
Hiroshima Math. J.

32 (2002), 207–215

Minimal sets of certain annular homeomorphisms

Shigenori Matsumoto and Mitsuhiro Shishikura

(Received June 11, 2001)

(Revised November 5, 2001)

Abstract. We consider a homeomorphism of the annulus S1 � R of the form

Fa; jðx; yÞ ¼ ðxþ a; yþ jðxÞÞ, where a is an irrational number and j is a continuous

function on S1 with vanishing integral. We show that if j is of bounded variation and

if Fa; j is not topologically conjugate to F0; j, then Fa; j does not admit a minimal

set. We also show the abundance of such homeomorphisms.

1. Introduction

In [I], T. Inaba constructed an example of a smooth flow without a

minimal set on an open surface of infinite genus. This was generalized by

J.-C. Beniere and G. Meigniez [BM] to show that there are always flows

without minimal sets on any noncompact manifolds other than the real line and

surfaces of finite genus. This made us interested in considering the same

problem for homeomorphisms on open surfaces.

Let f be a homeomorphism of a metric space X. A subset M of X

is called a minimal set if M is a nonempty closed subset invariant by the

homeomorphism f , which is minimal among such subsets with respect to the

inclusion. By Zorn’s lemma any homeomorphism on a compact space admits

a minimal set. However this is no longer the case for a noncompact space.

If a homeomorphism f does not admit a minimal set, then there is no

discrete orbit, since such an orbit would be a minimal set. As a consequence

either the a-limit set or the o-limit set of any point is nonempty, and thus the

nonwandering set of f is nonempty. It follows for example that any homeo-

morphism of the plane must have a minimal set, because any homeomorphism

with nonempty nonwandering set has a fixed point by a classical result of

L. E. J. Brouwer. See e.g. [G].

Therefore first example of surfaces to be considered is an open annulus.

Here we deal only with a special type of homeomorphisms, called skew

products, which are defined as follows. Denote by Ra the rotation by a of the
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circle S1 ¼ R=Z, and let j be a real valued continuous function on S1. Define

a homeomorphism Fa;j of the annulus S1 � R by

Fa;jðx; yÞ ¼ ðRaðxÞ; yþ jðxÞÞ:

Throughout this paper we always work under the following hypotheses, since

otherwise the dynamics of a skew product Fa;j is not so much interesting, as

will be explained below.

(1.1) The rotation number a is irrational.

(1.2) The function j satisfies ð
S 1

jðxÞdx ¼ 0:

Computation shows that for any integer n > 0,

F na;jðx; yÞ ¼ ðRna ðxÞ; yþ jnðxÞÞ; where jnðxÞ ¼
Xn�1
i¼0

jðRiaðxÞÞ:

Notice that the unique ergodicity of the transformation Ra implies under the

assumption (1.2) that the functions ð1=nÞjn converge to zero uniformly on S1

as n tends to the infinity. If on the contrary the assumption (1.2) is not

fulfilled, then the functions ð1=nÞjn converge to some nonzero constant, and all

the orbits of Fa;j are discrete. This is why we assume (1.2) throughout.

The set of Cr-functions j ðr ¼ 0; 1; 2; . . . ;yÞ satisfying (1.2) is denoted by

Cr
0ðS1Þ. Also the set of continuous functions j of bounded variation satisfying

(1.2) is denoted by CBV
0 ðS1Þ.

A skew product Fa;j is called Cr-integrable if there is a Cr-function h on

S1 such that

h � Ra � h ¼ j:

Then the graphs of the functions hþ c ðc A RÞ are invariant under Fa;j, and

Fa;j is Cr-conjugate to the horizontal rotation Fa;0 by the Cr-di¤eomorphism

F0;h, i.e. Fa;j ¼ F0;h � Fa;0 � F�1
0;h.

The main result of the present paper is the following.

Theorem 1. For any function j A CBV
0 ðS1Þ, the skew product Fa;j is either

C 0-integrable or admits no minimal set.

Remark 1.1. The hypothesis that j is of bounded variation is actually

necessary. According to [B], there is an example of a skew product Fa;j,

with j A C 0
0 ðS1Þ, which admits a discrete orbit. Of course the function j is

continuous, but not of bounded variation.

The key fact for the proof of Theorem 1 is Proposition 2.1 in Sect. 2.

This proposition was already proved by A. B. Krygin (Proposition 2, [Kr]) for
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C 1-maps j, in connection with other interesting descriptions of the behaviour

of orbits of Fa;j.

Next we shall show the abundance of homeomorphisms without minimal

set. The variation varð f Þ (see next section) of a function f defines a norm on

CBV
0 ðS1Þ and ðCBV

0 ðS1Þ; varð�ÞÞ becomes a Banach space since we assume (1.2).

The space Cr
0ðS1Þ is to be equipped with the Cr-topology.

For a real number a denote by kak the distance of a to the set of integers

Z. An irrational number a is called Diophantine of exponent r ðr > 0Þ if there
is a positive constant C such that kkak jkjr > C for any nonzero integer k,

Diophantine if it is Diophantine of exponent r for some r > 0, and Liouville if

it is not Diophantine.

Theorem 2. For any irrational a, there exists a residual subset R of

CBV
0 ðS1Þ such that for any j A R the skew product Fa;j is not C

0-integrable.

As for smooth functions the following fact is well known. See for ex-

ample [Ko].

Remark 1.2. Assume a is a Diophantine number. Then for any function

j A Cy
0 ðS1Þ, the skew product Fa;j is Cy-integrable.

For a Liouville number a, we obtain the following nonintegrability result.

Theorem 3. Given a Liouville number a, there exists a residual subset R of

Cy
0 ðS1Þ such that for any j A R the skew product Fa;j is not C

0-integrable.

More precisely we have:

Theorem 4. Assume a is not a Diophantine number of exponent r and

rb r ðr ¼ 1; 2; . . .Þ. Then there exists a residual subset R of C r
0ðS1Þ such that

for any j A R, the skew product Fa;j is not C
0-integrable.

The authors are grateful to T. Inaba for helpful comments, and to B.

Fayad for information on the reference [Kr].

2. Proof of Theorem 1

Fix once and for all an irrational number a and a function j A CBV
0 ðS1Þ,

and assume that the skew product Fa;j admits a minimal set MHS1 � R.

Our aim is to show that Fa;j is C 0-integrable. Recall that j is of bounded

variation if there is a constant C > 0 such that for any partition x0 � x1 �
x2 � � � � � xn ¼ x0 of S1, we have

Xn
i¼1

jjðxiÞ � jðxi�1ÞjaC;
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where � denotes the positive circular order in S1. The smallest such C is

called the variation of j and is denoted by varðjÞ.
For any t A R denote by Vt : S

1 � R ! S1 � R the vertical translation by

t, i.e.

Vtðx; yÞ ¼ ðx; yþ tÞ:

Clearly the skew product Fa;j commutes with Vt, and thus the set VtðMÞ is

also a minimal set of Fa;j. Therefore the two sets M and VtðMÞ are either

identical or disjoint. Denote by Z the set of t for which VtðMÞ and M

coincide. Clearly Z is a closed subgroup of R, and we have the following

trichotomy:

Case 1. Z ¼ R.

Case 2. Z is free cyclic.

Case 3. Z is trivial.

First let us show that Cases 1 and 2 are impossible. We follow an

argument in [B]. Denote by p2 : S
1 � R ! R the projection onto the second

factor. Notice that in these cases M is unbounded both above and below, i.e.

the projection p2ðMÞ is unbounded above and below. Also by the assumption

of Cases 1 and 2, M does not consist of a single discrete orbit. This implies

that M is a perfect set. A standard argument shows that for a generic point

p in M, both the forward and backward orbits are dense in M.

Now there exist sequences nk ! y and mk ! �y such that

p2F
nk
a;jðpÞ ! y; p2F

mk
a;j ðpÞ ! y:

Choose mk a jk a nk such that p2F
jk

a;jðpÞa p2F
j

a;jðpÞ for any mk a ja nk.

By the assumption of Cases 1 and 2, one can choose tk A Z so that the

points qk ¼ VtkF
jk

a;jðpÞ satisfy the following conditions.

(a) The points qk’s lie in a compact subset of S1 � R.

(b) p2F
j

a;jðqkÞb p2ðqkÞ ðm 0
k a ja n 0kÞ.

(c) n 0k ! y, and m 0
k ! �y.

Now let qy be a point of accumulation of fqkg. Then qk and hence qy
lie in M, but the orbit of qy is bounded below. This contradicts the as-

sumption that M is not bounded below.

The rest of this section is devoted to the proof of the following propo-

sition.

Proposition 2.1. If the group Z is trivial, then the skew product Fa;j is

C 0-integrable.
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This proposition for a C1-function j can be found in [Kr]. Our argument

is essentially the same as that of Proposition 2 in [Kr], but more elementary

since we are not involved in the theory of continued fractions.

First we prepare some fundamental facts about Diophantine approxi-

mation of real numbers. Given any two points a; b A S1, not antipodal, denote

by ja; bj the smaller open interval in S1 bounded by a and b.

A positive integer q is called a closest return time for a if k jak > kqak for

any integer j such that 0 < j < q. As is well known q is a closest return time

for a if and only if it is the denominator of a convergent of the continued

fraction of a.

Theorem 2.2 (Denjoy-Koksma). If j A CBV
0 ðS1Þ and q is a closest return

time for a, then we have

kjqky a varðjÞ:

For more details, see Theorem 3.1 of M. R. Herman [H], Chap. VI.

Lemma 2.3. For integers 0a n1 < n2 < n3 assume that n3 is the smallest

positive integer j such that ja lies in the interval jn1a; n2aj. Then q ¼ n3 � n2 is
a closest return time for a.

Proof. By the hypothesis, for j with 0 < j < n3, ja B jn1a; n2aj. By

applying R�n1
a and shifting j by �n1, we have ja B j0; ðn2 � n1Þaj for j

with 0 < j < q ¼ n3 � n2 ð<n3 � n1Þ. By a similar argument for jn3a; n2ajH
jn1a; n2aj, we have ja B jqa; 0j for j with 0 < j < q ¼ n3 � n2.

To fix an idea, let us assume that n1a � n3a � n2a � ðn1aþ 1=2Þ (the other
case is similar). Then it is easy to see that �1=2 � qa � 0 � ðn2 � n1Þa � 1=2.

Moreover since jn3a; n2ajY jn1a; n2aj, the length of j0; ðn2 � n1Þaj is greater than
that of jqa; 0j, which is kqak. Therefore j0;�qajH j0; ðn2 � n1Þaj.

We now conclude that ja B jqa; 0jU j0;�qaj for 0 < j < q, which implies

that q is a closest return time. r

Proof of Proposition 2.1. Notice first of all that we only need to show

that the minimal set M is compact. In fact then Theorem 14.11 of Gottshalk

and Hedlund [GH] shows that Fa;j is C0-integrable. Since the proof of this

fact is very short, we shall include it for the convenience of the readers. The

triviality of Z implies that any vertical line fxg � R intersects at M at most

one point. In fact, by the compactness of M and the minimality of the base

map Ra : S
1 ! S1, the intersection is always one point, i.e. M is the graph of a

function h. Now the closedness of M is equivalent to the continuity of h,

and the the invariance of M means that h satisfies h � Ra � h ¼ j. This shows

the C0-integrability of Fa;j.
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Assume to fix the idea that the fiber f0g � R intersects the minimal set

M at the point ð0; 0Þ. The rest of this section is devoted to the proof of the

following claim.

Claim. There exists a neighbourhood U of 0 in S1 such that whenever

Rna ð0Þ A U, we have jjnð0Þja 1.

Let us show why this claim su‰ces for our purpose. The claim implies

that the projection p2ððU � RÞVMÞ is bounded. There are integers n1; . . . ; nk
such that

Rn1a ðUÞU � � � URnka ðUÞ ¼ S1:

Then

F n1a;jððU � RÞVMÞU � � � UF nka;jððU � RÞVMÞ ¼ M

also has bounded p2-projection. Since M is closed, it must be compact.

Now let us begin the proof of the claim. First of all since the minimal

set M intersects the fiber f0g � R exactly at one point ð0; 0Þ, one can choose

a small positive number e such that the union of two rectangles

Y ¼ fðx; yÞ j jxja e; 1a jyja 1þ varðjÞg

does not intersect M. Choose a positive integer n� and nþ such that

(2.1) �e < n�a < 0 < nþa < e,

(2.2) nG is a closest return time for a.

Let us define the interval U in the claim to be ðn�a; nþaÞ. We are going

to show the claim only for positive n, since the negative case can be dealt

with similarly. Assume to fix the idea that na A ð0; nþaÞ. Define a sequence

n1; n2; . . . ; nk ¼ n as follows. First of all let n1 ¼ nþ, and let n2 be the smallest

positive integer j such that ja lies in the interval I1 ¼ ð0; nþaÞ. If n2 ¼ n, we

are done. If not, n2a divides the interval I1 into two subintervals, one of

which, say I2, contains na. Let n3 be the smallest positive integer j such that

ja lies in the interval I2. Proceeding in this way, we end up with some nk
eventually matching the given n.

Now by Lemma 2.3, all the integers n1; n2 � n1; . . . ; nk � nk�1 are closest

return times for a. By Theorem 2.2, we have jjn1ð0Þja varðjÞ. But since the

point F n1a;jð0; 0Þ ¼ ðRn1a ð0Þ; jn1ð0ÞÞ does not lie in Y, we have in fact jjn1ð0Þja 1.

Now applying Theorem 2.2 once again to n2 � n1, one obtains that

jjn2ð0Þj ¼ jjn2�n1ðjn1ð0ÞÞ þ jn1ð0Þja varðjÞ þ 1:

Again since F n2a;jð0; 0Þ does not lie in Y, we actually have jjn2ð0Þja 1. In this

way one obtains inductively that jjnð0Þja 1, completing the proof of Prop-

osition 2.1, and thus of Theorem 1.
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3. Proof of Theorems 2, 3 and 4

To show Theorem 2, recall first of all the following classical theorem due

to Fejér (Theorem 73 of [HR]) giving a criterion for the continuity of L2

functions. For any f A L2ðS1Þ, define an analytic function rkð f Þ on S1 by

rkð f ÞðxÞ ¼
Xk
n¼�k

f̂fne
2pinx;

where

f̂fn ¼
ð
S 1

f ðtÞe�2pint dt:

Next define a function skð f Þ (the Cesàro sum) by

skð f ÞðxÞ ¼
1

k
ðr0ð f ÞðxÞ þ r1ð f ÞðxÞ þ � � � þ rk�1ð f ÞðxÞÞ:

Theorem 3.1 (Fejér). If f is continuous, then skð f Þ converges uniformly
to f .

Direct computation shows that given a function f , the solution h of the

equation f ¼ h � Ra � h must have Fourier coe‰cients

ĥhk ¼
f̂fk

e2pika � 1
:

Thus we make the following notations,

sakð f ÞðxÞ ¼
1

k
ðra0 ð f ÞðxÞ þ ra1 ð f ÞðxÞ þ � � � þ rak�1ð f ÞðxÞÞ;

where

rakð f ÞðxÞ ¼
Xk
n¼�k

f̂fn
e2pina � 1

e2pinx:

Thus if f admits a continuous solution h of the equation f ¼ h � Ra � h, then
sakð f Þ must converge uniformly to some continuous function.

Let C �
0 be either of CBV

0 ðS1Þ or Cr
0ðS1Þ ðr ¼ 1; . . . ;yÞ. For a positive

integer l, define

B�
l ðaÞ ¼ f f A C �

0 j jsakð f Þð0Þj > l; bk > lg:

Lemma 3.2. (1) B�
l ðaÞ is open in the C0-topology, hence in the C �-

topology.

Minimal sets of certain annular homeomorphisms 213



(2) If j belongs to 7
l
B�
l ðaÞ, then there is no continuous function h such

that j ¼ h � Ra � h.
(3) If 7

l
B�
l ðaÞ is nonempty, then B�

l ðaÞ is dense in C �
0 .

Proof. (1) is clear from the continuity of sakð f Þ in the C0-topology. For

(2), notice that if f A 7
l
B�
l ðaÞ, then sakð f Þð0Þ cannot converge. To show (3),

notice that C �
0 n7l

B�
l ðaÞ is a proper linear subspace of C �

0 , hence its com-

plement has to be dense. r

In order to show Theorem 2, it su‰ces to construct a function j A
7
l
BBV
l ðaÞ for any irrational a. Choose a sequence fkngyn¼1 of positive in-

tegers satisfying

ð3:1Þ kknak < 1=jknj; ð3:2Þ knþ1 > 2kn;

and define

jðxÞ ¼
Xy
n¼1

1

n
ððe2pikna � 1Þe2piknx þ ðe�2pikna � 1Þe�2piknxÞ:

We have

jeG2pikna � 1j < 2pkknak <
2p

kn
:

This, together with the assumption (3.2) shows that rkðjÞ converges uniformly

to j. To show that j is of bounded variation, we have;

varðrkðjÞÞ ¼
ð
S 1

jrkðjÞ0ðxÞjdxa

ð
S1

jrkðjÞ0ðxÞj2dx
� �1=2

a 2
X
n

1

n2
je2pikna � 1j2ð2pknÞ2

 !1=2
a 4

ffiffiffi
2

p
p2
X
n

1

n2
< y:

On the other hand the Fourier coe‰cient ĥhk of the solution h of the

equation h � Ra � h ¼ j is given by ĥhk ¼ 1=n if k ¼ Gkn and 0 otherwise.

Thus rakðjÞð0Þ ! y and hence sakðjÞð0Þ ! y by the property of the Cesàro

sum. Therefore j belongs to 7
l
BBV
l ðaÞ.

In order to show Theorem 4, we construct a function j A 7
l
Br
l ðaÞ for a

not Diophantine of exponent r, where rb r.

Notice that a L2 function f is Cr if its Fourier coe‰cients f̂fk satisfyX
k

j f̂fkj jkj
r < y:

For a not Diophantine of exponent r ðrb rÞ, one can find an increasing

sequence fkng of positive integers which satisfy

kknakk r
n a 1=2n; knþ1 > k2n ;
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and let

jðxÞ ¼
X
n

ððe2pikna � 1Þe2piknx þ ðe�2pikna � 1Þe�2piknxÞ:

The rest of the proof is analogous as before.

Finally to show Theorem 3 for a Liouville number a, choose a sequence

fkng such that kknakknn a 1 and define a function j by the above expression.

The rest of the proof is left to the reader.
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[G] L. Guillou, Théorème de translation plane de Brouwer et generalisations du théorème de

Poincaré-Birkho¤, Topology 33 (1994), 331–351.

[HR] G. H. Hardy and W. W. Rogosinski, Fourier series, Cambridge Tracts in Mathematics

and Mathematical Physics, No. 38 (1950).
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