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Previously, we have proposed a mathematical model based on a modified

Turing mechanism to account for pigmentation patterning in the butterfly wing

of Papilio dardanus, well-known for the spectacular phenotypic polymorphism

in the female of the species (Sekimura, et al., Proc. Roy. Soc. Lond. B 267,

851–859 (2000)). In the present paper, we use our model to predict the

outcome of a number of di¤erent types of cutting experiments and compare

our results with those of a model based on di¤erent hypotheses.

1. Introduction

Pigmentation patterns on lepidopteran wings, which cover the whole dorsal

and ventral wing monolayers, can be complicated in structure and they are

sometimes used for identification of species. However, owing to the pioneering

work of Schwanwitsch (1924) and Sü¤ert (1927) on the nymphalid ground plan,

the complicated patterns on the wings can be understood as a composite of a

relatively small number of pattern elements (for details, see Nijhout, 1991). In

spite of these simplifications, the problem of color pattern formation in wings is

still not fully resolved and there exist few mathematical models to account for

the diversity of color pattern in wings except for some specific features.

Among them, the development of eyespot patterns is the best understood

mechanism at present. Nijhout (1990) presented a model for eyespot for-

mation based on experimental evidence, in which a spatial distribution of

sources and sinks of pattern organisers is firstly set up and the organising

centers induce color patterns in their surroundings. Nijhout succeeded in

producing point-like patterns in the exact locations of the organizing centers

by an activator-inhibitor mechanism (Meinhardt, 1982) that assumes that the
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wing veins act as fixed boundary conditions for the activator and as reflecting

boundaries for the inhibitor (Nijhout, 1990, 1994).

Regarding global patterns covering the entire wing surface, Murray (1981)

proposed a simple di¤usion model for the development of the commonly

observed crossbands of pigmentation shortly after pupation. Murray’s model

extends the idea of a determination stream proposed by Kühn and von

Engelhardt (1933), namely, that the anterior and posterior margins of the

wing are sources from which emanates a wave of morphogen concentration.

Murray showed that this simple model could exhibit a wide variety of observed

patterns. For example, it exhibits patterns consistent with those observed after

microcautery surgery. The theoretical results are consistent with the obser-

vation of Schwantwitsch (1924).

By use of a geometrically accurate wing domain, Sekimura et. al., (2000)

presented a reaction-di¤usion model for the formation of global pigmentation

patterns in the butterfly wing of Papilio dardanus. The model is based on

the idea that a system of reacting and di¤using chemicals can evolve from

an initially uniform spatial distribution to concentration profiles that vary

spatially—so-called di¤usion driven instability (Turing, 1952). By mathemat-

ical analysis and computer simulation of the model equations, Sekimura et. al.,

(2000) suggested that the global wing coloration is essentially due to underlying

stripe-like patterns of some pigment inducing morphogen. The generality of

the model should allow it to be applied to a wide variety of problems related to

wing color patterns.

In the following sections, we review the model framework briefly and then

present numerical results which show how the model can be used to make

theoretical predictions on cutting experiments.

2. A model for color pattern formation in the butterfly wing of Papilio

dardanus

Papilio dardanus is a species of butterfly widely distributed across sub-

Saharan Africa, and it is well known for its spectacular phenotypic poly-

morphism in females (see Figure 1). The female wing patterns look very

complicated in their appearance and at first glance it seems di‰cult to find

an underlying logical relationship between them even in the single species.

However, the work of Nijhout suggests that the black color pattern elements in

the wing constitute the principle pattern elements, even though the background

color attracts our attention most (Nijhout, 1991). The elements di¤er in size

depending on the mimetic form and this can have dramatic e¤ects on the

overall appearance of the pattern (see Figure 2). Our problem is, then, largely

Anotida Madzvamuse et al.326



simplified and our goal is to present a mechanism that can account for only the

black pattern elements.

2.1. Model equations

We solve the non-dimensionalised reaction-di¤usion system with Gierer-

Meinhardt (1972) reaction kinetics

ut ¼ g a� buþ u2

vð1þ ku2Þ

� �
þ ‘2u; ð2:1Þ

vt ¼ gðu2 � vÞ þ d‘2v ð2:2Þ

using the finite element method on fixed two-dimensional wing domains. Here

uðx; tÞ and vðx; tÞ represent chemical (morphogen) concentrations at spatial

position x and time t; a, b, d, k and g are positive parameters. The following

scaling parameters can be derived

T ¼ L2
x

D1
; g ¼ k5L

2
x

D1
; and d ¼ D2

D1
: ð2:3Þ

Fig. 1. Polymorphism in mimetic females of Papilio dardanus, (i) trophonius, (ii) cenea, (iii)

planemoides, (iv) hippocoonides.
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Lx is a typical length scale in one dimension (of order mm in Papilio dardanus),

D1 and D2 are di¤usion coe‰cients and k5 is a reaction rate which is char-

acteristic of the reaction kinetics used.

2.2. Numerical simulations

We allow the boundary conditions to take the general form

yðu� u1Þ þ ð1� yÞðun � u2Þ ¼ u3 ð2:4Þ

with a similar form for v, where un is the normal derivative at the boundary

Fig. 2. Diagram illustrating the black pattern elements in mimetic forms of Papilio dardanus.

(i) trophonius, (ii) cenea, (iii) planemoides, (iv) hippocoonides.
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and we impose values on y, u1, u2 and u3. For example, y ¼ 0 gives a
(Neumann) flux condition, while y ¼ 1 gives a (Dirichlet) fixed condition.

Choosing a value of y between these extremes results in a mixed (Robin)

condition. In the simulations below we also allow y, u1, u2 and u3 to be

functions of position along the boundary. We assume that patterning occurs

across the whole domain but is locally controlled by di¤erent types of boundary

conditions (for example, see the boundary conditions illustrated in Figure 6).

For illustrative purposes we fix the values of a ¼ 0:1, b ¼ 1:0 and k ¼ 0:5,
while the values of g and d are determined from the Turing space according

to the mode which would be selected on particular regular domains with zero-

flux boundary conditions, for which standard linear analysis can be carried out.

The numerical simulations show the plots of v only. The profiles of u can

easily be deduced from these plots as they are in phase with those of v (for

more details, see, Madzvamuse, 2000).

The standard application of Turing models in developmental biology

assumes that there is a fixed constant concentration threshold so that cells that

experience a morphogen concentration above this threshold will di¤erentiate,

while those that experience a lower morphogen concentration remain undif-

ferentiated. In all the simulations in this paper, we assume that cells within

the wing are not necessarily homogeneous in their response to one of the

chemical concentrations, in this case v. We therefore allow the threshold

function to take the more general form of a plane ayþ bxþ c0 where a or b

or both are non-zero and c0 is a non-negative constant. Here coloration or

shading is determined as follows: if cells experience chemical concentration

vb ayþ bxþ c0 they are black, otherwise they become colored. That is, we

assume that su‰ciently high concentrations of v stimulate cells to produce

pigment. Note that if both a and b are zero, then the threshold gradient

is reduced to a constant threshold, while if one of a or b is zero, then cells

are homogeneous in one direction but have a response gradient in the other

direction. There is no biological evidence to justify the existence of a gradient

threshold. However, there is experimental evidence (Sekimura et. al., 1998,

1999) that cells do have other properties, such as adhesivity, which depend on

distance from the body. The threshold parameters are taken to be a ¼ �0:111,
b ¼ �0:025 for the forewing, while for the hindwing a ¼ 0:111, b ¼ �0:025.
The gradient threshold values are determined by trial and error. The forewing

and hindwing domains are considered independent, hence numerical simulations

are carried out on each domain separately. With the kinetic parameters fixed

as above, we further select the values d ¼ 70:8473 and g ¼ 619:45, chosen to
select the ð3; 0Þ mode with zero flux boundary conditions on a unit square.
The uniform homogeneous steady state is linearly unstable to this mode for

these parameter values. These values are used in the simulations shown in
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Figures 3, 5 and 7. We take initial conditions as small random perturbations

about the uniform homogeneous steady state.

3. Results

The numerical method we used is detailed in Madzvamuse (2000). Here,

we simply present a selection of numerical results, which also show the mesh

we used for our finite element simulations (Figures 3–7).

3.1. Mimetic forms

Comparing Figure 2 with our numerical simulations (Figure 3) we see

that a simple reaction-di¤usion model can capture the details of the di¤er-

Fig. 3. Results of numerical simulations of the Gierer-Meinhardt model (2.1)–(2.2). For com-

parison with Papilio dardanus see Figure 1. Mimetic forms: (i) trophonius, (ii) cenea, (iii) plane-

moides and (iv) hippocoonides. Black indicates concentrations of v above the threshold gradient,

white indicates values below the threshold gradient. Model and threshold parameters are given in

Table 1, boundary conditions are shown in Figure 4.
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Table 1: Parameter values and gradient threshold values used in the numerical simulations

in Figure 3.

Pattern Forewing Hindwing

trophonius d ¼ 70:8473, g ¼ 619:45 a ¼ �0:111,
b ¼ �0:025, c0 ¼ 0:697

Same as forewing except

a ¼ 0:111, b ¼ �0:025
c0 ¼ 0:9

hippocoonides Same as for trophonius except c0 ¼ 0:701 c0 ¼ 0:87

planemoides Same as for trophonius except c0 ¼ 0:67 c0 ¼ 0:7

cenea Same as trophonius except a ¼ �0:0111,
b ¼ �0:025, c0 ¼ 0:653

c0 ¼ 0:6

Fig. 4. Boundary conditions for the simulations shown in Figure 3. Forewings of (a) trophonius,

hippocoonides, (b) planemoides, (c) cenea. (d) Hindwing (all butterflies).
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ent patterns. In these simulations, the parameter values a ¼ �0:111 and

b ¼ �0:025 are fixed for the threshold function in the forewing patterns in
hippocoonides, planemoides, trophonius and cenea. For the hindwing the same

numerical values are taken except that a has positive sign. With these

values, we find that the forewing patterns for hippocoonides and trophonius

are generated with the same boundary conditions and with very small changes

in c0 (Figure 4).

Our numerical simulations reveal that only small changes in threshold are

necessary to determine di¤erent observed patterns. For example, the forewing

patterns of the hippocoonides and trophonius are obtained from the same

boundary conditions and parameter values with less than 0.1% change in the

threshold. We also find that the boundary conditions play a crucial role in

Fig. 5. Model predictions on the e¤ects of cutting the forewing of Papilio dardanus hippocoonides.

Compare results with simulations for hippocoonides in Figure 3. Corresponding boundary conditions

are shown in Figure 6. Here c0 ¼ 0:701.
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Fig. 6. Boundary conditions for the numerical simulations shown in Figure 5 (a), (b), (c) and (d)

respectively.

Fig. 7. (a) Model predictions on the e¤ects of making a hole in the wing of hippocoonides.

Compare results with simulations for hippocoonides in Figure 3. (b) Shows the boundary conditions

used to simulate the forewing pattern in (a). Zero-flux boundary conditions are imposed around the

hole.
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orientation of pattern. A large number of wing patterns can be simulated with

the same boundary conditions. The hindwing appears to admit more simple

patterns, consistent with the observations in Figure 1. These are simulated

with the same model parameter values as used for the forewing. The boundary

conditions on the hindwing are shown in Figure 4 and are unchanged for

the di¤erent simulations. These simulations show that the variety of patterns

exhibited by Papilio dardanus can be obtained under tight control of only a few

parameters.

3.2. E¤ects of cutting part of the forewing

To illustrate the predictive power of our model, we now simulate the

e¤ects of a cutting experiment by simply removing part of the patterning

domain and imposing a zero-flux boundary condition on the newly generated

boundary, while keeping the conditions on the other parts of the boundary

unchanged.

In Figure 5 (a) we show the results of a simulation in which the boundary

conditions on the intact edges are those we used in the simulations for hip-

pocoonides (Figure 4 (a)), while zero-flux boundary conditions are imposed

along the cut edge. It can be seen that assuming these are the appropriate

boundary conditions for the cut edge results in a pattern that is very di¤erent

to the normal pattern. However, if we impose on the cut edge the original

boundary conditions, we obtain a pattern more similar to the normal pattern

(Figure 5 (b)). For these boundary conditions the e¤ects of di¤erent sized

cuts are shown in Figure 5 (c) and (d).

3.3. E¤ects of making a hole

Figure 7 shows numerical results simulating the e¤ects of making a hole in

the forewing. In these simulations, zero-flux boundary conditions are assumed

along the boundaries of the hole while the external boundary conditions remain

unchanged from those used to simulate normal development. According to

our results, making a hole on the hippocoonides forewing domain appears not

to have a major e¤ect on pattern formation.

4. Discussion

We have shown that a reaction-di¤usion system solved on a realistically

shaped adult wing geometry for Papilio dardanus can produce the variety of

mimetic (and non-mimetic) pigmentation forms observed under tight control of

only a few parameters. We have shown how the model can be used to make

predictions on the outcome of cutting experiments. In certain cases, our model
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predicts that cutting experiments will have a global e¤ect. This is in contrast

to the model of Nijhout (1991), which assumes that the di¤erent forms observed

in Papilo dardanus forewings are due to di¤erent growth dynamics of four

subdomains within the domain. In that case, cutting experiments would have

only a local e¤ect. Although we have only shown results for hippocoonides

our model can obviously be used in a similar fashion to predict the outcome

of cutting experiments for the other forms.

It should be noted that by simulating our model on the adult wing we

are implicitly assuming that pigment pattern formation occurs in the adult.

However, it is probably the case that the pigmentation process occurs earlier.

We are presently carrying out numerical simulations for realistically growing

domains to investigate this issue.

We have assumed that there are sources and sinks of chemicals at various

parts on the boundary and therefore have simulated cut boundaries by zero-

flux conditions (assuming that any sources or sinks have been destroyed).

However, the healing process may in fact result in the growth of new tissue and

the regeneration of these sources and sinks. Our simulations show that the

latter assumption results in very di¤erent predictions to those for the former

assumption. We aim to explore this issue in future theoretical and experi-

mental studies.
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