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Abstract. We study asymptotic behavior of solutions of a class of second order

quasilinear ordinary di¤erential equations. All solutions are classified into six types by

means of their asymptotic behavior. Necessary and/or su‰cient conditions are given

for such equations to possess a solution of each of the six types.

0. Introduction

In this paper we consider second order quasilinear ordinary di¤erential

equations of the form

ðjy 0ja�1
y 0Þ 0 ¼ pðtÞjyjb�1

y;ðAÞ

where we always assume that

a; b > 0 are constants;

p A C½t0;yÞ; and pðtÞ > 0 on ½t0;yÞ; t0 > 0:

�

For simplicity we often employ the notation

xg� ¼ jxjg�1
x ¼ jxjg sgn x; x A R; g > 0;

in terms of which (A) can be expressed as

ððy 0Þa�Þ0 ¼ pðtÞyb�:

By a solution of (A) on an interval JH ½t0;yÞ we mean a function

y : J ! R which is of class C1 together with jy 0ja�1
y 0, and satisfies (A) at every

point of J.

We here call equation (A) super-homogeneous or sub-homogeneous accord-

ing as a < b or a > b. If a ¼ b, (A) is often called half-linear. In this paper

our attention is mainly paid to the super-homogeneous and sub-homogeneous

cases, and the half-linear case is almost excluded from our consideration.
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The purpose of the paper is to investigate the structure of the set of

solutions of (A). If a solution y of (A) exists on an interval of the form

½t1;yÞ; t1 b t0, and is eventually nontrivial, then it is called proper. A

nontrivial solution which is not proper is called singular. Further, a singular

solution y is classified into two types. One type consists of solutions existing

on finite intervals of the form ½t1; t2Þ, t1 < t2 < y. The other type consists

of solutions y such that they exist on infinite intervals of the form ½t1;yÞ,
t1 ¼ t1ðyÞ, and y2 0 on ½t1;yÞ, but y1 0 near þy. Proper solutions are

classified according to their asymptotic behavior as t! y, and it will be

shown below that each proper solution satisfies one of four di¤erent features.

Thus every solution of (A) is classified into six types. In this paper we present

necessary and/or su‰cient conditions for the existence of solutions of each of

the six types, and clarify the structure of the set of solutions of (A).

If a ¼ 1, then equation (A) reduces to the Emden-Fowler equation

y 00 ¼ pðtÞjyjb�1
y:ðBÞ

In this case, asymptotic theory for solutions was discussed in detail, for ex-

ample, by Kiguradze [3], Taliaferro [6], and Wong [7] for the superlinear case

b > 1, and by Chanturiya [2] for the sublinear case 0 < b < 1. The results

in the present paper give an extension of the results for the Emden-Fowler

equation (B).

Some parts of the results in this paper can be obtained also from those of

Mirzov [5] which is concerned with the first order Emden-Fowler system

u 01 ¼ p1ðtÞju2jl1�1
u2;

u 02 ¼ p2ðtÞju1jl2�1
u1:

(
ðCÞ

For the above system (C), it is assumed that li > 0, pi A C½t0;yÞ and piðtÞ > 0,

tb t0, i ¼ 1; 2. It is clear that, for a solution y of (A), ðu1; u2Þ ¼ ðy; ðy 0Þa�Þ is

a solution of (C) with l1 ¼ 1=a, l2 ¼ b, p1 1 1 and p2 1 p. Conversely, let

ðu1; u2Þ be a solution of (C). If
Ðy

p1ðtÞdt ¼ y (which is essentially assumed

in [5]), then vðtÞ ¼ u1ðtÞ with t ¼
Ð t
t0
p1ðsÞds satisfies the equation

ðj _vvjd�1 _vvÞ� ¼ qðtÞjvjl2�1
v;ðĈCÞ

where d ¼ 1=l1, qðtÞ ¼ p2ðtÞ=p1ðtÞ and � ¼ d=dt. Note that the t-interval

½t0;yÞ for (C) corresponds to the t-interval ½0;yÞ for ðĈCÞ. Therefore equation

ðĈCÞ is of the form (A). In this sense, equation (A) and system (C) are the

same.

The results for (A) may be obtained through the results for (C). But it is

certain that direct consideration for (A) is easier to handle and gives a definite

theory. Thus in this paper we discuss equation (A) directly. As stated above,
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some of our results can be obtained also from those of Mirzov [5], but the

proofs of the corresponding results in [5] are di¤erent from those in the present

paper.

The organization of the paper is as follows. In Section 1 we give a clas-

sification of all (local) solutions of (A). It will be found that all solutions of

(A) are classified into six types in our context. In Sections 2 and 3, we state

the main results for the super-homogeneous case and for the sub-homogeneous

case, respectively. The proofs of all theorems in Sections 2 and 3 are given

in Sections 6 and 7, respectively. In Section 4 we give basic results mainly

concerning local properties of solutions of (A). Section 5 is devoted to con-

structing nonnegative solutions y of (A) with the particular property that

yðtÞb 0, y 0ðtÞa 0 near y. Such solutions are called nonnegative nonincreas-

ing solutions, and play important roles to prove our main results in Sections 6

and 7.

1. The classification of all solutions of (A)

To classify all solutions of (A) we need the following simple lemma.

Lemma 1.1. Let y be a local solution of (A) near t ¼ Tb t0, and ½T ;oÞ;
oay, be its right maximal interval of existence. Then we have either yðtÞb 0

near o, or yðtÞa 0 near o. That is, y does not change strictly its sign infinitely

many times as t " o.

The classification of all (local) solutions of (A) are given on the basis of

Lemma 1.1. Since the proof is easy, we leave it to the reader.

Proposition 1.2. Each local solution y2 0 of (A) falls into exactly one of

the following six types:

(i) (singular solution of the first kind; type (S1)) there exists t1 b t0 such

that

y2 0 for ta t1; and y1 0 for tb t1;

(ii) (decaying solution; type (D)) y can be continued to y, and satisfies

yðtÞy 0ðtÞ < 0 for all large t, and

lim
t!y

yðtÞ ¼ 0;

(iii) (asymptotically constant solution; type (AC)) y can be continued to

y, and satisfies yðtÞy 0ðtÞ < 0 for all large t, and

lim
t!y

yðtÞ A Rnf0g;
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(iv) (asymptotically linear solution; type (AL)) y can be continued to y,

and satisfies yðtÞy 0ðtÞ > 0 for all large t, and

lim
t!y

yðtÞ
t

A Rnf0g;

(v) (asymptotically superlinear solution; type (AS)) y can be continued to

y, and satisfies yðtÞy 0ðtÞ > 0 for all large t, and

lim
t!y

yðtÞ
t

¼Gy;

(vi) (singular solution of the second kind; type (S2)) y has the finite escape

time; that is, there exists t1 > t0 such that

lim
t!t1�0

yðtÞ ¼Gy:

2. Main results for the super-homogeneous equation

Below we list our main results for the case of a < b. Throughout this

section we assume that a < b.

Theorem 2.1. Equation (A) has no solutions of type (S1).

Theorem 2.2. Equation (A) has a solution of type (D) if and only ifðy ðy
t

pðsÞds
� �1=a

dt ¼ y: ð2:1Þ

Theorem 2.3. Equation (A) has a solution of type (AC) if and only ifðy ðy
t

pðsÞds
� �1=a

dt < y: ð2:2Þ

Theorem 2.4. Equation (A) has a solution of type (AL) if and only ifðy
tbpðtÞdt < y: ð2:3Þ

Theorem 2.5. Equation (A) has a solution of type (AS) if (2.3) holds.

Theorem 2.6. Equation (A) does not have solutions of type (AS) if

lim inf
t!y

t1þbpðtÞ > 0:

Theorem 2.7. Equation (A) does not have solutions of type (AS) if there

are constants r > 0 and s A ð0; 1Þ satisfying

lim inf
t!y

tr
ðy
t

sbsþs�r�1½ pðsÞ�sds > 0 ð2:4Þ
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and

bsþ s� r� 1b 0;

1� s� as� arb 0:

�
ð2:5Þ

Remark 2.8. The set of all pairs ðr; sÞ A ð0;yÞ � ð0; 1Þ satisfying in-

equalities (2.5) is not empty. In fact, the pair ðr; sÞ ¼ ððb � aÞ=ðab þ 2aþ 1Þ;
ðaþ 1Þ=ðab þ 2aþ 1ÞÞ belongs to it.

Theorem 2.9. Equation (A) has solutions of type (S2).

Example 2.10. Let a < b. Consider equation (A) with pðtÞ ¼ ts:

ðjy 0ja�1
y 0Þ 0 ¼ tsjyjb�1

y; tb 1; s A R: ð2:6Þ

For this equation we have the following results:

(i) (2.6) has a solution of type (D) if and only if sb�a� 1 (Theorem

2.2);

(ii) (2.6) has a solution of type (AC) if and only if s < �a� 1 (Theorem

2.3);

(iii) (2.6) has a solution of type (AL) if and only if s < �b � 1 (Theorem

2.4);

(iv) (2.6) has a solution of type (AS) if and only if s < �b � 1 (Theorems

2.5 and 2.6).

Remark 2.11. Theorems 2.6 and 2.7 have the same conclusion that there

are not solutions of type (AS). Generally, Theorem 2.6 is easier to apply than

Theorem 2.7. However, Theorem 2.7 is still valid for the case that p is non-

negative. For example, it is found by this extended version of Theorem 2.7

that the equation

ðjy 0ja�1
y 0Þ 0 ¼ ð1þ sin tÞjyjb�1

y; tb 1;

does not have solutions of type (AS). Theorem 2.6 can not be applied to this

equation.

Remark 2.12. Theorems 2.3, 2.4 and 2.6 can be obtained also from the

results by Mirzov [5] in which the Emden-Fowler system (C) is considered.

Theorems 2.1 and 2.9 are also given in [1].

3. Main results for the sub-homogeneous equation

Below we list our main results for the case of a > b. Throughout this

section we assume that a > b.

Theorem 3.1. Equation (A) has solutions of type (S1).
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Theorem 3.2. Equation (A) has a solution of type (D) if

ðy ðy
t

pðsÞds
� �1=a

dt < y: ð3:1Þ

Theorem 3.3. Equation (A) does not have solutions of type (D) if

lim inf
t!y

t1þapðtÞ > 0: ð3:2Þ

Theorem 3.4. Equation (A) does not have solutions of type (D) if there

are constants r > 0 and s A ð0; 1Þ satisfying

lim inf
t!y

tra
ðy
t

ssþas�ar�1½ pðsÞ�sds > 0 ð3:3Þ

and

bsþ sþ r� 1a 0;

1� s� asþ ara 0:

�
ð3:4Þ

Remark 3.5. The set of all pairs ðr; sÞ A ð0;yÞ � ð0; 1Þ satisfying in-

equalities (3.4) is not empty. In fact, the pair ðr; sÞ ¼ ðða� bÞ=ðab þ 2aþ 1Þ;
ðaþ 1Þ=ðab þ 2aþ 1ÞÞ belongs to it.

Theorem 3.6. Equation (A) has a solution of type (AC) if and only if (3.1)

holds.

Theorem 3.7. Equation (A) has a solution of type (AL) if and only ifðy
tb pðtÞdt < y:

Theorem 3.8. Equation (A) has a solution of type (AS) if and only ifðy
tbpðtÞdt ¼ y: ð3:5Þ

Theorem 3.9. Equation (A) has no solutions of type (S2).

Example 3.10. Let a > b, and consider equation (2.6) again. We have

the following results:

(i) (2.6) has a solution of type (D) if and only if s < �a� 1 (Theorems

3.2 and 3.3);

(ii) (2.6) has a solution of type (AC) if and only if s < �a� 1 (Theorem

3.6);

(iii) (2.6) has a solution of type (AL) if and only if s < �b � 1 (Theorem

3.7);
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(iv) (2.6) has a solution of type (AS) if and only if sb�b � 1 (Theorem

3.8).

Remark 3.11. Theorems 3.3, 3.6 and 3.7 can be obtained from the results

in [5]. In [1] several results related to Theorems 2.4 and 3.7 are obtained, and

Theorems 3.1 and 3.9 are also given.

4. Auxiliary lemmas

In the section we collect auxiliary lemmas, which are mainly concerned

with local solutions of (A).

A comparison lemma of the following type is useful, and will be used in

many places.

Lemma 4.1. Suppose that p1; p2 A C½a; b� and 0 < p1ðtÞa p2ðtÞ on ½a; b�.
Let yi; i ¼ 1; 2, be solutions on ½a; b� of the equations

ðjy 0i j
a�1
y 0i Þ

0 ¼ piðtÞjyijb�1
yi; i ¼ 1; 2;

respectively. If y1ðaÞa y2ðaÞ and y 01ðaÞ < y 02ðaÞ, then

y1ðtÞ < y2ðtÞ and y 01ðtÞ < y 02ðtÞ on ða; b�:

Proof. We have

½y 0i ðtÞ�
a� ¼ ½y 0i ðaÞ�

a� þ
ð t
a

piðsÞ½yiðsÞ�b�ds; aa ta b; i ¼ 1; 2; ð4:1Þ

yiðtÞ ¼ yiðaÞ þ
ð t
a

½y 0i ðaÞ�
a� þ

ð s
a

piðrÞ½yiðrÞ�b�dr
� �1=a�

ds; aa ta b; i ¼ 1; 2:

ð4:2Þ

By the hypotheses we have y1ðtÞ < y2ðtÞ in some right neighborhood of a. If

y1ðtÞb y2ðtÞ for some point in ða; b�, we can find a point c A ða; b� satisfying

y1ðtÞ < y2ðtÞ for a < t < c; and y1ðcÞ ¼ y2ðcÞ:

But, this yields a contradiction, because

0 ¼ y1ðcÞ � y2ðcÞ ¼ y1ðaÞ � y2ðaÞ

þ
ð c
a

�
½y 01ðaÞ�

a� þ
ð t
a

p1ðsÞ½y1ðsÞ�b�ds
� �1=a�

� ½y 02ðaÞ�
a� þ

ð t
a

p2ðsÞ½y2ðsÞ�b�ds
� �1=a��

dt < 0:
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Hence we see that y1ðtÞ < y2ðtÞ on ða; b�. Returning to (4.1), we find that

y 01ðtÞ < y 02ðtÞ on ½a; b�. The proof is complete.

The uniqueness of local solutions with non-zero initial data is essentially

proved in [4]. That is, for given T ðb t0Þ; y0, and y1, equation (A) has a unique

local solution y satisfying yðTÞ ¼ y0, y
0ðTÞ ¼ y1 provided jy0j þ jy1j0 0. The

uniqueness of the trivial solution can be concluded for the case aa b:

Lemma 4.2. Let aa b and Tb t0. If y is a (local) solution of (A) sat-

isfying yðTÞ ¼ y 0ðTÞ ¼ 0, then y1 0 on ½t0;yÞ.

Proof. Assume the contrary. We may suppose that y2 0 on ½T ;yÞ.
Then, we can find t1; t2 ðTa t1 < t2Þ satisfying jyðt1Þj þ jy 0ðt1Þj ¼ 0 and

jyðtÞj þ jy 0ðtÞj > 0 on ðt1; t2�. Integrating (A), we obtain

y 0ðtÞ ¼
ð t
t1

pðsÞ½yðsÞ�b�ds
� �1=a�

;

yðtÞ ¼
ð t
t1

ð s
t1

pðrÞ½yðrÞ�b�dr
� �1=a�

ds; t1 a ta t2:

We therefore have

jy 0ðtÞja
ð t
t1

pðsÞfjyðsÞj þ jy 0ðsÞjgb
ds

� �1=a
; ð4:3Þ

jyðtÞja
ð t
t1

ð s
t1

pðrÞfjyðrÞj þ jy 0ðrÞjgb
dr

� �1=a
ds; t1 a ta t2: ð4:4Þ

Put wðtÞ ¼ maxt1axatðjyðxÞj þ jy 0ðxÞjÞ. We see that wðt1Þ ¼ 0;wðtÞ > 0 on

ðt1; t2� and w is nondecreasing. From (4.3) and (4.4) we can get

jy 0ðtÞja ½wðtÞ�b=a
ð t
t1

pðsÞds
� �1=a

;

jyðtÞja ½wðtÞ�b=a
ð t
t1

ð s
t1

pðrÞdr
� �1=a

ds; t1 a ta t2:

Let t1 a ta ta t2. Then from this observation we see that

jy 0ðtÞj þ jyðtÞja ½wðtÞ�b=aGðtÞa ½wðtÞ�b=aGðtÞ;

where

GðvÞ ¼
ð v
t1

pðsÞds
� �1=a

þ
ð v
t1

ð s
t1

pðrÞdr
� �1=a

ds:
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Consequently, we have

wðtÞa ½wðtÞ�b=aGðtÞ; t1 a ta t2: ð4:5Þ

If a ¼ b, from (4.5) we have 1aGðtÞ, t1 < ta t2. This is a contradiction

because Gðt1Þ ¼ 0. If a < b, from (4.5) we have ½wðtÞ��ðb�aÞ=a
aGðtÞ, t1 <

ta t2. This is also a contradiction because Gðt1 þ 0Þ ¼ wðt1 þ 0Þ ¼ 0. The

proof is complete.

Next we discuss continuability of local solutions of (A).

Lemma 4.3. Let ab b. Then, all local solutions of (A) can be continued

to y and t0; that is, all solutions of (A) exist on the whole interval ½t0;yÞ.

Proof. Let y be a local solution of (A) in a neighborhood of Tb t0.

Suppose the contrary that the right maximal interval of existence of y is of the

form ½T ;oÞ;o < y. Then, it is easily seen that yðo� 0Þ ¼Gy. Integrating

(A) twice, we have

yðtÞ ¼ c0 þ
ð t
T

ca�1 þ
ð s
T

pðrÞ½yðrÞ�b�dr
� �1=a�

ds; Ta t < o;

where c0 ¼ yðTÞ and c1 ¼ y 0ðTÞ. Accordingly,

jyðtÞja jc0j þ
ð t
T

jc1ja þ
ð s
T

pðrÞjyðrÞjbdr
� �1=a

ds; Ta t < o:

Put zðtÞ ¼ maxTaxat jyðxÞj. Then,

jyðtÞja jc0j þ
ð t
T

jc1ja þ ½zðsÞ�b
ð s
T

pðrÞdr
� �1=a

ds; Ta t < o:

Put moreover uðtÞ ¼ maxfjc1ja=b; zðtÞg. Then, as in the proof of Lemma 4.2,

we have

zðtÞa jc0j þ
ð t
T

HðsÞ½uðsÞ�b=ads; Ta t < o; ð4:6Þ

where HðtÞ ¼ ð1þ
Ð t
T
pðsÞdsÞ1=a. Since yðo� 0Þ ¼Gy, there is a T A ðT ;oÞ

such that zðtÞb jc1ja=b on ½T ;oÞ. Therefore it follows from (4.6) that

uðtÞa jc0j þ
ð t
T

HðsÞ½uðsÞ�b=ads; Ta t < o: ð4:7Þ

Let a ¼ b. Then, using Gronwall’s inequality, we see that uðo� 0Þ < y,

which is a contradiction. Next let a > b. Then, (4.7) implies that

uðtÞa jc0j þ ½uðtÞ�b=a
ð t
T

HðsÞds; Ta t < o:
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Since b=a < 1, we have uðo� 0Þ < y. This is a contradiction too. Hence y

can be continued to y. The continuability to the left end point t0 is verified

in a similar way. The proof is complete.

The following lemma establishes more than is stated in Theorem 2.9.

Accordingly the proof of Theorem 2.9 will be omitted.

Lemma 4.4. Let a < b, and Tb t0 and c > 0 be given. Then, there exists

an M ¼MðT ; cÞ > 0 such that the right maximal interval of existence of each

solution y of (A) satisfying yðTÞb c and y 0ðTÞbM is a finite interval ½T ; T̂TÞ,
T̂T ¼ T̂Ty < y, and limt!T̂T�0 yðtÞ ¼ y.

Proof. Let t1 > T be fixed, and put minTatat1 pðtÞ ¼ m > 0. There is

an M > 0 satisfying

ðy
c

M aþ1 þmðaþ 1Þ
aðb þ 1Þ ðv

bþ1 � cbþ1Þ
� ��1=ðaþ1Þ

dv < t1 � T :

We first claim that the solution z of (A) with the initial condition zðTÞ ¼ c,

z 0ðTÞ ¼M does not exist on ½T ; t1�; that is, z blows up at some T̂T A ðT ; t1�. To

see this suppose the contrary that z exists at least on ½T ; t1�. By the definition

of m, we have

ððz 0ÞaÞ0 ¼ pðtÞzb bmzb; Ta ta t1:

This inequality is equivalent to

a

aþ 1
ððz 0Þaþ1Þ0 b m

b þ 1
ðzbþ1Þ0; Ta ta t1:

An integration yields

a

aþ 1
ð½z 0ðtÞ�aþ1 �M aþ1Þb m

b þ 1
ð½zðtÞ�bþ1 � cbþ1Þ; Ta ta t1;

and hence

z 0ðtÞ M aþ1 þmðaþ 1Þ
aðb þ 1Þ ð½zðtÞ�

bþ1 � cbþ1Þ
� ��1=ðaþ1Þ

b 1; Ta ta t1:

Finally, we integrate the both sides on ½T ; t1� to obtain

ð zðt1Þ
c

M aþ1 þmðaþ 1Þ
aðb þ 1Þ ðw

bþ1 � cbþ1Þ
� ��1=ðaþ1Þ

dwb t1 � T ;

which is a contradiction to the choice of M. Hence z must blow up at some

T̂T A ðT ; t1�: limt!T̂T�0 zðtÞ ¼ y.
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If yðTÞb c and y 0ðTÞbM, then Lemma 4.1 implies that yðtÞb zðtÞ on

the common interval of existence of y and z, and therefore y blows up at some

point before t1. The proof is complete.

5. Nonnegative nonincreasing solutions

The main objective of the section is to prove the following theorem:

Theorem 5.1. For each y0 > 0 the problem

ðjy 0ja�1
y 0Þ 0 ¼ pðtÞjyjb�1

y;

yðt0Þ ¼ y0

(

has exactly one solution ~yy such that ~yy is defined on ½t0;yÞ and satisfies

~yyðtÞb 0; ~yy 0ðtÞa 0 for tb t0: ð5:1Þ

Furthermore, if y is a solution on ½t0;yÞ of (A) satisfying yðt0Þ ¼ y0 and

y 0ðt0Þ > ~yy 0ðt0Þ [resp. y 0ðt0Þ < ~yy 0ðt0Þ], then

lim
t!y

yðtÞ ¼ y½resp: lim
t!y

yðtÞ ¼ �y�: ð5:2Þ

Remark 5.2. (i) In the case aa b, employing Lemma 4.2, we can

strengthen (5.1) to the property that

~yyðtÞ > 0; ~yy 0ðtÞ < 0 for tb t0:

(ii) In the case ab b, all local solutions of (A) can be continued to the

whole interval ½t0;yÞ (Lemma 4.3). Hence in this case property (5.2) always

holds for all solutions y with yðt0Þ ¼ y0 and y 0ðt0Þ> ~yy 0ðt0Þ [resp. y 0ðt0Þ< ~yy 0ðt0Þ].

The property of nonnegative nonincreasing solutions ~yy described in The-

orem 5.1 will play important roles through the paper. This section is entirely

devoted to proving Theorem 5.1. To this end we prepare several lemmas.

Lemma 5.3. Let A;B A R, and f A Cð½a; b� � RÞ be a bounded function.

Then, the two-point boundary value problem

ðjy 0ja�1
y 0Þ 0 ¼ f ðt; yÞ on ½a; b�;

yðaÞ ¼ A; yðbÞ ¼ B;

(
ð5:3Þ

has a solution.

Proof. Let K > 0 be a constant such that

j f ðt; yÞjaK for ðt; yÞ A ½a; b� � R:

We first claim that with each y A C½a; b� we can associate a unique con-

stant cðyÞ satisfying
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ð b
a

cðyÞ þ
ð s
a

f ðr; yðrÞÞdr
� �1=a�

ds ¼ B� A: ð5:4Þ

Further, this cðyÞ satisfies

�Kðb� aÞ þ B� A

b� a

� �a�
a cðyÞaKðb� aÞ þ B� A

b� a

� �a�
: ð5:5Þ

To see this let y A C½a; b� be fixed, and consider the function

IðlÞ ¼
ð b
a

lþ
ð s
a

f ðr; yðrÞÞdr
� �1=a�

ds; l A R:

If l<�Kðb� aÞþ B�A
b� a

� �a�
, then IðlÞ< B�A. Similarly, if l> Kðb� aÞþ

B� A

b� a

� �a�
, then IðlÞ > B� A. Since I is a strictly increasing continuous

function, there is a unique constant cðyÞ satisfying IðcðyÞÞ ¼ B� A, namely

(5.4). Then, (5.5) is clearly satisfied.

By (5.5) we see that there is a constant M ¼Mða; b;A;B;KÞ > 0 satisfying

jcðyÞjaM for all y A C½a; b�. Choose L > 0 so large that

jAjaL and ðM þ Kðb� aÞÞ1=aðb� aÞaL:

Now, we define the set YHC½a; b� and the mapping F : Y ! C½a; b� by

Y ¼ fy A C½a; b� : jyðtÞja 2L for t A ½a; b�g

and

FyðtÞ ¼ Aþ
ð t
a

cðyÞ þ
ð s
a

f ðr; yðrÞÞdr
� �1=a�

ds; aa ta b;

respectively. Then the boundary value problem (5.3) is equivalent to finding a

fixed element of F. We show that F has a fixed element in Y via the Schauder

fixed point theorem.

Let y A Y. then,

jFyðtÞja jAj þ
ð t
a

jcðyÞj þ
ð s
a

j f ðr; yðrÞÞjdr
� �1=a

ds

a jAj þ
ð t
a

ðM þ Kðs� aÞÞ1=ads

a jAj þ ðM þ Kðb� aÞÞ1=aðb� aÞ

aLþ L ¼ 2L; aa ta b:

Hence, F maps Y into itself.

Masatsugu Mizukami et al.62



Next, to see the continuity of F, assume that fyng be a sequence con-

verging to y A Y uniformly on ½a; b�. We must prove that fFyng converges to

Fy uniformly on ½a; b�. As a first step, we show that limn!y cðynÞ ¼ cðyÞ.
Assume that this is not the case. Then because of the boundedness of fcðynÞg
(see (5.5)), there is a subsequence fcðyniÞg satisfying cðyniÞ ! ~cc0 cðyÞ for some

finite value ~cc. Noting the relationð b
a

cðynÞ þ
ð s
a

f ðr; ynðrÞÞdr
� �1=a�

ds ¼ B� A;

we have

B� A ¼ lim
ni!y

ð b
a

cðyniÞ þ
ð s
a

f ðr; yniðrÞÞdr
� �1=a�

ds

¼
ð b
a

~ccþ
ð s
a

f ðr; yðrÞÞdr
� �1=a�

ds:

This contradicts the uniqueness of the number cðyÞ. Hence limn!y cðynÞ ¼
cðyÞ. Then we find similarly that limn!y FynðtÞ ¼ FyðtÞ uniformly on ½a; b�.

It will be easily seen that the sets FY ¼ fFy : y A Yg and fðFyÞ0 : y A Yg
are uniformly bounded on ½a; b�. Thus, FY is compact in C½a; b�.

From the above observations we see that F has a fixed element y in Y.

That this fixed element is a solution of boundary value problem (5.3) is easily

proved. The proof is complete.

Lemma 5.4. Let t1 > t0 and y0 > 0. Then, the two-point boundary value

problem

ðjy 0ja�1
y 0Þ 0 ¼ pðtÞjyjb�1

y on ½t0; t1�;
yðt0Þ ¼ y0; yðt1Þ ¼ 0;

(
ð5:6Þ

has a solution y such that yðtÞb 0 and y 0ðtÞa 0 on ½t0; t1�.

Proof. Define the bounded function f A Cð½t0; t1� � RÞ by

f ðt; yÞ ¼
pðtÞyb0 for t0 a ta t1, yb y0;

pðtÞyb for t0 a ta t1, 0a ya y0;

0 for t0 a ta t1, ya 0.

8><
>:

By Lemma 5.3, the BVP

ðjy 0ja�1
y 0Þ 0 ¼ f ðt; yÞ on ½t0; t1�;

yðt0Þ ¼ y0; yðt1Þ ¼ 0;

(

has a solution y.
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We show that y satisfies yðtÞb 0 on ½t0; t1�. If this is not the case, we can

find an interval ½t0; t1�H ½t0; t1� such that

yðtÞ < 0 on ðt0; t1Þ; and yðt0Þ ¼ yðt1Þ ¼ 0:

The definition of f implies that y satisfies the equation ðjy 0ja�1
y 0Þ 0 ¼ 0 on

½t0; t1�. Hence yðtÞ is a linear function on ½t0; t1�. Obviously this is a con-

tradiction. We see therefore that yðtÞb 0 on ½t0; t1�.
Since y 0ðt1Þa 0 and ðjy 0ja�1

y 0Þ 0 b 0 on ½t0; t1� by the definition of f , we

find that y 0ðtÞa 0 on ½t0; t1�. Hence yðtÞa y0, which implies that y is a de-

sired solution of problem (5.6). The proof is complete.

Proof of Theorem 5.1. The uniqueness of ~yy satisfying the properties

mentioned here is easily established as in the proof of Lemma 4.1. Therefore

we prove only the existence of such a ~yy.

By Lemma 5.4, for each n A N, we have a solution y ¼ yn of the BVP

ðjy 0ja�1
y 0Þ 0 ¼ pðtÞjyjb�1

y on ½t0; t0 þ n�;
yðt0Þ ¼ y0; yðt0 þ nÞ ¼ 0;

(

satisfying

ynðtÞb 0 and y 0nðtÞa 0 for t0 a ta t0 þ n:

Let us extend each yn over the interval ½t0;yÞ by defining yn1 0 for tb t0 þ n.

Below we show that fyng contains a subsequence converging to a desired

solution of (A).

As a first step, we prove that

y 01ðt0Þa y 02ðt0Þa � � � a y 0nðt0Þa 0: ð5:7Þ

In fact, if this is not the case, then y 0i ðt0Þ > y 0iþ1ðt0Þ for some i. Since

yiðt0Þ ¼ yiþ1ðt0Þ, Lemma 4.1 implies that yiðtÞ > yiþ1ðtÞ on ½t0; t0 þ i�. Putting

t ¼ t0 þ i, we have 0 ¼ yiðt0 þ iÞ > yiþ1ðt0 þ iÞb 0, a contradiction. Accord-

ingly, (5.7) holds, and so limn!y y 0nðt0Þ ¼ l A ð�y; 0� exists. Since

0a ynðtÞa y0 on ½t0; t0 þ n� for any n A N;

fyng is uniformly bounded on each compact subinterval of ½t0;yÞ. Noting

that y 0nðtÞ is nondecreasing and nonpositive on ½t0; t0 þ n�, we have

y 01ðt0Þa y 0nðt0Þa y 0nðtÞa 0 on ½t0; t0 þ n�; n A N:

Hence fyng is equicontinuous on each compact subinterval of ½t0;yÞ. From

these considerations we find that there is a subsequence fynigH fyng and a

function ~yy A C½t0;yÞ satisfying limni!y yniðtÞ ¼ ~yyðtÞ uniformly on each com-
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pact subinterval of ½t0;yÞ. Finally, we will show that this ~yy is a desired

solution of (A).

Let t A ½t0;yÞ be fixed arbitrarily. For all su‰ciently large ni’s, we have

yniðtÞ ¼ y0 þ
ð t
t0

½y 0niðt0Þ�
a� þ

ð s
t0

pðrÞ½yniðrÞ�
b
dr

� �1=a�
ds:

Letting ni ! y, we obtain

~yyðtÞ ¼ y0 þ
ð t
t0

l a� þ
ð s
t0

pðrÞ½ ~yyðrÞ�bdr
� �1=a�

ds:

Di¤erentiating this formula, we see that ~yy solves (A) on ½t0;yÞ. That ~yy

satisfies (5.1) is evident. The proof of Theorem 5.1 is complete.

Remark 5.6. Theorem 5.1 can be obtained from [5, Theorems 1.1 and 1.2]

in which system (C) is discussed. However, our proof presented here is dif-

ferent from that in [5]. Related results are found in [1].

6. Proofs of main results for the super-homogeneous equation

Throughout this section we assume that a < b.

Proof of Theorem 2.1. The theorem is an immediate consequence of the

uniqueness of the trivial solution (Lemma 4.2).

Proof of Theorem 2.3. (Necessity) Let y be a positive solution of (A) on

½t1;yÞ of type (AC). It is easy to see that y 0ðtÞ " 0 and yðtÞ # yðyÞ > 0 as

t " y. Hence integrating (A) twice, we have

�yðyÞ þ yðt1Þ ¼
ðy
t1

ðy
s

pðrÞ½yðrÞ�bdr
� �1=a

ds;

from which we find that

½yðyÞ�b=a
ðy
t1

ðy
s

pðrÞdr
� �1=a

ds < y:

This is equivalent to (2.2).

(Su‰ciency) Let (2.2) hold. Fix an l > 0, and choose t1 b t0 so that

ðy
t1

ðy
s

pðrÞdr
� �1=a

dsa
ð2lÞða�bÞ=a

2
:

Define the set YHC½t1;yÞ and the mapping F : Y ! C½t1;yÞ by
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Y ¼ fy A C½t1;yÞ : la yðtÞa 2l; tb t1g;

and

FyðtÞ ¼ l þ
ðy
t

ðy
s

pðrÞ½yðrÞ�bdr
� �1=a

ds; tb t1;

respectively. We below show via the Schauder-Tychono¤ fixed point theorem

that F has at least one fixed element in Y.

Firstly, let y A Y . Then,

laFyðtÞa l þ ð2lÞb=a
ðy
t1

ðy
s

pðrÞdr
� �1=a

ds

a l þ l ¼ 2l; tb t1:

Thus Fy A Y , and hence FYHY . Secondly, to see the continuity of F let

fyng be a sequence in Y converging to y A Y uniformly on each compact

subinterval of ½t1;yÞ. Since p A L1ðt1;yÞ and

0a

ðy
s

pðrÞ½ynðrÞ�bdra ð2lÞb
ðy
s

pðrÞdr A L1=aðt1;yÞ; n A N;

the Lebesgue dominated convergence theorem implies that Fyn ! Fy uni-

formly on each compact subinterval of ½t1;yÞ. Since for y A Y

jðFyÞ0ðtÞja
ðy
t

pðsÞ½yðsÞ�bds
� �1=a

a ð2lÞb=a
ðy
t1

pðsÞds
� �1=a

; tb t1;

the set fðFyÞ0 : y A Yg is uniformly bounded on ½t1;yÞ. This implies that

FY is compact.

From these observations we find that F has a fixed element y in

Y : Fy ¼ y. That this y is a solution of (A) of type (AC) is easily proved.

The proof is complete.

Proof of Theorem 2.2. (Su‰ciency) Let ~yy be a solution of (A) satisfying

~yyðtÞ > 0; ~yy 0ðtÞ < 0 for tb t0. The existence of such a solution is ensured by

Theorem 5.1 (and (iii) of Remark 5.2). Obviously, ~yy is either of type (D) or

type (AC). Theorem 2.3 shows that, under assumption (2.1), (A) does not

possess solutions of type (AC). Hence, ~yy must be of type (D).

(Necessity) Let y be a positive solution of (A) for tb t1 of type (D).

Clearly y satisfies

yðtÞ ¼
ðy
t

ðy
s

pðrÞ½yðrÞ�bdr
� �1=a

ds; tb t1:
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To verify (2.1), suppose the contrary that (2.1) fails to hold. Then, noting that

y is decreasing on ½t1;yÞ, we have

yðtÞa ½yðtÞ�b=a
ðy
t

ðy
s

pðrÞdr
� �1=a

ds; tb t1:

Accordingly,

½yðtÞ�1�ðb=aÞ
a

ðy
t

ðy
s

pðrÞdr
� �1=a

ds; tb t1:

The left hand side tends to y as t! y because of a < b; whereas the right

hand side tends to 0 as t! y. This contradiction verifies (2.1). The proof is

complete.

Proof of Theorem 2.4. (Necessity) Let y be a positive solution of (A)

near y of type (AL). There is a constant c > 0 and t1 b t0 satisfying

yðtÞb ct; tb t1: ð6:1Þ

An integration of (A) on ½t1; t�; tb t1, yields

½y 0ðtÞ�a� � ½y 0ðt1Þ�a� ¼
ð t
t1

pðsÞ½yðsÞ�bds; tb t1:

Since limt!y y 0ðtÞ ¼ y 0ðyÞ A ð0;yÞ, this equality implies thatðy
t1

pðtÞ½yðtÞ�bdt < y: ð6:2Þ

Combining (6.2) with (6.1), we find that (2.3) holds.

(Su‰ciency) We fix l > 0 arbitrarily, and choose t1 b t0 large enough so

that ðy
t1

tbpðtÞdta ð2lÞa�bð1� 2�aÞ:

Define the set YHC½t1;yÞ and the mapping F : Y ! C½t1;yÞ by

Y ¼ fy A C½t1;yÞ : lðt� t1Þa yðtÞa 2lðt� t1Þ for tb t1g

and

FyðtÞ ¼
ð t
t1

ð2lÞa �
ðy
s

pðrÞ½yðrÞ�bdr
� �1=a

ds; tb t1;

respectively. As in the proof of the su‰ciency part of Theorem 2.3, we can

show that F has a fixed element y A Y by the Schauder-Tychono¤ fixed point

theorem:
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yðtÞ ¼
ð t
t1

ð2lÞa �
ðy
s

pðrÞ½yðrÞ�bdr
� �1=a

ds; tb t1:

Di¤erentiating this formula we see that y is a positive solution of (A) on

½t1;yÞ. L’Hospital’s rule shows that limt!y yðtÞ=t ¼ 2l. Thus y is a solution

of (A) of type (AL). The proof is complete.

To prove Theorem 2.5 we prepare the following lemma, which gives a

refinement of the ‘‘if ’’ part of Theorem 2.4.

Lemma 6.1. Let y0 > 0. If (2.3) holds, then there is a positive solution of

(A) on ½t0;yÞ of type (AL) satisfying yðt0Þ ¼ y0.

Proof. By Theorem 2.4, there is an (AL)-type positive solution z

of (A) defined in some neighborhood of the infinity: 0 < limt!y zðtÞ=t ¼
limt!y z 0ðtÞ < y. Let ~yy be a positive solution of (A) on ½t0;yÞ satisfying

~yyðt0Þ ¼ y0 and ~yyðtÞ > 0; ~yy 0ðtÞ < 0 for tb t0:

Take a t1 > t0 such that ~yyðtÞ < zðtÞ and ~yy 0ðtÞ < z 0ðtÞ for tb t1. By Lemma

4.1 if l > ~yy 0ðt0Þ is su‰ciently close to ~yy 0ðt0Þ, then the solution y of (A) with

yðt0Þ ¼ y0 and y 0ðt0Þ ¼ l exists at least on ½t0; t1� and satisfies

~yyðt1Þ < yðt1Þ < zðt1Þ; ~yy 0ðt1Þ < y 0ðt1Þ < z 0ðt1Þ:

Then Lemma 4.1 again implies that ~yyðtÞ < yðtÞ < zðtÞ as long as yðtÞ exists.

Since ~yyðtÞ and zðtÞ exist on ½t1;yÞ, this means that yðtÞ exists on ½t1;yÞ and

satisfies ~yyðtÞ < yðtÞ < zðtÞ; tb t1. Then we have

~yyðtÞ
t

<
yðtÞ
t

<
zðtÞ
t

; tb t1:

Noting that ~yy is the unique solution of (A) satisfying limt!y ~yyðtÞ=t ¼ 0 and

passing through the point ðt0; y0Þ, we have limt!y yðtÞ=t A ð0;yÞ. Therefore y

is of type (AL). The proof is complete.

Proof of Theorem 2.5. For l > 0, we denote by yl the unique solution of

(A) with the initial condition yðt0Þ ¼ y0 and y 0ðt0Þ ¼ l. The maximal interval

of existence of yl may be finite or infinite. Define the set SH ð0;yÞ by

S ¼ fl > 0 : yl exists on ½t0;yÞ; and is of type ðALÞg:

We know by Lemma 6.1 that S0 f, and by Lemma 4.4 that l B S for all

su‰ciently large l > 0. Hence sup S ¼ l A ð0;yÞ exists. For l there are

three possibilities:
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(a) l A S;
(b) l B S, and y

l
is of type (AS).

(c) l B S, and y
l

is of type (S2);

To prove the theorem, we below show that case (b) occurs. For sim-

plicity, we write y for y
l

below.

Suppose that case (a) occurs. Then, limt!y y 0ðtÞ ¼ y 0ðyÞ ¼ l A ð0;yÞ
and y 0ðtÞ < l; tb t0. By condition (2.3), we can find a t1 > t0 satisfyingðy

t1

pðsÞðy0 þ 2lsÞbds < ð2lÞa � l a:

Choose l > l close enough to l so that yl exists at least on ½t0; t1� and

y 0lðt1Þ < l. Then, for such a l; yl can be extended to y, and satisfies

y 0lðtÞ < 2l; tb t1. In fact, if this is not the case, there is t > t1 satisfying

y 0lðtÞ < 2l on ½t0; tÞ and y 0lðtÞ ¼ 2l:

It follows therefore that ylðtÞa y0 þ 2lt; t A ½t0; t �. An integration of (A) (with

y ¼ yl) on ½t1; t � yields

ð2lÞa ¼ ðy 0lðtÞÞ
a ¼ ðy 0lðt1ÞÞ

a þ
ðt
t1

pðsÞ½ylðsÞ�bds

a l a þ
ðt
t1

pðsÞðy0 þ 2lsÞbds

a l a þ
ðy
t1

pðsÞðy0 þ 2lsÞbds < ð2lÞa:

This contradiction implies that yl exists on ½t0;yÞ and satisfies y 0lðtÞ < 2l,

tb t0. These observations show that S C l > l, which contradicts the defi-

nition of l. Hence, case (a) does not occur.

Next, suppose that case (c) occurs. Let T > t0 be the point such that

yðT � 0Þ ¼ y 0ðT � 0Þ ¼ y. By Lemma 4.4, there is an M > 0 such that

solutions y of (A) satisfying yðTÞb 1, y 0ðTÞbM must blow up at some finite

T̂T ¼ T̂TðyÞ A ðT ;yÞ : yðT̂T � 0Þ ¼ y 0ðT̂T � 0Þ ¼ y. For su‰ciently small e > 0

we have yðT � eÞ > 1, y 0ðT � eÞ >M. Thus, if l < l is su‰ciently close to

l, then yl can be continued at least to T � e, and satisfies ylðT � eÞ > 1,

y 0lðT � eÞ >M. Then, even though yl can be continued to T , yl blows up at

some finite point by the definition of M. This fact shows that such a l ð< lÞ
does not belong to S, contradicting the definition of l, again.

Consequently, case (b) occurs, and hence the proof of Theorem 2.5 is

complete.

To prove Theorem 2.6, we prepare the following simple lemma.
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Lemma 6.2. Let k > 0, and r ¼ rðkÞ be the unique positive root of the
equation araðr� 1Þ ¼ k. Then,

(i) the function zðtÞ ¼ Ctr, C being an arbitrary positive constant, solves

the equation

ððz 0ÞaÞ0 ¼ kt�a�1za; tb t0:

(ii) limk!y rðkÞ ¼ y.

Proof of Theorem 2.6. Let c1 > 0 be a number satisfying

pðtÞb c1t
�1�b; tb t0: ð6:3Þ

The proof is done by contradiction. Suppose that there is a positive solution y

of (A) of type (AS).

We can find a su‰ciently large M > 0 such that the positive root r ¼ rM
of the equation araðr� 1Þ ¼ c1M

b�a satisfies

�1� b þ b � a

2
rb 0: ð6:4Þ

This is possible by (ii) of Lemma 6.2. Since limt!y yðtÞ=t ¼ y, there is a

t1 b t0 such that y exists on ½t1;yÞ, and

y 0ðtÞ > 0 and yðtÞbMt for tb t1:

Lemma 6.2-(i) asserts that, for arbitrary C > 0; zðtÞ ¼ zðt;CÞ ¼ Ctr solves the

equation

ððz 0ÞaÞ0 ¼ c1M
b�at�a�1za; tb t1: ð6:5Þ

Now, we choose C > 0 small enough so that

0 < zðiÞðt1Þ < yðiÞðt1Þ; i ¼ 0; 1: ð6:6Þ

We rewrite (A) in the form

ððy 0ÞaÞ0 ¼ pðtÞ½yðtÞ�b�a
ya:

Note that the coe‰cient function of this equation satisfies

pðtÞ½yðtÞ�b�a
b c1t

�1�bðMtÞb�a ¼ c1M
b�at�1�a; tb t1:

Thus, in view of (6.5), (6.6), and Lemma 4.1, we see that

yðtÞb zðtÞ1Ctr; tb t1:

Accordingly, y satisfies

ððy 0ÞaÞ0 ¼ pðtÞ½yðtÞ�ðb�aÞ=2
yðaþbÞ=2

b c1t
�1�bðCtrÞðb�aÞ=2

yðaþbÞ=2
b c2 y

ðaþbÞ=2; tb t1:
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Here c2 > 0 is a constant, and the last inequality follows from (6.4). This

inequality is equivalent to

a

aþ 1
ððy 0Þaþ1Þ0 b c2

mþ 1
ðymþ1Þ0; m ¼ aþ b

2
> a; tb t1:

An integration yields

a

aþ 1
ð½y 0ðtÞ�aþ1 � ½y 0ðt1Þ�aþ1Þb c2

mþ 1
ð½yðtÞ�mþ1 � ½yðt1Þ�mþ1Þ; tb t1:

Since yðyÞ ¼ y, there are constants c3 > 0 and t2 > t1 satisfying

y 0ðtÞb c3½yðtÞ�ðmþ1Þ=ðaþ1Þ; tb t2:

Dividing the both sides by ½yðtÞ�ðmþ1Þ=ðaþ1Þ, and integrating on ½t2; t�, we get

m� a

aþ 1
½yðt2Þ��ðm�aÞ=ðaþ1Þ � m� a

aþ 1
½yðtÞ��ðm�aÞ=ðaþ1Þ

b c3ðt� t2Þ; tb t2:

Letting t! y, we have a contradiction. The proof is complete.

Proof of Theorem 2.7. The proof is done by contradiction. Let y be a

solution of (A) of type (AS). We suppose that y exists on ½t1;yÞ and satisfies

yðtÞbC1t; y
0ðtÞbC1; tb t1 for some C1 > 0: ð6:7Þ

Put z ¼ yðy 0Þa ð> 0Þ; tb t1. Then

z 0 ¼ ðy 0Þaþ1 þ yfðy 0Þag0 ¼ ðy 0Þaþ1 þ pðtÞybþ1

¼ yðy 0Þa y 0

y
þ pðtÞ yb

ðy 0Þa
� �

¼ z
y 0

y
þ pðtÞ yb

ðy 0Þa
� �

; tb t1:

Now, we employ the Young inequality of the form

X þ Yb s�sð1� sÞ�ð1�sÞ
X 1�sY s for X ;Yb 0 and 0 < s < 1 ð6:8Þ

in the last expression. It follows therefore that

z 0 bC2zðy 0Þ1�s�sa
ybsþs�1½ pðtÞ�s; tb t1;

where C2 ¼ C2ðs; a; bÞ > 0 is a constant. We rewrite this inequality as

z 0 bC2 y
bsþs�r�1ðy 0Þ1�s�sa�ra½ pðtÞ�sz1þr; tb t1:

Noting (6.7) and condition (2.5), we obtain

z 0 bC3t
bsþs�r�1½ pðtÞ�sz1þr; tb t1;
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where C3 ¼ C3ða; b; s; r;C2;C1Þ > 0 is a constant. Dividing the both sides by

z1þr and integrating on ½t;yÞ, we have

1

r
½zðtÞ��r

bC3

ðy
t

sbsþs�r�1½ pðsÞ�sds; tb t1;

because limt!y zðtÞ ¼ y. Consequently, we have

1

r

t

yðtÞ

� �r

½y 0ðtÞ��ar
bC3t

r

ðy
t

sbsþs�r�1½ pðsÞ�sds; tb t1:

Letting t! y, we get a contradiction to assumption (2.4). This completes the

proof.

As was mentioned in Section 4, the proof of Theorem 2.9 is omitted. In

fact, a more general result is proved in Lemma 4.4.

7. Proofs of main results for the sub-homogeneous equation

Throughout this section we assume that a > b.

Proof of Theorem 3.1. Let t1; t2 be fixed so that t0 a t1 < t2, and put

m ¼ min
t1atat2

pðtÞ > 0 and r ¼ aþ 1

a� b
> 0:

Then there are constants L > 0 and c > 0 satisfying

Lb=a

ð t2
t1

ð t2
s

pðrÞdr
� �1=a

dsaL;

cb=am1=a

ðrb þ 1Þ1=a
� a

aþ rb þ 1
b c;

and

cðt2 � tÞr aL on ½t1; t2�:

Define the closed convex subset Y of C½t1; t2� by

Y ¼ fy A C½t1; t2� : cðt2 � tÞr a yðtÞaL on ½t1; t2�g

and the mapping F : Y ! C½t1; t2� by

FyðtÞ ¼
ð t2
t

ð t2
s

pðrÞ½yðrÞ�bdr
� �1=a

ds; t1 a ta t2;
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respectively. We show that the hypotheses of the Schauder fixed point the-

orem is satisfied for Y and F.

Let y A Y . Then, obviously FyðtÞaL on ½t1; t2�. Moreover,

FyðtÞbm1=acb=a
ð t2
t

ð t2
s

ðt2 � rÞbrdr
� �1=a

ds

¼ cb=am1=a

ðrb þ 1Þ1=a
� a

aþ rb þ 1
ðt2 � tÞðaþrbþ1Þ=a

b cðt2 � tÞr

on ½t1; t2�. Hence FYHY . The continuity of F and the boundedness of the

sets FY and fðFyÞ0 : y A Yg can be easily established. Accordingly there is a

ŷy A Y satisfying Fŷy ¼ ŷy. By di¤erentiating, we find that ŷy is a solution of (A)

on ½t1; t2� and that

ŷyðtÞ > 0 on ½t1; t2Þ; ŷyðt2Þ ¼ ŷy 0ðt2Þ ¼ 0:

Now, we put

yðtÞ ¼ ŷyðtÞ on ½t1; t2�,
0 on ½t2;yÞ.

�

It is easy to see that y is a solution of (A) on ½t1;yÞ, and is of type (S1). The

proof is complete.

Theorems 3.6 and 3.7 can be proved exactly as in the proof of Theorems

2.3 and 2.4, respectively. We therefore omit the proofs.

Proof of Theorem 3.2. By our assumption we can find a positive solu-

tion yn; n A N, of (A) satisfying ynðyÞ ¼ 1=n. Since a > b, we see by Lemma

4.3 that each yn exists on the whole interval ½t0;yÞ. We show that the se-

quence fyng has the limit function y, and it gives rise to a positive solution of

(A) of type (D).

We first claim that

y1ðtÞ > y2ðtÞ > � � � > ynðtÞ > ynþ1ðtÞ > � � � > 0; tb t0: ð7:1Þ

If this is not true, then

ynðtÞ ¼ ynþ1ðtÞ for some n A N and t A ½t0;yÞ:

This means however that there are two nonnegative nonincreasing solutions

of (A) passing through the point ðt; ynðtÞÞ. This contradicts to Theorem 5.1.

We therefore have (7.1), and so limn!y ynðtÞ1 yðtÞ exists. Observe that yn
satisfies
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ynðtÞ ¼
1

n
þ
ðy
t

ðy
s

pðrÞ½ynðrÞ�bdr
� �1=a

ds; tb t0:

Letting n! y, we obtain via the dominated convergence theorem

yðtÞ ¼
ðy
t

ðy
s

pðrÞ½yðrÞ�bdr
� �1=a

ds; tb t0:

We see that y is a nonnegative solution of (A) satisfying yðyÞ ¼ 0. It remains

to prove that yðtÞ > 0 for tb t0.

Fix T > t0 arbitrarily. The proof of Theorem 3.1 implies that there is a

solution yT of (A) satisfying

yTðtÞ > 0 on ½t0;TÞ; yTðtÞ1 0 on ½T ;yÞ:

We claim that

ynðtÞ > yTðtÞ on ½t0;T � for all n A N: ð7:2Þ

In fact, if this fails to hold, then

ynðtÞ ¼ yTðtÞ for some n A N and t A ½t0;TÞ:

But this means, as before, that there are two nonnegative nonincreasing so-

lution of (A) passing through the point ðt; yT ðtÞÞ. This contradiction shows

that (7.2) holds. Hence by letting n! y in (7.2), we have yðtÞb yTðtÞ > 0

on ½t0;TÞ. Since T > t0 is arbitrary, we see that yðtÞ > 0 on ½t0;yÞ. The

proof is complete.

Proof of Theorem 3.3. The proof is done by contradiction. Let y be a

positive solution of (A) on ½t1;yÞ of type (D). Multiplying (A) by �y 0 > 0 and

using (3.2), we obtain

að�y 0Þay 00 bC1t
�1�aybð�y 0Þ; tb t1;

that is,

ðð�y 0Þaþ1Þ0 aC2t
�a�1ðybþ1Þ0; tb t1; ð7:3Þ

where C1 and C2 are positive constants. We fix a Tb t1 arbitrarily, and con-

sider inequality (7.3) only on the interval ½T ; 2T � for a moment. An integra-

tion of (7.3) on ½t; 2T �;Ta ta 2T , gives

½�y 0ð2TÞ�aþ1 � ½�y 0ðtÞ�aþ1
aC2

ð2T

t

s�a�1ð½yðsÞ�bþ1Þ0ds

aC2T
�a�1ð½yð2TÞ�bþ1 � ½yðtÞ�bþ1Þ; Ta ta 2T :
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Thus

½�y 0ðtÞ�aþ1
bC2T

�a�1ð½yðtÞ�bþ1 � ½yð2TÞ�bþ1Þ; Ta ta 2T ;

or equivalently,

�y 0ðtÞbC3T
�1ð½yðtÞ�bþ1 � ½yð2TÞ�bþ1Þ1=ðaþ1Þ; Ta ta 2T ;

where C3 ¼ C
1=ðaþ1Þ
2 =2. We therefore have

�y 0ðtÞ
ð½yðtÞ�bþ1 � ½yð2TÞ�bþ1Þ1=ðaþ1Þ bC3T

�1; Ta ta 2T :

Finally, integrating on ½T ; 2T �, we obtain

�
ð yð2TÞ
yðTÞ

du

ðubþ1 � ½yð2TÞ�bþ1Þ1=ðaþ1Þ bC3; Tb t1;

that is,

½yð2TÞ�ða�bÞ=ðaþ1Þ
ð yðTÞ=yð2TÞ
1

ðvbþ1 � 1Þ�1=ðaþ1Þ
dvbC3; Tb t1: ð7:4Þ

Noting thatð x
1

ðvbþ1 � 1Þ�1=ðaþ1Þ
dv ¼ Oððx� 1Þða�bÞ=ðaþ1ÞÞ as x! y;

and ð x
1

ðvbþ1 � 1Þ�1=ðaþ1Þ
dv ¼ Oððx� 1Þa=ðaþ1ÞÞ as x! 1þ 0;

we can find a constant C > 0 satisfyingð x
1

ðvbþ1 � 1Þ�1=ðaþ1Þ
dvaCðx� 1Þða�bÞ=ðaþ1Þ; xb 1:

Therefore (7.4) implies that

C½yð2TÞ�ða�bÞ=ðaþ1Þ yðTÞ
yð2TÞ � 1

� �ða�bÞ=ðaþ1Þ
bC3; Tb t1;

from which we have

C½yðTÞ � yð2TÞ�ða�bÞ=ðaþ1Þ
bC3; Tb t1:

Letting T ! y, we have a contradiction. The proof is complete.
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Proof of Theorem 3.4. The proof is done by contradiction. Let y be a

solution of (A) of type (D), We notice first that

lim
t!y

ty 0ðtÞ ¼ 0: ð7:5Þ

In fact, since y 00ðtÞ > 0, we can compute as follows:

yðtÞ ¼
ðy
t

½�y 0ðsÞ�dsb
ð2t

t

½�y 0ðsÞ�ds

b ½�y 0ð2tÞ�
ð2t

t

ds ¼ t½�y 0ð2tÞ�b 0 for large t:

Therefore (7.5) holds.

We may suppose that for some C1 > 0 and t1 b t0

0 < yðtÞaC1; 0 < �ty 0ðtÞaC1; tb t1: ð7:6Þ

Put z ¼ yð�y 0Þa ð> 0Þ; tb t1. Then

�z 0 ¼ ð�y 0Þaþ1 � yfð�y 0Þag0 ¼ ð�y 0Þaþ1 þ pðtÞybþ1

¼ yð�y 0Þa �y 0
y

þ pðtÞ yb

ð�y 0Þa
� �

¼ z
�y 0
y

þ pðtÞ yb

ð�y 0Þa
� �

; tb t1:

Preceding as in the proof of Theorem 2.7, we obtain

�z 0 bC2y
bsþsþr�1ð�y 0Þ1�s�saþra½ pðtÞ�sz1�r; tb t1;

where C2 > 0 is a constant. We obtain from (7.6) and assumption (3.4)

�z 0 bC3t
sþsa�ra�1½ pðtÞ�sz1�r; tb t1;

where C3 > 0 is a constant. Dividing the both sides by z1�r and integrating

on ½t:yÞ, we have

1

r
½zðtÞ�r bC3

ðy
t

ssþsa�ra�1½ pðsÞ�sds; tb t1;

that is,

1

r
½yðtÞ�r½�ty 0ðtÞ�ar bC3t

ra

ðy
t

ssþsa�ra�1½ pðsÞ�sds; tb t1:

Letting t! y, we get a contradiction to assumption (3.3) by (7.5). The proof

is complete.
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Proof of Theorem 3.8. (Su‰ciency) By Theorem 5.1 and (ii) of Remark

5.2, there is a positive solution y of (A) satisfying yðyÞ ¼ y. This y is either

of type (AL) or of type (AS). But, by Theorem 3.7, we see that y must be of

type (AS).

(Necessity) Let y be a positive solution of (A) on ½t1;yÞ of type (AS). To

prove (3.5), we suppose the contrary that
Ðy

tb pðtÞdt < y. As in the proof of

Lemma 4.3, we have

jyðtÞja jc0j þ
ð t
t1

jc1ja þ
ð s
t1

pðrÞjyðrÞjbdr
� �1=a

ds; tb t1;

where c0 ¼ yðt1Þ and c1 ¼ y 0ðt1Þ. Let zðtÞ ¼ maxt1axat jyðxÞj=x. It follows

that

jyðtÞj
t

aC2 þ
1

t

ð t
t1

jc1ja þ ½zðsÞ�b
ð s
t1

rb pðrÞdr
� �1=a

ds

aC2 þ jc1ja þ ½zðtÞ�b
ð t
t1

rb pðrÞdr
� �1=a

; tb t1;

where C2 > 0 is a constant. Put wðtÞ ¼ maxfjc1ja=b; zðtÞg. We then have

zðtÞaC2 þ ½wðtÞ�b=a 1þ
ð t
t1

rb pðrÞdr
� �1=a

; tb t1:

Since y is of type (AS), jyðtÞj=t is unbounded on ½t1;yÞ, and so is zðtÞ.
Accordingly, there is a t2 b t1 satisfying wðtÞ1 zðtÞ for tb t2. Thus

wðtÞaC2 þ ½wðtÞ�b=a 1þ
ð t
t1

rb pðrÞdr
� �1=a

aC2 þ ½wðtÞ�b=a 1þ
ðy
t1

rb pðrÞdr
� �1=a

; tb t2:

since b=a < 1, this implies the boundedness of w, which is a contradiction.

Hence we must have (3.5). The proof is complete.

Theorem 3.9 is clear because all solutions of (A) with a > b exist on the

whole interval ½t0;yÞ (see Lemma 4.4).
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