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Oscillation of solutions of first-order neutral di¤erential equations
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Abstract. First order neutral di¤erential equations are studied and su‰cient con-

ditions are derived for every solution to be oscillatory. Our approach is to reduce the

oscillation of neutral di¤erential equations to the nonexistence of eventually positive

solutions of non-neutral di¤erential inequalities. Our results extend and improve

several known results in the literature.

1. Introduction

We shall be concerned with the oscillatory behavior of solutions of the

neutral di¤erential equation

d

dt
½xðtÞ þ hðtÞxðt� tÞ� þ sqðtÞjxðt� rÞjg sgn xðt� rÞ ¼ 0;ð1Þ

where s ¼ þ1 or �1, g > 0, and the following conditions (H1) and (H2) are

assumed to hold:

(H1) h A C½t0;yÞ, hðtÞ > 0 for tb t0 and t > 0;

(H2) q A C½t0;yÞ, qðtÞ > 0 for tb t0 and r A R.

If g ¼ 1, then equation (1) becomes the linear equation

d

dt
½xðtÞ þ hðtÞxðt� tÞ� þ sqðtÞxðt� rÞ ¼ 0:ð2Þ

By a solution of (1), we mean a function xðtÞ that is continuous and sat-

isfies (1) on ½tx;yÞ for some txb t0. A solution of (1) is said to be oscillatory

if it has arbitrarily large zeros; otherwise it is said to be nonoscillatory.

Equation (1) is said to be oscillatory if every solution of (1) is oscillatory.

In recent years there has been much current interest in studying the

oscillations of first-order neutral di¤erential equations. For typical results we

refer the reader to [2], [3], [4], [5], [6], [7], [8], [12], [13], [14] for oscillation

criteria, and to [1], [2], [3], [7], [8], [11], [12], [13] for existence of nonoscillatory

solutions. In particular, Jaroš and Kusano [8] have shown that (1) is oscillatory

if and only if
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ðy
qðtÞdt ¼ y;

under one of the following conditions (a) and (b):

(a) s ¼ þ1, 0 < g < 1, 1 < ma hðtÞa l, r > t > 0;

(b) s ¼ �1, g > 1, 0 < hðtÞa l < 1, t > 0, r < 0.

However, very little is known about su‰cient conditions for (1) to be oscil-

latory for the case where restrictive conditions on hðtÞ, such as hðtÞa l, is not

assumed. For equation (2) with hðtÞ > 0 and s ¼ þ1, the su‰cient conditions

for all solutions to be oscillatory have been established in [5, Theorem 10], [6,

Corollary 2] and [7, Theorem 6.4.4]. All of them, however, assume that qðtÞ
is t-periodic. Györi and Ladas put forward the following question in [7,

Problem 6.12.10 (b)]: find su‰cient conditions for the oscillation of all solutions

of equation (2) with s ¼ þ1 in the case where qðtÞ is not t-periodic.

The purpose of this paper is to obtain su‰cient conditions for equation (1)

to be oscillatory without the restrictive condition on hðtÞ or the periodicity of

qðtÞ. In Section 2 we reduce the oscillation of the neutral di¤erential equation

(1) to the nonexistence of eventually positive solutions of non-neutral di¤er-

ential inequalities of the form

sz 0ðtÞ þ pðtÞ½zðt� hÞ�g a 0;ð3Þ
where h A R, p A C½t1;yÞ and pðtÞ > 0 for tb t1. Su‰cient conditions for (3)

to have no eventually positive solution have been established by many authors.

For example, see [2], [7], [9] and [10]. By combining these known results with

the results obtained in Section 2, we derive oscillation criteria for equation (1)

in Section 3. Our results are extensions and improvements of the results in [4],

[5], [6] and [7].

2. Reduction to non-neutral inequalities

In this section we consider the equation

d

dt
½xðtÞ þ hðtÞxðt� tÞ� þ sqðtÞ f ðxðt� rÞÞ ¼ 0;ð4Þ

where s ¼ þ1 or �1, and conditions (H1), (H2) and the following conditions

(H3)–(H5) are assumed:

(H3) f A CðRÞ, f ðuÞ is nondecreasing in u A R and u f ðuÞ > 0 for u0 0;

(H4) there exists a function j A CðRÞ such that jðuÞ is nondecreasing in

u A R, ujðuÞ > 0 for u0 0 and

jjðuþ vÞja j f ðuÞ þ f ðvÞj for uv > 0;

(H5) there exists a function o A Cð0;yÞ such that oðuÞ > 0 for u > 0

and

j f ðuvÞjaoðuÞj f ðvÞj for u > 0 and v A R:
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Remark 2.1. For the case f ðuÞ ¼ jujg sgn u ðg > 0Þ, we can choose

jðuÞ ¼ minf1; 21�ggjujg sgn u and oðuÞ ¼ ug:

Theorem 2.1. Let s ¼ þ1. Suppose that (H1)–(H5) hold. Then (4) is

oscillatory if there exists a function l A C½t0;yÞ such that 0 < lðtÞ < 1 for

tb t0 and the di¤erential inequality

fz 0ðtÞ þQðtÞjðzðt� rþ tÞÞg sgn zðtÞa 0ð5Þ

has no nonoscillatory solution, where

QðtÞ ¼ min lðtÞqðtÞ; ½1� lðt� tÞ�qðt� tÞ
oðhðt� rÞÞ

� �
:ð6Þ

Proof. Suppose to the contrary that there is a nonoscillatory solution

xðtÞ of (4). We may assume that xðtÞ > 0 for all large tb t0 since the case

where xðtÞ is eventually negative can be treated similarly. Set yðtÞ ¼ xðtÞ þ
hðtÞxðt� tÞ. Then, by (4), yðtÞ > 0 and yðtÞ is decreasing for all large tb t0.

Integrating (4) over ½t;yÞ, we have

yðtÞ ¼ lim
t!y

yðtÞ þ
ðy
t

qðsÞ f ðxðs� rÞÞdsb
ðy
t

qðsÞ f ðxðs� rÞÞds

for all large tb t0. We observe that

yðtÞb
ðy
t

lðsÞqðsÞ f ðxðs� rÞÞdsþ
ðy
t

½1� lðsÞ�qðsÞ f ðxðs� rÞÞds

¼
ðy
t

lðsÞqðsÞ f ðxðs� rÞÞdsþ
ðy
tþt

½1� lðs� tÞ�qðs� tÞ f ðxðs� r� tÞÞds

b

ðy
t

QðsÞ f ðxðs� rÞÞdsþ
ðy
tþt

QðsÞoðhðs� rÞÞ f ðxðs� r� tÞÞds

b

ðy
tþt

QðsÞ f ðxðs� rÞÞdsþ
ðy
tþt

QðsÞ f ðhðs� rÞxðs� r� tÞÞds

¼
ðy
tþt

QðsÞ½ f ðxðs� rÞÞ þ f ðhðs� rÞxðs� r� tÞÞ�ds

b

ðy
tþt

QðsÞjðxðs� rÞ þ hðs� rÞxðs� r� tÞÞds

¼
ðy
tþt

QðsÞjðyðs� rÞÞds
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for all large tb t0. Put

zðtÞ ¼
ðy
t

QðsÞjðyðs� rÞÞds > 0:

Then yðtÞb zðtþ tÞ eventually. We see that

z 0ðtÞ ¼ �QðtÞjðyðt� rÞÞa�QðtÞjðzðt� rþ tÞÞ

for all large tb t0, so that zðtÞ is an eventually positive solution of (5). This is

a contradiction. The proof is complete.

Theorem 2.2. Let s ¼ �1. Suppose that (H1)–(H5) hold. Then (4) is

oscillatory if there exists a function l A C½t0;yÞ such that 0 < lðtÞ < 1 for tb t0
and the di¤erential inequality

f�z 0ðtÞ þQðtÞjðzðt� rÞÞg sgn zðtÞa 0

has no nonoscillatory solution, where QðtÞ is the function defined by (6).

Proof. Let xðtÞ be an eventually positive solution of (4). Put yðtÞ ¼ xðtÞ þ
hðtÞxðt� tÞ > 0. Integration of (4) over ½T ; t� yields

yðtÞb
ð t
T

qðsÞ f ðxðs� rÞÞds; tbT ;

where T is su‰ciently large. By the same arguments as in the proof of

Theorem 2.1, we find that

yðtÞb
ð t
Tþt

QðsÞjðyðs� rÞÞds1 zðtÞ > 0

for all large t > T þ t. Then we obtain

z 0ðtÞ ¼ QðtÞjðyðt� rÞÞbQðtÞjðzðt� rÞÞ

for all large t > T þ t, which is a contradiction. This completes the proof.

Applying Theorems 2.1 and 2.2 to equation (1), we have the following

corollaries.

Corollary 2.1. Let s ¼ þ1 and g > 0. Suppose that (H1) and (H2)

hold. Then (1) is oscillatory if the di¤erential inequality

z 0ðtÞ þ PðtÞ½zðt� rþ tÞ�g a 0

has no eventually positive solution, where

PðtÞ ¼ minf1; 21�gg 
min
qðtÞ

1þ ½hðt� rþ tÞ�g ;
qðt� tÞ

1þ ½hðt� rÞ�g
� �

:ð7Þ
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Corollary 2.2. Let s ¼ �1 and g > 0. Suppose that (H1) and (H2)

hold. Then (1) is oscillatory if the di¤erential inequality

z 0ðtÞbPðtÞ½zðt� rÞ�g

has no eventually positive solution, where PðtÞ is the function defined by (7).

Proof of Corollaries 2.1 and 2.2. We note that

sz 0ðtÞ þ pðtÞ½zðt� hÞ�g a 0ð8Þ

has no eventually positive solution if and only if

fsz 0ðtÞ þ pðtÞjzðt� hÞjg sgn zðt� hÞg sgn zðtÞa 0ð9Þ

has no nonoscillatory solution, where h A R and p A C½t1;yÞ. In fact, if wðtÞ
is an eventually negative solution of (9), then zðtÞ1�wðtÞ is an eventually

positive solution of (8). Therefore, the conclusions of Corollaries 2.1 and

2.2 follow, by applying Theorems 2.1 and 2.2 to equation (1) and by

choosing jðuÞ¼minf1; 21�ggjujg sgn u, oðuÞ¼ug and lðtÞ¼1=½1þ½hðt�rþ tÞ�g�.
(Recall Remark 2.1.)

3. Oscillation theorems

In this section we derive oscillation theorems for equation (1). First we

consider the case g0 1. We need the following lemmas. For the proofs, see

Kitamura and Kusano [9].

Lemma 3.1. Let 0 < g < 1 and r > 0. Suppose that (H2) holds. Then

the di¤erential inequality

u 0ðtÞ þ qðtÞ½uðt� rÞ�g a 0

has no eventually positive solution ifðy
qðtÞdt ¼ y:ð10Þ

Lemma 3.2. Let g > 1 and r < 0. Suppose that (H2) holds. Then the

di¤erential inequality

u 0ðtÞb qðtÞ½uðt� rÞ�g

has no eventually positive solution if (10) holds.

Combining Corollaries 2.1 and 2.2 with Lemmas 3.1 and 3.2, we establish

the following theorem.

Theorem 3.1. Suppose that (H1) and (H2) are satisfied and that one of the

following cases holds:
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( i ) s ¼ þ1, 0 < g < 1 and r > t;

(ii) s ¼ �1, g > 1 and r < 0.

Then equation (1) is oscillatory ifðy
min

qðsÞ
1þ ½hðs� rþ tÞ�g ;

qðs� tÞ
1þ ½hðs� rÞ�g

� �
ds ¼ y:ð11Þ

Corollary 3.1. Suppose that (H1) and (H2) are satisfied and that either

(i) or (ii) of Theorem 3.1 holds. Assume moreover that hðtÞ is bounded on

½t0;yÞ. Then equation (1) is oscillatory ifðy
minfqðsÞ; qðs� tÞgds ¼ y:ð12Þ

Proof. If hðtÞ is bounded on ½t0;yÞ, then we easily see that (12) implies

(11). Hence, the conclusion follows from Theorem 3.1.

Now we consider equation (2).

The following results will be required. For the proofs, see Györi and

Ladas [7, Theorems 2.3.3 and 2.3.4] or Ladas [10] or Erbe, Kong and Zhang [2,

Theorem 2.1.1].

Lemma 3.3. Suppose that (H2) holds and

lim inf
t!y

ð t
t�r

qðsÞds > 1

e
:

Then the di¤erential inequality

u 0ðtÞ þ qðtÞuðt� rÞa 0

has no eventually positive solution.

Lemma 3.4. Suppose that (H2) holds and

lim inf
t!y

ð t�r

t

qðsÞds > 1

e
:

Then the di¤erential inequality

u 0ðtÞb qðtÞuðt� rÞ
has no eventually positive solution.

From Corollaries 2.1, 2.2, Lemmas 3.3 and 3.4, we have the following

results.

Theorem 3.2. Let s ¼ þ1. Suppose that (H1) and (H2) hold. Then

equation (2) is oscillatory if

lim inf
t!y

ð t
t�rþt

min
qðsÞ

1þ hðs� rþ tÞ ;
qðs� tÞ

1þ hðs� rÞ

� �
ds >

1

e
:
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Theorem 3.3. Let s ¼ �1. Suppose that (H1) and (H2) hold. Then

equation (2) is oscillatory if

lim inf
t!y

ð t�r

t

min
qðsÞ

1þ hðs� rþ tÞ ;
qðs� tÞ

1þ hðs� rÞ

� �
ds >

1

e
:

Remark 3.2. It should be emphasized that the restrictive conditions on

hðtÞ, such as hðtÞa l, is not assumed in Theorems 3.1–3.3. Theorem 3.2

improves Theorem 10 in [5], Corollary 2 in [6] and Theorem 6.4.4 in [7], and

give an answer to Problem 6.12.10 (b) raised by Györi and Ladas in [7].
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