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Abstract. The aim in the present paper is to give a weighted version of Koskela

[Ark. Mat. 37 (1999), 291–304] concerning removable sets for Sobolev functions.

1. Introduction

Let Rn (nb 2) denote the n-dimensional Euclidean space. We will often

write a point x A Rn as x ¼ ðx 0; xnÞ, where x 0 ¼ ðx1; . . . ; xn�1Þ A Rn�1 and

xn A R1. We use the notation Ha to denote the a-dimensional Hausdor¤

measure.

Recently Koskela [6] studied removable sets for Sobolev spaces W 1;pðWÞ.
If EHRn is a closed set with HnðEÞ ¼ 0, then we say that E is removable

for W 1;pðRnÞ if W 1;pðRnnEÞ ¼ W 1;pðRnÞ as sets.

Now suppose EHRn�1 ¼ fx ¼ ðx 0; xnÞ A Rn : xn ¼ 0g. If Hn�1ðEÞ ¼ 0,

then it is clear that E is removable for W 1;pðRnÞ. Koskela [6] gave examples

of E such that Hn�1ðEÞ > 0 and E is removable for W 1;pðRnÞ. Our aim in

this paper is to extend his results to weighted Sobolev spaces. When E is

restricted to subsets of Rn�1, we consider the weights of the form rðxÞa, where
rðxÞ denotes the distance of x from the hyperplane Rn�1, that is, rðxÞ ¼ jxnj
for x ¼ ðx 0; xnÞ A Rn.

For p > 1 and �1 < a < p� 1, let ma be the Borel measure

dmaðxÞ ¼ rðxÞadx ¼ jxnjadx;

where x ¼ ðx 0; xnÞ A Rn and dx denotes the usual Lebesgue measure.

Let W be an open set in Rn, and let W 1;pðW; maÞ denote the weighted

Sobolev space of all functions u A LpðW; maÞ whose distributional gradient,

denoted by ‘u ¼ ðq1u; . . . ; qnuÞ, belongs to LpðW; maÞ. If E is a relatively
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closed subset of W with maðEÞ ¼ 0, then we say that E is removable for

W 1;pðW; maÞ if

W 1;pðW; maÞ ¼ W 1;pðWnE; maÞ

as sets. As in Koskela [6], E is removable for W 1;pðW; maÞ if and only if each

function u A W 1;pðWnE; maÞ satisfiesð
WnE

uqjj dx ¼ �
ð
WnE

jqju dx for all j A Cy
c ðWÞ and 1a ja n; ð1Þ

where Cy
c ðWÞ denotes the space of infinitely di¤erentiable functions with com-

pact support in W.

Let Bðx; rÞ denote the n-dimensional open ball centered at x with radius r.

When 1 < p < n, we say that EHRn�1 is p-porous, if for Hn�1-a.e. x A E

there exist a sequence of positive numbers frig tending to zero, a number

q > n� p and a positive constant C (depending on x) such that Bðx; riÞV
ðRn�1nEÞ includes a set Gi of diameter Ri satisfying

( i ) Hq
yðGiÞbCR

q
i ; and

(ii) Ri bCr
ðn�1Þ=ðn�pÞ
i

for all i. Here Hs
yðEÞ denotes the s-dimensional Hausdor¤ content of E,

that is,

H s
yðEÞ ¼ inf

Xy
i¼1

rs
i ;

where the infimum is taken over all countable covers of E by balls Bi of radius

ri. Notice that if E is p-porous in the sense of Koskela [6], then E is p-porous

in our sense, because (i) holds for q such that q ¼ n� 1 when 1 < pa n� 1

and q ¼ 1 when n� 1 < p < n. In his definition of porosity, the equality

p ¼ n� 1 should be put in the first case to complete the proof of [6, Theorem

3.2]. For properties of p-porous sets, we refer the reader to the paper by

Koskela [6].

Our main result is the following.

Theorem 1. Let �1 < a < p� 1 and 1 < p < nþ a. If E is ðp� aÞ-
porous, then E is removable for W 1;pðRn; maÞ.

Our result gives a weighted version of Koskela [6, Theorem A], where

he considered Riesz decomposition of Sobolev functions and applied bound-

ary limit result for p-harmonic functions. (His proof of [6, Theorem 3.2,

p. 299–300] seems to use nontangential limit result instead of tangential

one.) In the present paper we first study tangential limits of certain in-

tegral averages for Sobolev functions, in order to complete the proof of

Theorem 1.
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We also treat the case pb nþ a after finishing the proof of Theorem 1.

In case p ¼ nþ a, condition (ii) of porosity will be changed to

(ii 0) Ri bCri expð�r
ðn�1Þ=ð1�n�aÞ
i Þ.

For recent work on removable singularities for quasiconformal mappings,

see also Kaufman-Wu [4] and Wu [11].

Finally we would like to express our hearty thanks to the referee for his

valuable comments.

2. Tangential limits of integral averages

Throughout this paper, let M denote various positive constants inde-

pendent of the variables in question.

For a measurable function u on Rn, consider the integral average over a

measurable set F with respect to ma

uF ¼
ð
F

u dma ¼
1

maðF Þ

ð
F

u dma

when 0 < maðFÞ <y. For x A Rn�1, gb 1 and a > 0, set

Tgðx; aÞ ¼ fx A Rn
þ : jx� xjg < axng;

where Rn
þ ¼ fx ¼ ðx 0; xnÞ : xn > 0g. For a nonnegative measurable function f

on Rn, set

Eqð f Þ ¼ x A Rn�1 : lim sup
r!0

hqðrÞ�1

ð
Bðx; rÞ

f ðyÞpdmaðyÞ > 0

( )
;

where hq is a function on ð0;yÞ such that

hqðrÞ ¼
rq if q > 0;

ðlogð2þ r�1ÞÞ1�p if q ¼ 0:

�

For a nonnegative measurable function f on Rn, we define the Riesz

potential Uf by

Uf ðxÞ ¼
ð
Rn

jx� yj1�n
f ðyÞdy:

The second author [8, 9, 10] investigated the various boundary limits of Uf

for f satisfying the weighted Lp-condition:

ð
Rn

f ðyÞpdmaðyÞ <y: ð2Þ
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We introduce the notion of the relative ðp; aÞ-capacity capp;að� ;WÞ for an

open set WHRn. For a compact set KHW, it is defined by

capp;aðK ;WÞ ¼ inf

ð
W

j‘ujpdma;

where the infimum is taken over all functions u A Cy
c ðWÞ such that ub 1 on K.

We extend the capacity capp;að� ;WÞ in the usual way (see [2, Chapter 2] and

[10, Section 6.7]). We say that a set E is of ðp; aÞ-capacity zero if

capp;aðE VW;WÞ ¼ 0 for every bounded open set W:

We say that a property holds ðp; aÞ-quasieverywhere, often abbreviated to

ðp; aÞ-q.e., if it holds except on a set of ðp; aÞ-capacity zero.

Lemma 1. Let f be a nonnegative measurable function on Rn satisfying (2).

Then

HqðEqð f ÞÞ ¼ 0

for q > 0 and capp;aðE0ð f ÞÞ ¼ 0 in case p ¼ nþ a.

See [7, Lemma 4 and Corollary 2] for a proof of Lemma 1.

First we discuss the tangential limits of integral averages for Uf.

Theorem 2. Let 1 < p <y, �1 < a < p� 1 and n� pþ ab 0. Let f

be a nonnegative measurable function on Rn satisfying (2). For gb 1, set q ¼
gðn� pþ aÞ. If x A Rn�1nEqð f Þ, then

lim
x!x;x ATgðx;aÞ

ð
Bðx;xn=2Þ

Uf ðyÞdmaðyÞ ¼ Uf ðxÞ

for every a > 0.

We refer to the following technical lemma [9, Lemma 4] needed for the

proof of Theorem 2.

Lemma 2. Let a < 0 and b > �1. If x A Rn�1 and y A Rn
þ, thenð

Bðx;2jx�yjÞnBðy;yn=2Þ
jz� yjajznjbdz

aM
jx� yjaþbþn þ yaþbþn

n when aþ bþ n0 0;

logð2jx� yj=ynÞ when aþ bþ n ¼ 0;

(

where M is a positive constant independent of x and y.
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Proof of Theorem 2. We give the proof only in case p < nþ a; the case

p ¼ nþ a is proved similarly. For x A Rn
þ and y A Bðx; xn=2Þ, write

u1ðyÞ ¼
ð
RnnBðx;2jx�yjÞ

jz� yj1�n
f ðzÞdz;

u2ðyÞ ¼
ð
Bðx;2jx�yjÞnBðy;yn=2Þ

jz� yj1�n
f ðzÞdz;

u3ðyÞ ¼
ð
Bðy;yn=2Þ

jz� yj1�n
f ðzÞdz:

If z A RnnBðx; 2jx� yjÞ, then jz� xja 2jz� yj, so that Lebesgue’s domi-

nated convergence theorem implies that

lim
y!x

u1ðyÞ ¼ Uf ðxÞ;

when Uf ðxÞ ¼ y, we can apply Fatou’s lemma to obtain the above equality.

Hence

lim
x!x;x ARn

þ

ð
Bðx;xn=2Þ

u1ðyÞdmaðyÞ ¼ Uf ðxÞ:

By Hölder’s inequality and Lemma 2 we have for y A Bðx; xn=2Þ

u2ðyÞa
ð
Bðx;2jx�yjÞnBðy;yn=2Þ

jz� yjp
0ð1�nÞjznj�ap 0=p

dz

 !1=p 0

�
ð
Bðx;2jx�yjÞ

f ðzÞpjznjadz
 !1=p

aM yp�a�n
n

ð
Bðx;2jx�yjÞ

f ðzÞpdmaðzÞ
 !1=p

:

Noting that xn=2 < yn < 3xn=2 and jx� xj=2 < jx� yj < 3jx� xj=2 when y A
Bðx; xn=2Þ, we obtain

u2ðyÞaM xp�a�n
n

ð
Bðx;3jx�xjÞ

f ðzÞpdmaðzÞ
 !1=p

:

Since x B Eqð f Þ and xp�a�n
n aMjx� xj�q for x A Tgðx; aÞ, we see that

lim
x!x;x ATgðx;aÞ

ð
Bðx;xn=2Þ

u2ðyÞdmaðyÞ ¼ 0:
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Finally, we have by Hölder’s inequalityð
Bðx;xn=2Þ

u3ðyÞdmaðyÞ

aMx�n�a
n

ð
Bðx;xn=2Þ

ya
n

ð
Bðy;yn=2Þ

jz� yj1�n
f ðzÞdz

 !
dy

aMx�n�a
n

ð
fz ABðx;5xn=4Þ:zn>xn=4g

f ðzÞ
ð
Bðx;xn=2Þ

jz� yj1�n
ya
n dy

 !
dz

aMx1�n
n

ð
fz ABðx;5xn=4Þ:zn>xn=4g

f ðzÞdz

aM xp�n�a
n

ð
Bðx;3jx�xjÞ

f ðzÞpjznjadz
 !1=p

:

We see that

lim
x!x;x ATgðx;aÞ

ð
Bðx;xn=2Þ

u3ðyÞdmaðyÞ ¼ 0:

Now our theorem is proved.

We say that a function u is ðp; aÞ-quasicontinuous in an open set G if for

given e > 0 and bounded open set DHG, there exists an open set D 0 such that

capp;aðD 0;DÞ < e and u is continuous as a function on DnD 0. We consider a

ðp; aÞ-quasicontinuous function v on Bð0;NÞ satisfyingð
Bð0;NÞ

j‘vjpdma <y: ð3Þ

In view of [7, Corollary 1], there exists a harmonic function h on Bð0;NÞ
such that

vðxÞ ¼ o�1
n

ð
Bð0;NÞ

ðx� yÞ � ‘vðyÞ
jx� yjn dyþ hðxÞ ð4Þ

for ðp; aÞ-q.e. x A Bð0;NÞ, where on denotes the surface measure of qBð0; 1Þ.
For a nonnegative measurable function f on Rn, set

F ð f Þ ¼ x A Rn�1 :

ð
Bðx;1Þ

jx� zj1�n
f ðzÞdz ¼ y

( )
:

Lemma 3. Let v be a ðp; aÞ-quasicontinuous function on Rn satisfying (3)

for all N > 0. Then

capp;aðFðj‘vjÞÞ ¼ 0:
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Further, if q > maxf0; n� pþ ag, then

HqðF ðj‘vjÞÞ ¼ 0:

See [7, Lemma 4] for a proof of the above lemma.

Now, using Theorem 2 and representation (4) of Sobolev functions, we

have the following result.

Theorem 3. Let 1 < p <y, �1 < a < p� 1 and n� pþ ab 0. Let u be

a ðp; aÞ-quasicontinuous function on Rn
þ satisfyingð

Rn
þVBð0;NÞ

j‘ujpdma <y ð5Þ

for every N > 0. For gb 1, set q ¼ gðnþ a� pÞ. If x A Rn�1nðF ðj‘ujÞU
Eqðj‘ujÞÞ, then

lim
x!x;x ATgðx;aÞ

ð
Bðx;xn=2Þ

uðyÞdmaðyÞ exists and is finite

for every a > 0, where u is a ðp; aÞ-quasicontinuous extension of

uðx 0; xnÞ ¼
uðx 0; xnÞ for x A Rn

þ;

uðx 0;�xnÞ for x A Rn
�:

�

In view of Theorem 3 and Poincaré’s inequality ([2]), we have the follow-

ing result.

Corollary 1. Let 1 < pa nþ a and �1 < a < p� 1. If u is a harmonic

function on Rn
þ satisfying (5) for all N > 0, then u has a finite limit at x A

Rn�1nðFðj‘ujÞUEqðj‘ujÞÞ along the sets Tgðx; aÞ.

Remark 1. If u on Bð0;NÞ is changed by the right side of (4) with

v ¼ u jBð0;NÞ, then the limit in Theorem 3 is equal to uðxÞ for x A Bð0;NÞV
Rn�1nðFðj‘ujÞUEqðj‘ujÞÞ, where ujA denotes the restriction of u to a set A.

Remark 2. If q > maxfnþ a� p; 0g, then

HqðF ðj‘ujÞUEqðj‘ujÞÞ ¼ 0:

Let EHRn�1 and u be a ðp; aÞ-quasicontinuous function in W 1;pðRnnE; maÞ.
Let uþ (resp. u�) be a ðp; aÞ-quasicontinuous extension of ujRn

þ (resp. ujRn
�) to

Rn. Notice that E is removable for W 1;pðRn; maÞ if and only if uþðxÞ ¼ u�ðxÞ
for Hn�1-a.e. x A E. Consequently, the following result, which characterizes

the removable sets for W 1;pðRn; maÞ, can be shown by using Theorem 3.

Proposition 1. Let 1 < p <y, �1 < a < p� 1 and n� pþ a > 0. Then

EHRn�1 is removable for W 1;pðRn; maÞ if and only if each ðp; aÞ-quasicontinuous
function u A W 1;pðRnnE; maÞ satisfies
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lim
x!x;x ATðx;aÞ

ð
Bðx;xn=2Þ

uðyÞdmaðyÞ ¼ lim
x!x; x ATðx;aÞ

ð
Bðx;�xn=2Þ

uðyÞdmaðyÞ

for Hn�1-a.e. x A E and every a > 0, where x ¼ ðx 0;�xnÞ for x ¼ ðx 0; xnÞ. Here

Tðx; aÞ ¼ Tðn�1Þ=ðnþa�pÞðx; aÞ.

3. Removable sets for weighted Sobolev spaces

Our aim in this section is to prove Theorem 1. For this purpose, we

further need the following result.

Lemma 4 (cf. [3, Theorem 5.9]). Let A be a subset of Bðx; rÞVRn�1 with

x A Rn�1 and r > 0. If q > nþ a� pb 0 and b < 1, then

Hq
yðAÞaMrq�n�aþp

ð
Bðx;2rÞ

j‘uðxÞjpdma

for every ðp; aÞ-quasicontinuous function u A W 1;pðBðx; 2rÞ; maÞ such that

u jAb 1 and uBðx;rÞ a b.

Proof. Fix a ðp; aÞ-quasicontinuous function u A W 1;pðBðx; 2rÞ; maÞ with

u jAb 1 and uBðx;rÞ a b. Since x A A is a Lebesgue point of u except for x in

a set EHA whose Hausdor¤ dimension is at most nþ a� p (see [5, Theorem

3.5] and [10, Theorem 8.2.7]) and since q > nþ a� p, we assume that each

point of A is a Lebesgue point of u. First we verify Lemma 4 when there is

a point y A A such that

juðyÞ � uBðy;rÞj < ð1� bÞ=2:

Then we have by Poincaré’s inequality (see [2])

ð1� bÞ=2a juBðy;rÞ � uBðx;rÞj

aM

ð
Bðx;2rÞ

ju� uBðx;2rÞjdma aMr

ð
Bðx;2rÞ

j‘ujpdma

 !1=p
;

which shows that

Hq
yðAÞaHq

yðBðx; rÞÞa rq
aMrq�n�aþp

ð
Bðx;2rÞ

j‘ujpdma:

Next we suppose that

juðxÞ � uBðx;rÞjb ð1� bÞ=2

for each point x A A. Since every point of A is a Lebesgue point of u by our

assumption, we have by Poincaré’s inequality
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ð1� bÞ=2a
Xy
j¼0

juBðx;2�jrÞ � uBðx;2�j�1rÞj

aM
Xy
j¼0

ð
Bðx;2�jrÞ

ju� uBðx;2�jrÞjdma

aM
Xy
j¼0

2�jr

ð
Bðx;2�jrÞ

j‘ujpdma

 !1=p
:

Since q > nþ a� p, there exists a number j ¼ jðxÞ such that

ð2�jrÞq aMrq�n�aþp

ð
Bðx;2�jrÞ

j‘ujpdma:

By a covering lemma, we can find a pairwise disjoint collection fBðxi; riÞgyi¼1

for which xi A A, ri ¼ 2�jðxiÞr and AH6y
i¼1

Bðxi; 5riÞ. Hence we see that

Hq
yðAÞa

Xy
i¼1

ð5riÞq aMrq�n�aþp
Xy
i¼1

ð
Bðxi ; riÞ

j‘ujpdma

aMrq�n�aþp

ð
Bðx;2rÞ

j‘ujpdma;

as desired.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Let u be a ðp; aÞ-quasicontinuous function in

W 1;pðRnnE; maÞ. Let uþ (resp. u�) be a ðp; aÞ-quasicontinuous extension of

ujRn
þ (resp. ujRn

�) to Rn as before Proposition 1. By Theorem 3 and Remark

2, there exists a set F HRn�1 such that Hn�1ðFÞ ¼ 0 and

( i )
Ð
Bðx;xn=2Þ uðyÞdmaðyÞ tends to uþðxÞ as x ! x with x A Tðx; aÞ,

(ii)
Ð
Bðx;�xn=2Þ uðyÞdmaðyÞ tends to u�ðxÞ as x ! x with x A Tðx; aÞ

for each x A Rn�1nF and a > 0, where Tðx; aÞ as in Proposition 1. Consider

the set ~EE ¼ fx A E : uþðxÞ0 u�ðxÞg. To complete the proof, we have only to

prove

Hn�1ð ~EEÞ ¼ 0;

with the aid of Proposition 1. For this it su‰ces to show that

lim sup
r!0

r1�n

ð
Bðx; rÞ

j‘uðxÞjpdmaðxÞ > 0 ð6Þ

for Hn�1-a.e. x A ~EEnF .
Fix x A ~EEnF . Since uþðxÞ0 u�ðxÞ, by considering a‰ne transformations,

we assume that uþðxÞ ¼ 0 and u�ðxÞ ¼ 1. Further, we assume that the ðp� aÞ-
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porosity condition holds for x. Let ri, q, Gi and Ri be retained from the

definition of ðp� aÞ-porosity for E at x, and take xi A Rn�1 VBðx; riÞ such that

Gi HBðxi;RiÞ. We may assume that ub 1=2 in a set Ai HGi with Hq
yðAiÞb

Hq
yðGiÞ=2; otherwise, consider the function 1� uðx 0;�xnÞ.

First suppose uþ
Bðxi ;RiÞ a 1=4. Since uþ b 1=2 ðp; aÞ-q.e. on Ai and q >

nþ a� p, it follows from Lemma 4 that

Hq
yðAiÞaMR

q�n�aþp
i

ð
Bðxi ;2RiÞ

j‘uþðxÞjpdma:

Then, since Hq
yðAiÞbHq

yðGiÞ=2bCR
q
i =2, we haveð

Bðxi ;2RiÞ
j‘uþðxÞjpdma bMR

nþa�p
i : ð7Þ

Next suppose uþ
Bðxi ;RiÞ b 1=4 for large i. Since

Ð
Bðx;xn=2Þ uðyÞdmaðyÞ tends

to zero as x ! x along Tðx; aÞ for every a > 0, condition (ii) of ðp� aÞ-porosity
implies that uþ

Bðyi ;RiÞ a 1=8 with yi ¼ xi þ ð0; . . . ; 0; 2RiÞ for su‰ciently large i.

Then we have by Poincaré’s inequality

1

8
a uþBðxi ;RiÞ � uþBðyi ;RiÞ

aM

ð
Bðxi ;3RiÞ

juþ � uþBðxi ;3RiÞjdma

aMRi

ð
Bðxi ;3RiÞ

j‘uþðxÞjpdma
� �1=p

;

so that ð
Bðxi ;3RiÞ

j‘uþðxÞjpdma bMR
nþa�p
i : ð8Þ

Using (7), (8) and Ri a 2ri, we obtainð
Bðx;7riÞ

j‘uðxÞjpdma b
1

2

ð
Bðxi ;3RiÞ

j‘uþðxÞjpdma bMR
nþa�p
i :

Hence it follows from condition (ii) of ðp� aÞ-porosity thatð
Bðx;7riÞ

j‘uðxÞjpdma bMrn�1
i :

This implies that (6) holds at x. Now Theorem 1 is completely proved.

Remark 3. We can construct a ðp� aÞ-porous set EH ½0; 1�n�1 such that

E is not removable for W 1;qðRn; maÞ when q < p as in Koskela [6].
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4. The case pb nþ a

For later use, we need the following result, which can be obtained with a

slight modification of the proof of Theorem 2.

Proposition 2. Let 1 < p <y, a ¼ p� n > �1 and f be as in Theorem

2. For g > 0, set q ¼ gðn� 1þ aÞ. If x A Rn�1nEqð f Þ, then

lim
x!x;x AVgðx;aÞ

ð
Bðx;xn=2Þ

Uf ðyÞdmaðyÞ ¼ Uf ðxÞ

for every a > 0, where

Vgðx; aÞ ¼ fx A Rn
þ : jx� xj expð�1=jx� xjgÞ < axng:

Proof. For x A Rn
þ and y A Bðx; xn=2Þ, write

Uf ðyÞ ¼ u1ðyÞ þ u2ðyÞ þ u3ðyÞ

as in the proof of Theorem 2. In view of the estimates of u1 and u3 in the

proof of Theorem 2, we have

lim
x!x;x ARn

þ

ð
Bðx;xn=2Þ

u1ðyÞdmaðyÞ ¼ Uf ðxÞ

and

lim
x!x;x ARn

þ

ð
Bðx;xn=2Þ

u3ðyÞdmaðyÞ ¼ 0:

By Hölder’s inequality and Lemma 2 we have for y A Bðx; xn=2Þ

u2ðyÞa
ð
Bðx;2jx�yjÞnBðy;yn=2Þ

jz� yjp
0ð1�nÞjznj�ap 0=p

dz

 !1=p 0

�
ð
Bðx;2jx�yjÞ

f ðzÞpjznjadz
 !1=p

aM ðlogð2jx� yj=ynÞÞp�1

ð
Bðx;2jx�yjÞ

f ðzÞpdmaðzÞ
 !1=p

:

Hence we obtain

u2ðyÞaM ðlogð6jx� xj=xnÞÞp�1

ð
Bðx;3jx�xjÞ

f ðzÞpdmaðzÞ
 !1=p

:

Since x B Eqð f Þ and ðlogð6jx� xj=xnÞÞp�1
aMjx� xj�q for x A Vgðx; aÞ, we

see that
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lim
x!x;x AVgðx;aÞ

ð
Bðx;xn=2Þ

u2ðyÞdmaðyÞ ¼ 0:

The proof of the proposition is now completed.

Using Proposition 2 and representation (4) of Sobolev functions, we have

the following results.

Proposition 3. Let 1 < p <y, a ¼ p� n > �1 and u be as in Theorem 3.

For g > 0, set q ¼ gðn� 1þ aÞ. If x A Rn�1nðFðj‘ujÞUEqðj‘ujÞÞ, then

lim
x!x;x AVgðx;aÞ

ð
Bðx;xn=2Þ

uðyÞdmaðyÞ exists and is finite

for every a > 0.

Proposition 4. Let 1 < p <y and a ¼ p� n > �1. Then EHRn�1 is

removable for W 1;pðRn; maÞ if and only if each ðp; aÞ-quasicontinuous function

u A W 1;pðRnnE; maÞ satisfies

lim
x!x;x AVðx;aÞ

ð
Bðx;xn=2Þ

uðyÞdmaðyÞ ¼ lim
x!x; x AVðx;aÞ

ð
Bðx;�xn=2Þ

uðyÞdmaðyÞ

for Hn�1-a.e. x A E and every a > 0. Here Vðx; aÞ ¼ Vðn�1Þ=ðn�1þaÞðx; aÞ.

As in the proof of Theorem 1, we obtain the following result.

Theorem 4. Let 1 < p <y and a ¼ p� n > �1. Suppose that EHRn�1

satisfies for Hn�1-a.e. x A E there exist a sequence of positive numbers frig
tending to zero, a number q > 0 and a positive constant C such that Bðx; riÞV
ðRn�1nEÞ includes a set Gi of diameter Ri satisfying

( i ) Hq
yðGiÞbCR

q
i ; and

(ii) Ri bCri expð�r
ðn�1Þ=ð1�n�aÞ
i Þ

for all i. Then E is removable for W 1;pðRn; maÞ.

Proof. Let u be a ðp; aÞ-quasicontinuous function in W 1;pðRnnE; maÞ.
Let uþ and u� be as before Proposition 1. By Proposition 3 and Remark 2,

there exists a set F HRn�1 such that Hn�1ðF Þ ¼ 0 and

( i )
Ð
Bðx;xn=2Þ uðyÞdmaðyÞ tends to uþðxÞ as x ! x with x A Vðx; aÞ,

(ii)
Ð
Bðx;�xn=2Þ uðyÞdmaðyÞ tends to u�ðxÞ as x ! x with x A Vðx; aÞ

for each x A Rn�1nF and a > 0, where Vðx; aÞ as in Proposition 4. Consider

the set ~EE ¼ fx A E : uþðxÞ0 u�ðxÞg. To complete the proof, we have only

to prove

Hn�1ð ~EEÞ ¼ 0;
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with the aid of Proposition 4. For this we show that

lim sup
r!0

ð
Bðx; rÞ

j‘uðxÞjpdmaðxÞ > 0 ð9Þ

for Hn�1-a.e. x A ~EEnF , which is a statement stronger than (6).

Fix x A ~EEnF . Since uþðxÞ0 u�ðxÞ, by considering a‰ne transformations,

we assume that uþðxÞ ¼ 0 and u�ðxÞ ¼ 1. Further, we assume that the condi-

tion holds for x. Take xi A Rn�1 VBðx; riÞ such that Gi HBðxi;RiÞ. We may

assume that ub 1=2 in a set Ai HGi with Hq
yðAiÞbHq

yðGiÞ=2; otherwise, con-
sider the function 1� uðx 0;�xnÞ.

First suppose uþ
Bðxi ;RiÞ a 1=4. Since uþ b 1=2 ðp; aÞ-q.e. on Ai and q > 0,

as in the proof of Theorem 1, we haveð
Bðxi ;2RiÞ

j‘uþðxÞjpdma bM: ð10Þ

Next suppose uþ
Bðxi ;RiÞ b 1=4 for large i. Since

Ð
Bðx;xn=2Þ uðyÞdmaðyÞ tends

to zero as x ! x along Vðx; aÞ for every a > 0, condition (ii) implies that

uþ
Bðyi ;RiÞ a 1=8 with yi ¼ xi þ ð0; . . . ; 0; 2RiÞ for su‰ciently large i. Then we

have by Poincaré’s inequality

1

8
a uþBðxi ;RiÞ � uþBðyi ;RiÞ

aM

ð
Bðxi ;3RiÞ

juþ � uþBðxi ;3RiÞjdma

aMRi

ð
Bðxi ;3RiÞ

j‘uþðxÞjpdma

 !1=p
;

so that ð
Bðxi ;3RiÞ

j‘uþðxÞjpdma bM: ð11Þ

Using (10), (11) and Ri a 2ri, we obtainð
Bðx;7riÞ

j‘uðxÞjpdma b
1

2

ð
Bðxi ;3RiÞ

j‘uþðxÞjpdma bM:

This implies that (9) holds at x. Now Theorem 4 is completely proved.

Remark 4. If EHRn�1 has empty interior (in Rn�1), then E is remov-

able for W 1;pðRn; maÞ whenever p > nþ a. This immediately follows from

[1, Lemma 2.5 (1)], [2, Theorem 4.12] and the next proposition.
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Proposition 5. Let u A W 1;pðRn; maÞ be a ðp; aÞ-quasicontinuous func-

tion on Rn. If p > nþ a, then ujRn�1 is Hölder continuous with exponent

ðp� n� aÞ=p on Rn�1.

Proof. In this proof, we identify x 0 A Rn�1 with ðx 0; 0Þ A Rn. In view of

[5, Theorem 3.5] or [10, Theorem 8.2.7], we see that every point of Rn�1

is a Lebesgue point of u. For x 0; y 0 A Rn�1 with r ¼ jx 0 � y 0j, set Bjðx 0Þ ¼
Bðx 0; 2�jrÞ and Bjðy 0Þ ¼ Bðy 0; 2�jrÞ. Using the triangle inequality and Poin-

caré’s inequality we see that

juðx 0Þ � uB0ðx 0Þja
Xy
j¼0

juBjþ1ðx 0Þ � uBjðx 0Þj

a
Xy
j¼0

ð
Bjþ1ðx 0Þ

ju� uBjðx 0Þjdma

aM
Xy
j¼0

ð
Bjðx 0Þ

ju� uBjðx 0Þjdma

aM
Xy
j¼0

2�jr

ð
Bjðx 0Þ

j‘ujpdma

 !1=p

aMr1�ðnþaÞ=p
Xy
j¼0

2�jð1�ðnþaÞ=pÞ
ð
Rn

j‘ujpdma
� �1=p

aMr1�ðnþaÞ=p
ð
Rn

j‘ujpdma
� �1=p

:

In the last inequality, we used the assumption that p > nþ a. Moreover,

juB0ðx 0Þ � uB0ðy 0Þja juB0ðx 0Þ � uB�1ðx 0Þj þ juB�1ðx 0Þ � uB0ðy 0Þj

aM

ð
B�1ðx 0Þ

ju� uB�1ðx 0Þjdma

aMr

ð
B�1ðx 0Þ

j‘ujpdma

 !1=p

aMr1�ðnþaÞ=p
ð
Rn

j‘ujpdma
� �1=p

:

Consequently, we have
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juðx 0Þ � uðy 0ÞjaMjx 0 � y 0j1�ðnþaÞ=p
ð
Rn

j‘ujpdma
� �1=p

for all x 0; y 0 A Rn�1. Thus Proposition 5 is proved.
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