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Oscillation of solutions of first-order neutral differential equations
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ABSTRACT. First order neutral differential equations are studied and sufficient con-
ditions are derived for every solution to be oscillatory. Our approach is to reduce the
oscillation of neutral differential equations to the nonexistence of eventually positive
solutions of non-neutral differential inequalities. Our results extend and improve
several known results in the literature.

1. Introduction

We shall be concerned with the oscillatory behavior of solutions of the
neutral differential equation

d

(1) 2 Ix(0) + h(0x(t = )] + aq (1) x(t = p)| sgn x(t = p) = 0.

where ¢ = +1 or —1, y >0, and the following conditions (H1) and (H2) are
assumed to hold:

(H1) heClty, ), h(t) >0 for t > t; and 7> 0;

(H2) qe Clty, ), q(t) >0 for t >t and peR.

If y =1, then equation (1) becomes the linear equation

(2) %[x(t) + h()x(t — 1)) + aq()x(t — p) = 0.

By a solution of (1), we mean a function x() that is continuous and sat-
isfies (1) on [y, 0) for some #, > fp. A solution of (1) is said to be oscillatory
if it has arbitrarily large zeros; otherwise it is said to be nonoscillatory.
Equation (1) is said to be oscillatory if every solution of (1) is oscillatory.

In recent years there has been much current interest in studying the
oscillations of first-order neutral differential equations. For typical results we
refer the reader to [2], [3], [4], [5], [6], [7], [8], [12], [13], [14] for oscillation
criteria, and to [1], [2], [3], [7], [8], [11], [12], [13] for existence of nonoscillatory
solutions. In particular, Jaro§ and Kusano [8] have shown that (1) is oscillatory
if and only if
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| atoa= =

under one of the following conditions (a) and (b):

(@) o=+, 0<y<, l<u<h(t) < p>1>0;

b) o=—-1,y>1, 0<h(t)y <A<, >0, p<O.

However, very little is known about sufficient conditions for (1) to be oscil-
latory for the case where restrictive conditions on /(), such as A(f) < 4, is not
assumed. For equation (2) with A(¢) > 0 and ¢ = +1, the sufficient conditions
for all solutions to be oscillatory have been established in [5, Theorem 10], [6,
Corollary 2] and [7, Theorem 6.4.4]. All of them, however, assume that ¢(¢)
is 7-periodic. Gyo6ri and Ladas put forward the following question in (7,
Problem 6.12.10 (b)]: find sufficient conditions for the oscillation of all solutions
of equation (2) with ¢ =+1 in the case where ¢(¢) is not t-periodic.

The purpose of this paper is to obtain sufficient conditions for equation (1)
to be oscillatory without the restrictive condition on /(¢) or the periodicity of
q(t). 1In Section 2 we reduce the oscillation of the neutral differential equation
(1) to the nonexistence of eventually positive solutions of non-neutral differ-
ential inequalities of the form

3) oz'(1) + p()[z(1 =) <0,

where 7 € R, p e C[t;,0) and p(r) >0 for t > #;. Sufficient conditions for (3)
to have no eventually positive solution have been established by many authors.
For example, see [2], [7], [9] and [10]. By combining these known results with
the results obtained in Section 2, we derive oscillation criteria for equation (1)
in Section 3. Our results are extensions and improvements of the results in [4],

[5], [6] and [7].

2. Reduction to non-neutral inequalities
In this section we consider the equation

(4) %[X(l) +h(0)x(t = )] + oq(2) f(x(t = p)) = 0,
where ¢ = +1 or —1, and conditions (H1), (H2) and the following conditions
(H3)—-(HS) are assumed:
(H3) feC(R), f(u) is nondecreasing in u € R and uf(u) > 0 for u # 0;
(H4) there exists a function ¢ € C(R) such that ¢(u) is nondecreasing in
ueR, up(u) >0 for u#0 and

lp(u+v)| < |f(u) + f(v)] for uv > 0;

(HS) there exists a function w e C(0,00) such that w(u) >0 for u >0
and
|f (uv)] < w(u)| f(v)] for u >0 and veR.
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REMARK 2.1. For the case f(u) = |u|” sgnu (y > 0), we can choose
p(u) =min{1,2"7}u|" sgnu  and () =u’.

THEOREM 2.1. Let o = +1. Suppose that (H1)-(HS) hold. Then (4) is
oscillatory if there exists a function A€ Clty, ) such that 0 < A(t) <1 for
t >ty and the differential inequality

(5) {z'() + Q(D)p(z(t = p+ 1))} sgn z(1) < 0

has no nonoscillatory solution, where

(6) o) = min{/l(z)q(t), [1—A(t—1))q(t - T)}.

w(h(t = p))

PrOOF. Suppose to the contrary that there is a nonoscillatory solution
x(#) of (4). We may assume that x(¢) > 0 for all large ¢ > ¢y since the case
where x(f) is eventually negative can be treated similarly. Set y(f) = x(¢) +
h(t)x(t — 7). Then, by (4), y(¢) >0 and y(¢) is decreasing for all large ¢ > .
Integrating (4) over [f,00), we have

0 0

ﬂﬁf@@—pD$ZJ 4(s)f (x(s — p))ds

t

() = fim 3(0)+ |

t
for all large ¢t > t. We observe that

0 o0

A(8)q(s).f (x(s = p))ds + J [1 = 2()lq(s)f (x(s — p))ds

t

0= |

t

o0

— Jj A(8)q(s) f(x(s — p))ds + J [1—i(s —D)gls — 7) f(x(s — p — 7))ds

t+t

\

t t+t

o0

> [ 0w stats = pis |05~ pixts = p— s

t t+t

\

_ngwﬂn»wmm+jwQ@wmwfmv@@fpfmﬁ
Vfx

= J; Q()[f (x(s = p)) + S (h(s — p)x(s — p — 7))Jds

V

o0

O(s)p(y(s — p))ds
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for all large ¢t > 1y. Put
0= | 0Wntys — pds > 0.
t

Then y(7) > z(t + 7) eventually. We see that
2'(1) = =0(0)p(y(t = p)) < =Q()e(z(1 — p+ 1))

for all large ¢ > ¢y, so that z(¢) is an eventually positive solution of (5). This is
a contradiction. The proof is complete.

THEOREM 2.2. Let o = —1. Suppose that (H1)—(HS5) hold. Then (4) is
oscillatory if there exists a function A € Clty, o0) such that 0 < A(t) < 1 for t > 1
and the differential inequality

{=2'(1) + Q()p(=(t = p))} sgn =(1) < 0
has no nonoscillatory solution, where Q(t) is the function defined by (6).

PrOOF. Let x(¢) be an eventually positive solution of (4). Put y(¢) = x(¢) +
h(t)x(t —7) > 0. Integration of (4) over [T, yields
t
0= | g9f = pds. 1T,

T

where 7 is sufficiently large. By the same arguments as in the proof of
Theorem 2.1, we find that

) = J O(s)p(y(s — p))ds = (1) > 0
for all large t > T+ 7. Then we obtain
(1) = Q(p(y(t — p)) = QW)ol=(t — )

for all large t > T + 7, which is a contradiction. This completes the proof.

Applying Theorems 2.1 and 2.2 to equation (1), we have the following
corollaries.

CoROLLARY 2.1. Let 0 =+1 and y>0. Suppose that (H1) and (H2)
hold.  Then (1) is oscillatory if the differential inequality

')+ P(t)z(t—p+7)])" <0

has no eventually positive solution, where

o I q(1) q(t—71)
W =min1.27) mind U
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COROLLARY 2.2. Let 0 =—1 and y>0. Suppose that (H1) and (H2)
hold.  Then (1) is oscillatory if the differential inequality

2(1) = P)[=(t - p))
has no eventually positive solution, where P(t) is the function defined by (7).

PrOOF OF COROLLARIES 2.1 AND 2.2. We note that

(8) oz'(t) + p(0)z(t —m)]" <0

has no eventually positive solution if and only if

©) {oz'() + p(0)|z(t = n)|” sgn z(1 — )} sgn (1) <0

has no nonoscillatory solution, where # € R and p € C[t;, 0). In fact, if w(¢)
is an eventually negative solution of (9), then z(¢#) = —w(¢) is an eventually
positive solution of (8). Therefore, the conclusions of Corollaries 2.1 and
2.2 follow, by applying Theorems 2.1 and 2.2 to equation (1) and by
choosing ¢(u) =min{1,2'7}|u|” sgn u, w(u)=u’ and A(t)=1/[1+[h(t—p + 7)]’].
(Recall Remark 2.1.)

3. Oscillation theorems

In this section we derive oscillation theorems for equation (1). First we
consider the case y # 1. We need the following lemmas. For the proofs, see
Kitamura and Kusano [9].

Lemma 3.1. Let 0<y <1 and p>0. Suppose that (H2) holds. Then
the differential inequality

u' () + q(O)u(r = p)]” <0
has no eventually positive solution if
(10) J q(t)dt = 0.

LemMMA 3.2. Let y>1 and p < 0. Suppose that (H2) holds. Then the
differential inequality

u'(1) = q(1)[u(t = p))’
has no eventually positive solution if (10) holds.

Combining Corollaries 2.1 and 2.2 with Lemmas 3.1 and 3.2, we establish
the following theorem.

THEOREM 3.1.  Suppose that (H1) and (H2) are satisfied and that one of the
following cases holds:
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(i) =41, 0<y<1 and p> 1/
(i) e=-1,y>1 and p <O.
Then equation (1) is oscillatory if

e q(s) q(s —7)
11 ds = o0.
” | miod o e =
COROLLARY 3.1.  Suppose that (H1) and (H2) are satisfied and that either
(i) or (ii) of Theorem 3.1 holds. Assume moreover that h(t) is bounded on
[to, 0). Then equation (1) is oscillatory if

(12) Jm min{g(s), g(s — 7) }ds = oo.

Proor. If A(?) is bounded on [fy, c0), then we easily see that (12) implies
(11). Hence, the conclusion follows from Theorem 3.1.

Now we consider equation (2).

The following results will be required. For the proofs, see Gyori and
Ladas [7, Theorems 2.3.3 and 2.3.4] or Ladas [10] or Erbe, Kong and Zhang (2,
Theorem 2.1.1].

Lemma 3.3. Suppose that (H2) holds and

t
1
lim ian q(s)ds > e

1— o0 t—p
Then the differential inequality
u' (1) + q(t)u(t —p) <0
has no eventually positive solution.
LeEmMA 3.4.  Suppose that (H2) holds and
R 1
lim 1an q(s)ds > —.
— 0 ¢ e
Then the differential inequality
u'(t) = q(t)u(t — p)
has no eventually positive solution.
From Corollaries 2.1, 2.2, Lemmas 3.3 and 3.4, we have the following
results.

THEOREM 3.2. Let o =+1. Suppose that (H1) and (H2) hold. Then
equation (2) is oscillatory if

t _
lim infj min{ 4(5) , q(s —7) }ds -
L PR l+h(s—p+71) 1+ h(s—p) e
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THEOREM 3.3. Let o= —1. Suppose that (H1) and (H2) hold. Then
equation (2) is oscillatory if

t=p
- . q(s) q(s —7) 1
hﬂglfj, mm{l+h(s—p+r)’l+h(s—p) ds>e'

REMARK 3.2. It should be emphasized that the restrictive conditions on
h(t), such as h(f) <2, is not assumed in Theorems 3.1-3.3. Theorem 3.2
improves Theorem 10 in [5], Corollary 2 in [6] and Theorem 6.4.4 in [7], and
give an answer to Problem 6.12.10 (b) raised by Gyoéri and Ladas in [7].
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