARK 3.5. The set of all pairs (p,a) € (0,00) x (0,1) satisfying in-
equalities (3.4) is not empty. In fact, the pair (p,6) = ((a« — f)/(of + 20 + 1),
(«+1)/(ef + 20+ 1)) belongs to it.

THEOREM 3.6.  Equation (A) has a solution of type (AC) if and only if (3.1)
holds.

THEOREM 3.7. Equation (A) has a solution of type (AL) if and only if

o0

Pp(t)dt < .

THEOREM 3.8. Equation (A) has a solution of type (AS) if and only if

: Pp(tH)dt = . (3.5)

THEOREM 3.9. Egquation (A) has no solutions of type (Sy).

ExampLE 3.10. Let o > f, and consider equation (2.6) again. We have
the following results:

(i) (2.6) has a solution of type (D) if and only if ¢ < —a — 1 (Theorems
3.2 and 3.3);

(i) (2.6) has a solution of type (AC) if and only if ¢ < —o — 1 (Theorem
3.6);

(iif) (2.6) has a solution of type (AL) if and only if ¢ < —f — 1 (Theorem
3.7);
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(iv) (2.6) has a solution of type (AS) if and only if ¢ > —ff — 1 (Theorem
3.8).

REMARK 3.11. Theorems 3.3, 3.6 and 3.7 can be obtained from the results
in [5]. In [1] several results related to Theorems 2.4 and 3.7 are obtained, and
Theorems 3.1 and 3.9 are also given.

4. Auxiliary lemmas

In the section we collect auxiliary lemmas, which are mainly concerned
with local solutions of (A).

A comparison lemma of the following type is useful, and will be used in
many places.

Lemma 4.1. Suppose that py,p; € Cla,b] and 0 < pi(t) < p2(t) on [a,b].
Let y;,i=1,2, be solutions on |a,b] of the equations

() =pOll™ i, i=12,
respectively. I yi(a) < yz2(a) and yi(a) < yj(a), then
n(@) <y(t)  and  yi(0) <yy()  on (a,b].

Proor. We have

t

i@ = lyi(a)™ +J pi)li)"ds,  a<t<b i=12 (4.1)

a

n) =@+ [ (it + jspm[yi<r>1ﬂ*dr)l/”ds, a<i<h i=12

a a

By the hypotheses we have yi(f) < y,(f) in some right neighborhood of a. If
»1(2) = y2(r) for some point in (a,b], we can find a point ¢ € (a,b] satisfying

y1(8) < y2(2) for a <t < ¢; and  yi(c) = y(c).
But, this yields a contradiction, because

0 =y1(c) = y2(c) = y1(a) — y2(a)

1/ax

+[ (vt + [ momera)

a

- (bttan + J;PZ(S)[yz(S)]ﬂ*ds)l/a*] di<0
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Hence we see that yi(r) < y2(¢) on (a,b]. Returning to (4.1), we find that
yi(t) < yj(t) on [a,b]. The proof is complete.

The uniqueness of local solutions with non-zero initial data is essentially
proved in [4]. That is, for given T (> 1), yo, and y, equation (A) has a unique
local solution y satisfying y(T) = yoy, y'(T) = y; provided |yo| + |y1| #0. The
uniqueness of the trivial solution can be concluded for the case o < f5:

LemMA 4.2. Let a<f and T = ty. If y is a (local) solution of (A) sat-
isfying y(T) =y'(T) =0, then y =0 on [ty, ).

PrOOF. Assume the contrary. We may suppose that y £ 0 on [T, o).
Then, we can find #,6 (T <t <) satisfying |y(f1)]+ |y’ (61)|=0 and
[y(0)] +1¥'(£)] > 0 on (t;,%]. Integrating (A), we obtain

o= ([ p(s)[y(s)}ﬂ*ds)l/w,

n
t K ; 1/ax
y(t) = J (J p(r)[y(r)]”dr) ds, n<t<n.
1 I3t
We therefore have

t 1/a
Y (0] < (J p(S){Iy(S)I+|y’(S)|}ﬁdS> : (4.3)

t K 1/a
|y<r>|sL (J p<r>{|y<r>+|y'<r>|}ﬂdr) i n<i<n (44)

Put w(?) = max, <<, (|y(&)| +|y'(&)]). We see that w(r;) =0,w(t) >0 on
(t1,1;] and w is nondecreasing. From (4.3) and (4.4) we can get

o) < (| p(s)ds)l/“,

1

19(0)] < [w()])P” J:l (Jsp(r)dr)l/ads, n<t<n.

151

Let 4 <t <t<t. Then from this observation we see that

Y (@) + ()] < w(@)*G(r) < ()] G(),

o= ([ o)+ ([ o) s

where
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Consequently, we have
w(t) < w)P"G(1), n<t<t. (4.5)

If «=p, from (4.5) we have 1 < G(f), t) <t <t,. This is a contradiction
because G(1;) =0. If o <p, from (4.5 we have [w(0)] ¥ /" < G(1), 1 <
t <t,. This is also a contradiction because G(¢; +0) = w(#; +0) =0. The
proof is complete.

Next we discuss continuability of local solutions of (A).

LemMmA 4.3. Let o> f. Then, all local solutions of (A) can be continued
to oo and ty, that is, all solutions of (A) exist on the whole interval [ty, o).

ProOF. Let y be a local solution of (A) in a neighborhood of T > .
Suppose the contrary that the right maximal interval of existence of y is of the
form [T,w),w < oo. Then, it is easily seen that y(w — 0) = +co. Integrating
(A) twice, we have

t s 1/ox

y(t) = co + J <c‘1’* + J p(r)[y(r)]ﬂ*dr) ds, T<t<o,
T T

where ¢y = y(T) and ¢; =y'(T). Accordingly,

t K

1/o
0] < el + | (|c1|”+ij<r>|y<r>|ﬂdr) & T<i<w

Put z(¢) = maxr<s<,|y(£)|. Then,

T

s

(0] < Jeo +j;(|c1|“ ) |

Put moreover u(t) = max{|c;|*? z(r)}. Then, as in the proof of Lemma 4.2,
we have

1/a
p(r)dr) ds, T<t<o.
T

2(1) < Jeo| + J; H($)[u(s)]"*ds, T <1<o, (4.6)

where H(t) = (1+ f}p(s)ds)l/“. Since y(w —0) =+ oo, there is a T e (T, w)
such that z(¢) > |cl|“/ﬂ on [T,w). Therefore it follows from (4.6) that

u(t) < leol + J; H(s)[u(s)]"/*ds, T<t<o. (4.7)

Let o« =pf. Then, using Gronwall’s inequality, we see that u(w —0) < co,
which is a contradiction. Next let « > f. Then, (4.7) implies that

u(t) < |co| + [u(0)P* J;H(s)ds, T<i<o.
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Since f/oa < 1, we have u(w — 0) < co. This is a contradiction too. Hence y
can be continued to co. The continuability to the left end point #, is verified
in a similar way. The proof is complete.

The following lemma establishes more than is stated in Theorem 2.9.
Accordingly the proof of Theorem 2.9 will be omitted.

LemMmA 4.4, Let a < f, and T > ty and ¢ > 0 be given. Then, there exists
an M = M(T,c) > 0 such that the right maximal interval of existence of each
solution y of (A) satisfying y(T) > ¢ and y'(T) > M is a finite interval [T, T),
T=1T,< o, and lim, ; , y(t) = .

Proor. Let 7; > T be fixed, and put miny<,<, p(f) =m > 0. There is
an M > 0 satisfying

. iy —1/(0+1)
J| (S )

We first claim that the solution z of (A) with the initial condition z(T) = ¢,
Z/(T) = M does not exist on [T, #]; that is, z blows up at some T € (T,#;]. To
see this suppose the contrary that z exists at least on [T, ¢#;]. By the definition
of m, we have

() =p =mt,  T<i<u.
This inequality is equivalent to

o m

7 o+1y/ B+1N!
> — <tr<Hh.
1) )_ﬁ+1(z ), T<t<g
An integration yields
o 1A oty s M B+l Bl <7<
(O =M 2 g ) -, T,
and hence
1 —1/(a+1)
/(1) [M““ Jr%([z(t)]ﬁ+1 — cﬂ“)} >1, T<i<u.

Finally, we integrate the both sides on [T,¢] to obtain

z(ty) m((x+ 1) —1/(a+1)
Mof.+1 + p+1 _ p+1 ) d >t — '1"7
7 (e gy ot e W=

which is a contradiction to the choice of M. Hence z must blow up at some
Te(T,n]: lim, 4, z(t) = 0.
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If y(T)>c and y'(T) > M, then Lemma 4.1 implies that y(¢) > z(¢) on
the common interval of existence of y and z, and therefore y blows up at some
point before ¢;. The proof is complete.

5. Nonnegative nonincreasing solutions
The main objective of the section is to prove the following theorem:
THEOREM 5.1.  For each yy > 0 the problem
{ (11" = p@lt" 'y,
y(t0) = yo
has exactly one solution § such that y is defined on [ty, 0) and satisfies
y(1)=0,7'(1) <0 for t > 1. (5.1)
Furthermore, if y is a solution on [ty,0) of (A) satisfying y(ty) = yo and
(1) > y'(to) [resp. y'(t0) <3'(t0)]. then
lim y(7) = co[resp. tan; y(t) = —o0]. (5.2)

— o0

REMARK 5.2. (i) In the case o <f, employing Lemma 4.2, we can
strengthen (5.1) to the property that

y()>0,9'(t) <0  for t > t.

(i) In the case o > f, all local solutions of (A) can be continued to the
whole interval [fy, c0) (Lemma 4.3). Hence in this case property (5.2) always
holds for all solutions y with y(#) = yo and y'(ty) > 7' (to) [resp. ¥'(to) < ' (t0)].

The property of nonnegative nonincreasing solutions y described in The-
orem 5.1 will play important roles through the paper. This section is entirely
devoted to proving Theorem 5.1. To this end we prepare several lemmas.

LEmMmA 5.3. Let A,BeR, and f € C([a,b] x R) be a bounded function.
Then, the two-point boundary value problem
(171" = f(t,y) on [a,b], (5.3)
y(a) = 4, y(b) = B,
has a solution.
Proor. Let K >0 be a constant such that
Fe ) <K for (1,y)elab] xR

We first claim that with each y e Cla,b] we can associate a unique con-
stant ¢(y) satisfying
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b s 1/ o
J (c(y) + J f(r, y(r))dr) ds=B— A. (5.4)
Further, this ¢(y) satisfies
—K(b—a)—&-(i_ﬁ)v Sc(y)SK(b—a)+<LZ_I:) : (5.5)

To see this let y e Cla,b] be fixed, and consider the function

1(2) = Jb ()b + JJ f(r, y(r))dr)l/“*ds, /. eR.

a a

b—a

B— A" . . . . . .
(b—> , then I(1) > B—A. Since I is a strictly increasing continuous
—a

function, there is a unique constant c¢(y) satistfying I(c(y)) = B — 4, namely
(5.4). Then, (5.5) is clearly satisfied.

By (5.5) we see that there is a constant M = M (a,b, A, B, K) > 0 satisfying
le(y)| < M for all y e Cla,b]. Choose L >0 so large that

B—A oLk
If A< —K(b—a)+( ) , then I(1) < B—A. Similarly, if 2> K(b—a)+

Ad|<L and (M+K(b—a)"(b—a) <L
Now, we define the set Y = Cla,b] and the mapping & : Y — Cla,b] by
Y={yeCla,b]:|y(t)| <2L for te[a,b]}

and

t

(c(y) + Jsf(r, y(r))dr)l/mds, a<t<b,

a

Fy(t) =A+ J
a
respectively. Then the boundary value problem (5.3) is equivalent to finding a
fixed element of #. We show that % has a fixed element in Y via the Schauder
fixed point theorem.
Let ye Y. then,

t

()] < ) + | (|c<y>| + j e y(r))dr)l/ads

a

< |4] + J[<M+K<s—a>>““ds

< |A|+ (M + K(b—a))""*(b - a)
<L+L=2L, a<t<h.

Hence, % maps Y into itself.
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Next, to see the continuity of %, assume that {y,} be a sequence con-
verging to y € Y uniformly on [a,b]. We must prove that {Fy,} converges to
Zy uniformly on [a,b]. As a first step, we show that lim,_, c(y,) = c(»).
Assume that this is not the case. Then because of the boundedness of {c(y,)}
(see (5.5)), there is a subsequence {c¢(yy,)} satisfying ¢(y,,) — ¢ # ¢(y) for some
finite value ¢. Noting the relation

[[(em+ [ remonar) “as=5- 4

a a
we have

B m [ (<) + jsﬂr,yn,(r»dr)l/x*ds

i—
ni— oo a a

= [[(e+ Jsf(w(r))dr)w*d&

a a

This contradicts the uniqueness of the number ¢(y). Hence lim,_ ¢(y,) =
¢(y). Then we find similarly that lim,_., Zy,(t) = Zy(t) uniformly on [a, b].
It will be easily seen that the sets ZY = {Zy: ye Y} and {(Zy)' : ye Y}
are uniformly bounded on [a,b]. Thus, #Y is compact in Cla,b).
From the above observations we see that % has a fixed element y in Y.
That this fixed element is a solution of boundary value problem (5.3) is easily
proved. The proof is complete.

LemMMmA 5.4. Let ty >ty and yy > 0. Then, the two-point boundary value
problem

{<|y'|“—‘y'>’:p<r>|y|ﬁ—1y on [10,11], 56)
¥(t0) = yo, ¥(t1) =0,

has a solution y such that y(t) =0 and y'(t) <0 on [ty, t].
ProOF. Define the bounded function f e C([ty,#1] x R) by

p(t)yy for ty<t<t, y =y
S(t,y) =19 pt)y? for ty<t<t;,0<y<ypy
0 for tp <t<t, y<O.

By Lemma 5.3, the BVP
(W1 = f(t,») on [0, 1],
y(IO) :y0>Y(11) = 07

has a solution y.
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We show that y satisfies y(¢) > 0 on [fy,#;]. If this is not the case, we can
find an interval [tg, 7] < [fo, #1] such that

y(t) <0 on (9,71), and y(To) = y(‘L'l) =0.

The definition of f implies that y satisfies the equation (|y'|*"'y’)’ =0 on
[t0,71]. Hence y(¢) is a linear function on [z9,7;]. Obviously this is a con-
tradiction. We see therefore that y(¢) >0 on [, #1].

Since y'(r;) <0 and (|y'|*'y")’ >0 on [1,#] by the definition of f, we
find that y'(¢) <0 on [f,11]. Hence y(f) < yy, which implies that y is a de-
sired solution of problem (5.6). The proof is complete.

ProoF oF THEOREM 5.1. The uniqueness of y satisfying the properties
mentioned here is easily established as in the proof of Lemma 4.1. Therefore
we prove only the existence of such a y.

By Lemma 5.4, for each n e N, we have a solution y =y, of the BVP

(11" = p)[p"y on [t 10 +n],
¥(t0) = yo, ¥(to +n) =0,
satisfying
ya(f) =0 and (1) <0  for fo<t<ty+n.

Let us extend each y, over the interval (¢, o0) by defining y, = 0 for 1 > 7y + n.
Below we show that {y,} contains a subsequence converging to a desired
solution of (A).

As a first step, we prove that

»i(to) < »3(to) < -+ < p,(t0) <0. (5.7)

In fact, if this is not the case, then y/(#) > y/ (t%) for some i Since
vi(t0) = yit1(t), Lemma 4.1 implies that y;(f) > y;11(¢) on [, % +i]. Putting
t=ty+i, we have 0= y;(tp +1i) > yir1(to +i) =0, a contradiction. Accord-
ingly, (5.7) holds, and so lim,_. y,(f%) =1 € (—o0,0] exists. Since

0 <y,(f) <o on [ty,ty +n] for any neN,

{»n} is uniformly bounded on each compact subinterval of [y, o0). Noting
that y/(¢) is nondecreasing and nonpositive on [z, fp + 1], we have

yi(t0) < yi(to) < yi(t) <0 on [fy,to +n], neN.

Hence {y,} is equicontinuous on each compact subinterval of [f,o0). From
these considerations we find that there is a subsequence {y,} = {y,} and a
function y € C[ty, o0) satisfying lim,, ., v, (#) = p(¢) uniformly on each com-
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pact subinterval of [fp,c0). Finally, we will show that this y is a desired
solution of (A).
Let 7 € [ty, o0) be fixed arbitrarily. For all sufficiently large n;’s, we have

t

(Mﬁﬂ”+fﬂ%mﬂwwyih

to

V(1) = yo + J

lo

Letting n; — oo, we obtain

ﬁ@=m+f@”+fﬂﬂﬂm%ymw

fo 0

Differentiating this formula, we see that y solves (A) on [fp, o). That y
satisfies (5.1) is evident. The proof of Theorem 5.1 is complete.

REMARK 5.6. Theorem 5.1 can be obtained from [5, Theorems 1.1 and 1.2]
in which system (C) is discussed. However, our proof presented here is dif-
ferent from that in [5]. Related results are found in [1].

6. Proofs of main results for the super-homogeneous equation
Throughout this section we assume that o < f.

ProOF OF THEOREM 2.1. The theorem is an immediate consequence of the
uniqueness of the trivial solution (Lemma 4.2).

PROOF OF THEOREM 2.3.  (Necessity) Let y be a positive solution of (A) on
[t1,0) of type (AC). Tt is easy to see that y’(¢) 10 and y(¢) | y(o0) >0 as
t] co. Hence integrating (A) twice, we have

prvnyu»%ﬁf“da

s

~y(ee) i = [ (

h

from which we find that

This is equivalent to (2.2).
(Sufficiency) Let (2.2) hold. Fix an />0, and choose #; > # so that

Jf (Jmp(r)drj/ads < M

s 2
Define the set ¥ < C[f;,00) and the mapping & : ¥ — Clt;, 0) by
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Y={yeCltj,w): 1< y(t)<2t>1},

and

w=1+[ (jxpo)[y(r)]ﬂdr)l/ads, (=0,

s

respectively. We below show via the Schauder-Tychonoff fixed point theorem
that & has at least one fixed element in Y.
Firstly, let ye Y. Then,

1< Fy() <1+ )" Jw <Jw p(r)dr)l/ads

141
<Il+1=2I, >t
Thus Zy e Y, and hence #Y < Y. Secondly, to see the continuity of Z let

{yn} be a sequence in Y converging to y e Y uniformly on each compact
subinterval of [¢;,c0). Since pe L!(t;, ) and

0< J%p(r)[yn(r)]ﬁdr < (21)ﬁjwp(r)dr € Ll/“(tl, o0), neN,

the Lebesgue dominated convergence theorem implies that Z#y, — Zy uni-
formly on each compact subinterval of [f;,0). Since for ye Y

p(s)[y(s)]ﬂdsf/“ < (|

n

0 o0

0l (| p(s)ds)l/a, (>0,

t
the set {(#y)':ye Y} is uniformly bounded on [t;,c0). This implies that
FY is compact.

From these observations we find that & has a fixed element y in
Y :Zy=y. That this y is a solution of (A) of type (AC) is easily proved.
The proof is complete.

PrROOF OF THEOREM 2.2. (Sufficiency) Let y be a solution of (A) satisfying
y(¢) >0,7'(f) <0 for t > 1. The existence of such a solution is ensured by
Theorem 5.1 (and (iii) of Remark 5.2). Obviously, y is either of type (D) or
type (AC). Theorem 2.3 shows that, under assumption (2.1), (A) does not
possess solutions of type (AC). Hence, y must be of type (D).

(Necessity) Let y be a positive solution of (A) for >+ of type (D).
Clearly y satisfies

wo=[ (Jy p(r)[y(r)]ﬁdr)l/xds, (> 1.
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To verify (2.1), suppose the contrary that (2.1) fails to hold. Then, noting that
y is decreasing on [f;,00), we have

s <o [ (

t

o0 1/1
J p(r)dr) ds, r>1.

Accordingly,
o < (

t

o0 1/0(
J p(r)dr) ds, t>1.

s

The left hand side tends to oo as ¢t — oo because of o < ff; whereas the right
hand side tends to 0 as # — oco. This contradiction verifies (2.1). The proof is
complete.

PrROOF OF THEOREM 2.4. (Necessity) Let y be a positive solution of (A)
near oo of type (AL). There is a constant ¢ > 0 and #; > fy satisfying

(1) = ct, t>1. (6.1)

An integration of (A) on [f1,1],7 > 1, yields

YO — () = j pO)Pds, 1>,

141

Since lim,_,, y'(¢) = y'(o0) € (0, «0), this equality implies that

J PO di < oo (62)
h
Combining (6.2) with (6.1), we find that (2.3) holds.

(Sufficiency) We fix [ > 0 arbitrarily, and choose #; > #, large enough so
that
J Pp(iyd < (21 F(1 — 2%,

3|
Define the set ¥ < C[t;,0) and the mapping & : Y — C[t;,0) by
Y={yeClt,0):l(t—1t) < y(t) <2(t—1) for t >t}

and
t

w0 =] (e[ s [y(r)]ﬂdr)l/“ds, (=0,

h
respectively. As in the proof of the sufficiency part of Theorem 2.3, we can
show that # has a fixed element y € Y by the Schauder-Tychonoff fixed point
theorem:
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t © 1/o

(1) = J ((21)“ —J p(r)[y(r)]ﬁdr) ds, t>1.
1 N

Differentiating this formula we see that y is a positive solution of (A) on

[t1,00). L’Hospital’s rule shows that lim,_, y(¢)/t =2I. Thus y is a solution

of (A) of type (AL). The proof is complete.

To prove Theorem 2.5 we prepare the following lemma, which gives a
refinement of the ““if” part of Theorem 2.4.

LEmMA 6.1. Let yo > 0. If (2.3) holds, then there is a positive solution of
(A) on [ty,0) of type (AL) satisfying y(10) = yo.

ProOF. By Theorem 2.4, there is an (AL)-type positive solution z
of (A) defined in some neighborhood of the infinity: 0 < lim, ., z(¢)/t =
lim,—, z/'(f) < o0. Let y be a positive solution of (A) on [, c0) satisfying

_}7(Io) =y and j;(l) > 0,_}7,(1) <0 for t > 1.

Take a #; >y such that y(r) < z(r) and y'(r) < z'(¢) for t > ;. By Lemma
4.1 if 2> §'(1) is sufficiently close to 7'(f), then the solution y of (A) with
y(t) =yo and y'(%) = 4 exists at least on [f, ;] and satisfies

() < y(n) <z(n),  F(n) <y'(n)<(n).

Then Lemma 4.1 again implies that j(7) < y(r) < z(¢) as long as y(z) exists.
Since y(z) and z(#) exist on [f], 00), this means that y(7) exists on [z, c0) and
satisfies (1) < y(¢) < z(t),t > t;. Then we have

(0 _y0) _ =0
t

<0

AP t>1.
t t

Noting that y is the unique solution of (A) satisfying lim,_,, y(¢)/t =0 and

passing through the point (7, o), we have lim,_., y(¢)/t € (0,00). Therefore y

is of type (AL). The proof is complete.

ProOF OF THEOREM 2.5. For 4 > 0, we denote by y; the unique solution of
(A) with the initial condition y(#) = yo and y’(#) = 2. The maximal interval
of existence of y, may be finite or infinite. Define the set S < (0,00) by

S={A>0:y, exists on [fp, 0), and is of type (AL)}.

We know by Lemma 6.1 that S # ¢, and by Lemma 4.4 that A¢ S for all

sufficiently large 1> 0. Hence sup S =€ (0,0) exists. For . there are
three possibilities:
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(a) AesS;

(b) Z¢S, and y; is of type (AS).

(c) 4¢S, and y; is of type (Sy);

To prove the theorem, we below show that case (b) occurs. For sim-
plicity, we write y for y; below.

Suppose that case (a) occurs. Then, lim,_., j'(t) = j'(o0) =1¢€ (0, 0)
and 7'(¢) < I,t > t. By condition (2.3), we can find a #; > ¢y satisfying

o0
J p($)(yo + 21s)Pds < (21)* — 1”.
I

Choose /> A close enough to 1 so that y; exists at least on [f,#] and
yi(t1) <I. Then, for such a 4, y; can be extended to oo, and satisfies
y;(t) <2t > 1. In fact, if this is not the case, there is 7 > #; satisfying

y;(1) <21 on [19,1) and  y)(7) =2L

It follows therefore that y,(¢) < yo + 2It,t € [ty,f]. An integration of (A) (with
y=y,) on [1,7] yields
f

1) = G40 = )" + | e as

1

t

<7 | p(o)( -+ 219)ds

n
o0
<* —|—J p(s)(yo +2ls)ﬁds < (20)”.
1
This contradiction implies that y; exists on [fp,00) and satisfies y](f) < 2/,
t>ty. These observations show that S35/ > i, which contradicts the defi-
nition of 4. Hence, case (a) does not occur.

Next, suppose that case (c) occurs. Let T >y be the point such that
(T —0)=7"(T—0)=00. By Lemma 4.4, there is an M >0 such that
solutions y of (A) satisfying y(T) > 1, y'(T) > M must blow up at some finite
T=T(y)e(T,©): y(T —0)=y'(I—0)=co. For sufficiently small &> 0
we have (T —¢) > 1, 3/(T —¢) > M. Thus, if A < 1 is sufficiently close to
J, then y; can be continued at least to T —e, and satisfies y;(T —¢) > 1,
(T —¢&) > M. Then, even though y, can be continued to 7', y; blows up at
some finite point by the definition of M. This fact shows that such a 1 (< 2)
does not belong to S, contradicting the definition of A, again.

Consequently, case (b) occurs, and hence the proof of Theorem 2.5 is
complete.

To prove Theorem 2.6, we prepare the following simple lemma.
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LEmMMA 6.2. Let k>0, and p = p(k) be the unique positive root of the
equation op*(p — 1) =k. Then,

(i) the function z(t) = Ct?, C being an arbitrary positive constant, solves
the equation

(") =kt 127, t> 1.
(i) limg_ p(k) = oo.
PrROOF OF THEOREM 2.6. Let ¢; > 0 be a number satisfying
py=ct"P >0, (6.3)

The proof is done by contradiction. Suppose that there is a positive solution y
of (A) of type (AS).

We can find a sufficiently large M > 0 such that the positive root p = p,,
of the equation ap*(p — 1) = c; MF~* satisfies

—lfﬁ+/¥p20. (6.4)

This is possible by (i) of Lemma 6.2. Since lim, .., y(f)/t = oo, there is a
11 =ty such that y exists on [f1,00), and
Y'(1)>0and y(t) > Mt  for t>1.

Lemma 6.2-(i) asserts that, for arbitrary C > 0,z(¢) = z(¢; C) = Ct” solves the
equation

() =eMP2e 122 > (6.5)

Now, we choose C > 0 small enough so that
0<z0(t) <y(r), i=0,L (6.6)
We rewrite (A) in the form
() = POy
Note that the coefficient function of this equation satisfies
PO = eit ") = e P >
Thus, in view of (6.5), (6.6), and Lemma 4.1, we see that
y(8) = z(r) = C, t=1.

Accordingly, y satisfies

(")) = POy /2y

> ClI*I*ﬂ(C[/J)(ﬂf“)/zy(“ﬁLﬂ)/z > Czy(ahLﬂ)/z7 t>1.
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Here ¢; > 0 is a constant, and the last inequality follows from (6.4). This
inequality is equivalent to

o o1y 7 &) 1N 7 o+pf
> = (pf = > f.
1) )_uH(y Vo HE—m a1z
An integration yields
« I o+1 / o+l 2 1 1
— > — = > 1.
e O = 2 F OOr =), ez

Since y(o0) = oo, there are constants c¢; > 0 and #, > ¢ satisfying
V() = aly@ g,

Dividing the both sides by [y(£)]“""/**V and integrating on [r,, 7], we get

H—o —(u—2)/(e+1) _ MO ~(u=a)/(a+1)
t t > t—t t=>1.
o l[y( 2)] o l[y( )] C3( 2)’ 2

Letting ¢ — oo, we have a contradiction. The proof is complete.

ProoF oF THEOREM 2.7. The proof is done by contradiction. Let y be a
solution of (A) of type (AS). We suppose that y exists on [t, c0) and satisfies

yt)=>Cit, Y ()= Cy, t>1 for some C; > 0. (6.7)
Put z= y(»")* (>0),>1. Then

=) {0 = )+ py!

=y<y'>“(y;/+p<r><j,ﬂ)x):z(y;#p(z)(j/;a), (> 0.

Now, we employ the Young inequality of the form

X+Y>0(1-0)""9X'"°y?  for X,Y>0and 0<o<1 (6.8)
in the last expression. It follows therefore that
2> Coz(y) T p(0)] 7, =,
where C, = Cy(o,a,6) >0 is a constant. We rewrite this inequality as
2 > Copberorl ()l meme )] 1, 1>
Noting (6.7) and condition (2.5), we obtain

2= G p(0) 7, =,
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where C; = C3(a, ,0,p,Cy,Cy) > 0 is a constant. Dividing the both sides by
z!*7 and integrating on [f,0), we have

/1)[2(’)]4) = C3J sl p()ds, ez,
t
because lim, . z(¢) = oo. Consequently, we have
S bz o [T ez
p (1) R ’ B

Letting + — oo, we get a contradiction to assumption (2.4). This completes the
proof.

As was mentioned in Section 4, the proof of Theorem 2.9 is omitted. In
fact, a more general result is proved in Lemma 4.4.

7. Proofs of main results for the sub-homogeneous equation
Throughout this section we assume that o > f.

Proor oF THEOREM 3.1. Let #;,%, be fixed so that 7y <1 < t,, and put

> 0.

. oa+1
m= min p(t) >0 and P=7 y

Then there are constants L > 0 and ¢ > 0 satisfying

b/ r (
n

cHlomt/e o -
. >c,
B T

15} 1/9‘
J p(r)dr) ds < L,

s

and
c(t—1)" <L  on [t
Define the closed convex subset Y of Cl[z,1] by
Y={yeClt,tr]:c(tr—1t)’ < y(t) <L on [t;,5]}

and the mapping 7 : Y — C[t, 1] by

#o-[([ p(r)[y(r)]ﬂdr)l/xds, h<isn

t N
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respectively. We show that the hypotheses of the Schauder fixed point the-
orem is satisfied for Y and Z.
Let ye Y. Then, obviously Z#y(¢) < L on [t,1]. Moreover,

b /1 1/
Fy(t) = ml/“c/’/“J (J (6 — r)ﬁ”dr> ds

t
Bl y o
NI N O > ety — 1)
)

on [t;,5,]. Hence #Y < Y. The continuity of % and the boundedness of the
sets ZY and {(Zy)': ye Y} can be easily established. Accordingly there is a
y e Y satisfying #y = p. By differentiating, we find that p is a solution of (A)
on [f1,1] and that

y(6)>0on [tn,0), () =)(2) =0.
Now, we put

o= {30 on

0 on [t, 00).

It is easy to see that y is a solution of (A) on [f],00), and is of type (S;). The
proof is complete.

Theorems 3.6 and 3.7 can be proved exactly as in the proof of Theorems
2.3 and 2.4, respectively. We therefore omit the proofs.

ProOF OF THEOREM 3.2. By our assumption we can find a positive solu-
tion y,,neN, of (A) satisfying y,(c0) =1/n. Since a > ff, we see by Lemma
4.3 that each y, exists on the whole interval [fp, 00). We show that the se-
quence {y,} has the limit function y, and it gives rise to a positive solution of
(A) of type (D).

We first claim that

21(0) > ya(t) > - > pu(t) > yp1 () > - >0, t> 1. (7.1)
If this is not true, then
() =y (7) for some ve N and 7€ [fy, 0).

This means however that there are two nonnegative nonincreasing solutions
of (A) passing through the point (7,,(7)). This contradicts to Theorem 5.1.
We therefore have (7.1), and so lim,_,., y,(f) = y(f) exists. Observe that y,
satisfies
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no =+ [([ o0 [yn<r>]"dr)wds, =

t S

Letting n — oo, we obtain via the dominated convergence theorem

o= (prv)[y(rﬂ”dr)l/xds, ‘>0

t N

We see that y is a nonnegative solution of (A) satisfying y(o0) = 0. It remains
to prove that y(z) >0 for ¢ > 1.

Fix T > ty arbitrarily. The proof of Theorem 3.1 implies that there is a
solution yr of (A) satisfying

yr(t) >0 on [, T); yr(t) =0 on [T, ).
We claim that
ya(t) > yr(t) on [t, T] for all neN. (7.2)
In fact, if this fails to hold, then
w(f) = yr(f) for some veN and 7€ [f,T).

But this means, as before, that there are two nonnegative nonincreasing so-
lution of (A) passing through the point (7, yr(7)). This contradiction shows
that (7.2) holds. Hence by letting n — oo in (7.2), we have y(f) > yr(f) >0
on [ty,T). Since T >ty is arbitrary, we see that y(¢) >0 on [fp,0). The
proof is complete.

ProoF oF THEOREM 3.3. The proof is done by contradiction. Let y be a
positive solution of (A) on [¢], o0) of type (D). Multiplying (A) by —y’ > 0 and
using (3.2), we obtain

a(iy/)“y” > Cltiliayﬁ(_y/)v I>1,
that is,
(=) < 'O, =, (7.3)

where C; and C, are positive constants. We fix a T > ¢, arbitrarily, and con-
sider inequality (7.3) only on the interval [T,27] for a moment. An integra-
tion of (7.3) on [t,2T], T <t < 2T, gives

2T
—y QT — [y () < czj s ()P ds

t

<G (en)! -, T<i<2T.
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Thus

'O = QT (@) - e, T<i<2T
or equivalently,

V(0 = GT (O = per)hHYet T<i<or,

where C3 = G,/ /2. We therefore have

—'(1) )
GO e = ST ', T<i<2T

Finally, integrating on [7,27], we obtain

- = (3, T >1,
wry (WP = [yr))PHer
that is,
W(T)/¥(2T)
[y(ZT)](a—/f>/(a+1)J (Uﬁ+l _ 1)—1/(9<+1)dv e T
1

Noting that
X

J W = 1) gy = o((x — Py s x oo,
I

and

X

(U/;-H _ 1)—1/(a+1)dv = O0((x — 1)0‘/(a+1)) as x — 1 +0,

J1

we can find a constant C > 0 satisfying

r(vﬁﬂ L) Mgy < Ol - R s,
1

Therefore (7.4) implies that

(a=B)/(2+1)
_ »(T)
Cly(2T (= ﬁ)/(“+])(——1> > (3, T>un,
[¥(2T) ST
from which we have

Cly(T) — yT)| =P/ > ¢y T >,

Letting T — oo, we have a contradiction. The proof is complete.

75

(7.4)
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ProoOF oF THEOREM 3.4. The proof is done by contradiction. Let y be a
solution of (A) of type (D), We notice first that

lim 7y'(¢) = 0. (7.5)

11— o0
In fact, since p”(¢) >0, we can compute as follows:

2t

o0 = [ o= |y

t t

> [—)'(20)] JZI ds=1t[-y'(2)) >0  for large 1.

t

Therefore (7.5) holds.
We may suppose that for some C; >0 and ¢ > £

0<y(t)<C, 0<—-0'(t)<Cy, t>1. (7.6)
Put z = y(—y")* (>0),t>1¢. Then

—z' = (=) = 2 (=) = () + p()yP!

/

_ y(_y')“(_yy + pl0) (_yyﬁ,)%) :z(‘yy/+p(t) (_);ﬁ,)oc>7 1> 1.

Preceding as in the proof of Theorem 2.7, we obtain
7> Czyﬁa+(r+pfl(_y/)lfafao%poc[p(t)]azlfp, 1> 1,

where C; > 0 is a constant. We obtain from (7.6) and assumption (3.4)
—z' > Gyt p(0)7 T, =,

where C; > 0 is a constant. Dividing the both sides by z!™” and integrating
on [t.c0), we have

1 o0

EMM”ZQJS””W”mwrw, t> 1,
t

that is,

0

[y(l)}p[—ty’(t)]“” > C3[pocJ S0+au—poc—][p(s)]uds7 t>1.

t

|-

Letting t — oo, we get a contradiction to assumption (3.3) by (7.5). The proof
is complete.
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PrOOF OF THEOREM 3.8. (Sufficiency) By Theorem 5.1 and (ii) of Remark
5.2, there is a positive solution y of (A) satisfying y(oo) = co. This y is either
of type (AL) or of type (AS). But, by Theorem 3.7, we see that y must be of
type (AS).

(Necessity) Let y be a positive solution of (A) on [t], o) of type (AS). To
prove (3.5), we suppose the contrary that [* t#p(f)dt < oo. As in the proof of
Lemma 4.3, we have

t K 1/a

01 < el + | (|c1“+j p(r>|y<r>|’fdr) ds. >0,
14 n

where ¢y = y(t1) and ¢; =y'(#;). Let z(r) = max, <¢<,|y(&)|/E. Tt follows

that

t

PN <eyag [ 1o+ ) | rﬂp<r>dr)l/ads

141

1

<G+ <|cl|“ + [z(t)]ﬂj rﬁp(r)dr>1/a, >,

151

where C, > 0 is a constant. Put w(f) = max{|c1\“/ﬁ,z(z)}. We then have

¢ 1/a
() < o @ (14 [ o) ez

4]
Since y is of type (AS), |y(¢)|/t is unbounded on [f;,00), and so is z(¢).
Accordingly, there is a #, > ¢, satistying w(¢) = z(¢) for ¢ > t,. Thus

1

w(t) < Cy + [W(,)]ﬂ/a<1 +J Vﬁp(r)dr)l/%

141

o0

<G+ [w(t)]/m‘(l +J rﬂp(r)dr)l/“, 1> 1.

141

since /o < 1, this implies the boundedness of w, which is a contradiction.
Hence we must have (3.5). The proof is complete.

Theorem 3.9 is clear because all solutions of (A) with o > f exist on the
whole interval [fp, c0) (see Lemma 4.4).
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