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Abstract. Behavior of least-energy solutions to Matukuma type equations with an

inverse square potential are discussed. The di¤erence of the behavior of solutions are

obtained. We also consider the behavior of scaled solutions and obtain a limiting

function.

1. Introduction

This is a note on the behavior of least-energy solutions to

Duþ KðxÞu1þe ¼ 0 in Rnð1:1Þ

as e # 0 under the condition

KðxÞ A C1ðRnÞ;KðxÞ > 0 in Rn;

x � ‘KðxÞ þ 2KðxÞb 0;D 0 on Rn;

lim
jxj!y

jxj2KðxÞ ¼ c0 > 0:

8>><
>>:ðKÞ

In some cases, we assume further that KðxÞ satisfies

KðxÞ ¼ jxj�2ðc0 þ c1jxj�1 þ k1ðxÞÞ on jxjbR�ðK:1Þ

with R� > 0, c1 A R, where k1 satisfies k1ðjxjÞ ¼ Oðjxj�mÞ and x � ‘k1ðxÞ ¼
Oðjxj�mÞ for some m > 1.

A typical example of KðxÞ which satisfies (K) with c0 ¼ 1 is that
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KðxÞ ¼ 1

1þ jxj2
;

which is exactly the same KðxÞ appearing in the original Matukuma equa-

tion. Moreover, this KðxÞ also satisfies (K.1) with c1 ¼ 0, since KðxÞ ¼
jxj�2ð1� 1=fð1þ jxj2Þjxj2g.

By the terminology ‘‘least-energy’’ solution, we mean a positive solution to

(1.1) determined by the minimization problem

Se :¼ inf
u AD;uD0

Ð
R n j‘uj2dx

ð
Ð
R n KðxÞu2þe dxÞ2=ð2þeÞ ;ð1:2Þ

where D is the space which is the completion of Cy
0 ðRnÞ with respect to the

norm k‘ �k2. Then a function ue which attains (1.2) is a solution to

Due þ
Se

ð
Ð
Rn KðxÞjuej2þeÞe=ð2þeÞ KðxÞu1þe

e ¼ 0:ð1:3Þ

Thus, by setting

~uue :¼
S
1=e
e

ð
Ð
Rn KðxÞjuej2þe

dxÞ1=ð2þeÞ ue;

~uue satisfies (1.1) and ð
R n

j‘~uuej2dx ¼ Sð2þeÞ=e
e :ð1:4Þ

Related to (1.2), we introduce the value

SðlÞ :¼ inf
u AD;uD0

Ð
R n j‘uj2dx

ð
Ð
Rn jxj�ljuj2ðn�lÞ=ðn�2Þ

dxÞðn�2Þ=ðn�lÞð1:5Þ

with 0 < la 2. As is known by Egnell [2] or Horiuchi [5, 6], SðlÞ is the best

constant of the embedding

D ,! L
p
l :¼ u j

ð
R n

jxj�ljujpdx < y

� �

with p ¼ 2ðn� lÞ=ðn� 2Þ. The extremal function is

UðxÞ ¼ 1þ 1

ðn� 2Þðn� lÞ jxj
2�l

� ��ðn�2Þ=ð2�lÞ
:ð1:6Þ

However, the pointwise limit of UðxÞ as l " 2 is
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lim
l"2

UðxÞ ¼ 1; x ¼ 0;

0; x0 0;

�

which is never a minimizer for Sð2Þ. Note that Sð2Þ ¼ ðn� 2Þ2=4 in case of

l ¼ 2 in view of the Hardy inequality

ðn� 2Þ2

4

ð
Rn

u2

jxj2
dxa

ð
Rn

j‘uj2dx:

We also note that there exists no minimizer for Sð2Þ (see, e.g., [2]).

In this paper, we investigate the behavior of Se and solutions ue as well as

their scaled properties as e # 0.

Theorem 1.1. Under (K), the behavior of Se is as follows:

lim
e#0

Se ¼
ðn� 2Þ2

4c0
:

Similar to Kabeya [7] for slowly decaying KðxÞ (KðxÞ@ jxj�l with

0 < l < 2), the behavior of the norm of a least-energy solution is obtained. In

view of the Pohozaev identity (see Lemma 2.2 of [7] or Proposition 1 of Naito

[12]) yields ð
Rn

n� 2

2
� n

2þ e

� �
� x � ‘KðxÞ
ð2þ eÞKðxÞ

� �
KðxÞjuej2þe

dx ¼ 0:ð1:7Þ

Under (K), if
Ð
Rn KðxÞu2 dx < y (especially u A D), then u1 0 for e ¼ 0.

However, depending on c0, any least-energy solution blows up in this case.

This is di¤erent from the case where KðxÞ is slowly decaying as studied in [7].

One explanation is that the limiting problem for the slowly decaying case is

still a nonlinear one, while this one is a linear one. The limiting problem

(linear problem) in this case does not admit any scalings which erase c0. Thus

the dependence on c0 arises.

The case for the faster decaying KðxÞ will be discussed in Kabeya and

Yanagida [8].

For radial solutions, the blowup or vanishing behaviors are obtained in

Theorem 2.5 of Yanagida and Yotsutani [15]. We also see more precise

behaviors of solutions than those obtained in [15].

Theorem 1.2. Under (K), the norms k‘uek2 and kueky of any least-energy

solution ue to (1.1) blow up if 0 < c0 < ðn� 2Þ2=4 and vanish if c0 > ðn� 2Þ2=4.
Moreover, in either case, ue satisfies

lim
e#0

k‘ueke
2 ¼

ðn� 2Þ2

4c0
:
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Note that the blowup and vanishing are determined by the limit of Se in

Theorem 1.1.

In the ‘‘critical case’’ c0 ¼ ðn� 2Þ2=4, we need a careful calculation and we

impose further assumptions on KðxÞ.

Theorem 1.3. In the case where c0 ¼ ðn� 2Þ2=4, suppose that (K) and

(K.1) hold. Then the norms k‘uek2 and kueky of any least-energy solution blow

up.

Using Theorems 1.2 and 1.3, by a scaling, we see a limiting behavior of a least-

energy solution. Unfortunately, the scaling is only valid for any domain that

are the exterior of a ball centered at the origin.

Theorem 1.4. Suppose that (K) and (K.1) hold. For any least-energy

solution ueðxÞ and for any R > 0, let

veðyÞ :¼
ueðxÞ

max
jxjbR=e

ueðxÞ
with x ¼ y

e
:ð1:8Þ

Then there exists a subsequence fejg such that the maximum point Qej of vej
converges to Q� and vej ðyÞ converges locally uniformly to VðyÞ on fy A Rn j
Ra jyjaR 0g, where V is a positive solution to

DyV þ ~cc

jyj2
V ¼ 0;

VðQ�Þ ¼ 1; lim
jyj!y

VðyÞ ¼ 0;

8>><
>>:ð1:9Þ

with any R 0 > R and some 0 < ~cca ðn� 2Þ2=4 and Dy being the Laplacian with

respect to y.

Remark 1.1. In Theorem 1.2, we see that k‘uek2 blows up or vanishes as

e # 0. By the scaling (1.8), despite the di¤erence of the behavior of k‘uek2, we
can extract a special limiting function, to which the scaled solution converges.

If we scale

veðyÞ :¼
ueðxÞ
kueky

; x ¼ y

e
;

then we only have the limiting function

VðyÞ ¼ 1; y ¼ 0;

0; y0 0:

�

Thus we have used the scaling as in Theorem 1.4 to derive a useful infor-

mation.
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If KðxÞ is radial and Kr a 0, then ue must be radial by Gidas, Ni and

Nirenberg [3]. In this case, we can take jQ�j ¼ R without extracting a sub-

sequence and the limiting solution is a radial one since the local uniform limit

of a radial function is also radial. However, we do not know whether positive

solutions of (1.9) are necessarily radially symmetric or not.

In Section 2, we give a proof of Theorem 1.1. Fundamental Lemmas

for proofs of Theorems 1.2, 1.3 and 1.4 are given in Section 3. Proofs of

Theorems 1.2, 1.3 and 1.4 are given in Section 4. In Section 5, we give a

proof of Lemma 2.1 for the sake of the reader’s convenience as an appendix.

2. Proof of Theorem 1.1

First we note that SðlÞ is expressed in terms of the gamma functions and

the exact value is obtained in Lemma 3.1 of Horiuchi [6] and Theorem 1.1 of

Catrina and Wang [1]. The continuity of SðlÞ at l ¼ 2 is shown also in [1].

We summarize their results as below. We remark that they studied wider class

of the weighted Sobolev type embeddings.

Lemma 2.1 (Horiuchi [6], Catrina and Wang [1]). The explicit form of

SðlÞ is given by

SðlÞ ¼ ðn� 2Þ2
on

2� l

� �ð2�lÞ=ðn�lÞ
G

n� 2lþ 2

2� l

� �
G

n� 2

2� l

� �

G
n� l

2� l

� �� �2ðn�2Þ=ðn�lÞ
G

2ðn� lÞ
2� l

� �� �ð2�lÞ=ðn�lÞ

for l < 2 and SðlÞ ! ðn� 2Þ2=4 ¼ Sð2Þ as l " 2, where on is the surface area of

the unit sphere in Rn.

For the sake of self-containedness, we will give a proof in the Appendix.

The following is the estimate of the supremum norm, which will be useful

for the uniform estimate. The estimate is essentially due to Lemma B.3 of

Struwe [13] (see also Lemma 7 of Han [4]).

Lemma 2.2. For any classical solution ue A D to (1.1), there exists a con-

stant ĈCe ¼ ĈCðk‘ueke
2Þ > 0 such that kueky a ĈCek‘uek2.

Proof. We regard (1.1) as

Due þ ðKðxÞue
e Þue ¼ 0:

Since KðxÞ A LyðRnÞ and since e> 0 is small, we see that KðxÞu e
e A LaðBðQe; 1ÞÞ

with a > n=2. Then as in Lemma B.3 (pp. 244–245) of [13] or as in Lemma 7

of [4], we have
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max
BðQe;1=2Þ

ue aCðkKðxÞue
eka; a; nÞk‘uek2;ð2:1Þ

where C depends on La-norm of KðxÞue
e , a and n. For La-norm of KðxÞu e

e , by

the Hölder and Sobolev inequalities, for su‰ciently small e > 0, we haveð
BðQe;1Þ

ðKðxÞue
e Þ

a
dx

a kKka
y

ð
BðQe;1Þ

u ea
e dx

a kKka
yjBðQe; 1Þjf2n�ðn�2Þeag=ð2nÞ

ð
BðQe;1Þ

u2n=ðn�2Þ
e dx

 !ðn�2Þea=ð2nÞ

aCkKka
yjBðQe; 1Þj k‘uek ea

2

where C is a constant independent of e. Since ue A D by assumption, we have

the desired estimate (The dependence of ĈCe on e comes from the e-dependence

of k‘uek2 and note that a and n are independent of e). r

Using Lemma 2.2, we prove Theorem 1.1.

Proof of Theorem 1.1. Before proving the equality, we easily see that Se

is uniformly bounded. Then as in the proof of Lemma 2.4 in Kabeya [7], we

prove

lim inf
e#0

Se b
1

c0
Sð2Þ and lim sup

e#0
Se a

1

c0
Sð2Þ:

First we prove lim inf e#0 Se b ðc0Þ�1
Sð2Þ. Let ueðxÞ be a function which attains

Se with
Ð
R n KðxÞu2þe

e dx ¼ 1 and let veðyÞ ¼ ueðxÞ with x ¼ y=e. Then, ue is a

solution to

Due þ SeKðxÞu1þe
e ¼ 0

and we have ð
R n

j‘xuej2dx ¼ 1

en�2

ð
R n

j‘yvej2dy ¼ Se

and ð
R n

KðxÞu2þe
e dx ¼ 1

en�2

ð
R n

1

e2
K

y

e

� �
v2þe
e dy ¼ 1;

where ‘x, ‘y denote the gradient with respect to x and y, respectively. Hence

we get
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Se ¼
Ð
Rn j‘xuej2dx

ð
Ð
R n KðxÞu2þe

e dxÞ2=ð2þeÞð2:2Þ

¼
e�ðn�2Þ Ð

R n j‘yvej2dy

e�2ðn�2Þ=ð2þeÞ
Ð
R n

1

e2
K

y

e

� �
v2þe
e dy

� �2=ð2þeÞ

b

Ð
R n j‘yvej2dy

eðn�2Þe=ð2þeÞ
Ð
Rn

1

e2
K

y

e

� �
v2e dy

� �2=ð2þeÞ
max
Rn

ve

� �2e=ð2þeÞ :

By Lemma 2.2 and since k‘uek2 ¼ S
1=2
e is uniformly bounded, we see that the

right-hand side of (2.1) for KðxÞ replaced by SeKðxÞ is uniformly bounded.

Hence, in view of kueky ¼ kveky, we have lim supe#0ðmaxR n veÞ2e=ð2þeÞ
a 1.

Thus, taking a limit infimum, we obtain

lim inf
e#0

Se b lim inf
e#0

Ð
R n j‘yvej2dy

c0
Ð
R n jyj�2

v2e dy
b

1

c0
Sð2Þ ¼ ðn� 2Þ2

4c0

in view of

lim
e#0

1

e2
K

y

e

� �
¼ c0jyj�2;

where the convergence is locally uniformly in Rnnf0g by (K), and the Hardy

inequality.

To prove lim supe#0 Se a ð1=c0ÞSð2Þ, we set wðxÞ ¼ jxj�ðn�2Þ=2jeðjxjÞ.
Here, jeðb0Þ A Cy

0 ðð0;yÞÞ satisfies supp je H ½1; 2e�1�, max½0;yÞ j ¼ 1,

supp j 0 H ½1; 2�U ½e�1; 2e�1�, jeðxÞ1 f ðxÞ on ½1; 2� such that f A Cyð0;yÞ, ful-
fills f ð1Þ ¼ 0, f ðxÞ > 0 in ð1; 2� and f ð2Þ ¼ 1, and jeðxÞ1 gðexÞ on ½e�1; 2e�1�,
where gðxÞ A Cyð0;yÞ satisfies gð1Þ ¼ 1, gðxÞ > 0 in ½1; 2Þ and gð2Þ ¼ 0.

Since w 0 ¼ �fðn� 2Þ=2gr�n=2je þ r�ðn�2Þ=2j 0
e, we haveð

R n

j‘wj2dx

¼ on

ðy
0

n� 2

2

� �2
r�nj2

e � ðn� 2Þr�ðn�1Þjej
0
e þ r�ðn�2Þðj 0

eÞ
2

( )
rn�1 dr

¼ n� 2

2

� �2
on

ðy
0

r�1j2
e dr� ðn� 2Þon

ðy
0

jej
0
e drþ on

ðy
0

rðj 0
eÞ

2
dr

¼ n� 2

2

� �2
on

ðy
0

r�1j2
e dr� ðn� 2Þon

ðy
0

jej
0
e drþ on

ð 2
1

þ
ð2e�1

e�1

 !
rðj 0

eÞ
2
dr:
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The second and third terms yield

ðy
0

jej
0
e dr ¼

1

2
j2
e

� �y
0

¼ 0

and

ð2
1

þ
ð2e�1

e�1

 !
rðj 0

eÞ
2
dra 6þ 4e2

ð 2e�1

e�1

r dr ¼ 12;

respectively. Thus we get

Se a

n� 2

2

� �2
on

Ð 2e�1

1 r�1j2
e drþ 12on

ð
Ð
R n KðxÞw2þe dxÞ2=ð2þeÞ :ð2:3Þ

As for the denominator, for any h > 0, take R > 0 so large that

jxj2KðxÞb c0 � h

holds for any x A RnnBR. Then we haveð
R n

KðxÞw2þe dx

¼
ð
B
2e�1nB1

KðxÞjxj�ðn�2Þð2þeÞ=2j2þe
e dx

b

ð
B
2e�1nBR

jxj2KðxÞjxj�n�ðn�2Þe=2j2þe
e dxþ

ð
BRnB2

KðxÞjxj�ðn�2Þð2þeÞ=2
dx

b
2

e

� ��ðn�2Þe=2
ðc0 � hÞon

ð2e�1

R

r�1j2þe
e drþ

ð
BRnB2

KðxÞjxj�ðn�2Þð2þeÞ=2
dx

for any e�1 > R. The second term is uniformly bounded. Since je
e ! 1

locally uniformly in ð1;yÞ by the definition of je, we see that

lim
e#0

Ð 2e�1

1 r�1j2
e dr

ð
Ð 2e�1

R
r�1j2þe

e drÞ2=ð2þeÞ ¼ 1:

Thus taking a limit supremum of (2.3) as e # 0, we have

lim sup
e#0

Se a
1

c0 � h

n� 2

2

� �2
:
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Since Sð2Þ ¼ ðn� 2Þ2=4 and since h > 0 is arbitrary, we obtain lime#0 Se ¼
ð1=c0ÞSð2Þ. r

3. Fundamental properties of solutions

To prove Theorems 1.3 and 1.4, we need to estimate the location of

the maximum point of ueðxÞ and kuky from above. First we need a

uniform a priori estimate for ue satisfying (1.4), almost identical to Lemma

2.2.

Lemma 3.1. For any least-energy solution ue to (1.1), there exists a con-

stant ~CC > 0 independent of e such that kueke
y a ~CC.

Proof. The proof is almost identical to that of Lemma 2.2. In the proof

of Lemma 2.2, we just note here thatð
BðQe;1Þ

ðKðxÞue
e Þ

a
dxaCkKka

yjBðQe; 1Þj k‘uekea
2

a 2CkKka
yjBðQe; 1Þj

ðn� 2Þ2

4c0

 !a
;

with a > n=2 by Theorem 1.1, where C is a constant independent of e. Thus,

the La norm kKðxÞue
ekL aðBðQe;1=2ÞÞ is bounded independent of e. Hence, the

constant in (2.1) is independent of e. By Theorem 1.1 and (1.4), k‘ueke
2 is

uniformly bounded. Thus, we have the desired estimate. r

Next, we show a decay property of ue.

Lemma 3.2. Under (K), there exists R1 > 0 independent of e such that

ueðxÞ ¼ ~CCejxj�ðn�2Þ þ heðxÞ

holds on jxjbR1 with ~CCe > 0 and a higher order term heðxÞ ¼ Oðjxj�ðn�2Þð1þeÞÞ
at infinity.

Proof. As in Lemma 3.5 of Kabeya [7] (if KðxÞ is radial, the decay order

is obtained by Li and Ni [9, 11]), we deduce the decay order of ue. Using the

Green function of �D in Rn, we have

ueðxÞ ¼
1

ðn� 2Þon

ð
Rn

KðyÞueðyÞ1þe

jx� yjn�2
dy:ð3:1Þ

By the Hölder inequality, we have
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ð
Rn

KðyÞueðyÞ1þe

jx� yjn�2
dya

ð
jx�yja1

KðyÞueðyÞ1þe

jx� yjn�2
dy

þ
ð
jx�yjb1

KðyÞ
jx� yjn�2

 !2n=ðnþ2�ðn�2ÞeÞ

dy

8<
:

9=
;
ðnþ2�ðn�2ÞeÞ=ð2nÞ

�
ð
jx�yjb1

u2n=ðn�2Þ
e dy

 !ðn�2Þð1þeÞ=ð2nÞ

:

Since KðyÞ@ jyj�2 at jyj ¼ y, kueky is finite and since ue A D, the right-hand

side is finite.

From now on, R0 > 0 is supposed to be large so that

c0

2
a jxj2KðxÞa 2c0ð3:2Þ

on jxjbR0, and we take x so that jxjbR1 :¼ maxf2R0;R0 þ 1g, and C

denotes the generic constant independent of e. x may be taken even larger if

necessary.

For jxjbR1, first we note that

maxjx�yja1 KðyÞ
KðxÞ aC

with C > 0 independent of x. Indeed, jx� yja 1 implies jxj � 1a jyja
jxj þ 1. Thus we have

KðyÞa 2c0

jyj2
a

2c0

ðjxj � 1Þ2

in view of (3.2) for jxjbR1. Again from (3.2), there holds

KðxÞb c0

2jxj2

and we get

maxjx�yja1 KðyÞ
KðxÞ a

4jxj2

ðjxj � 1Þ2

for jxjbR1. Note that the right-hand side is uniformly bounded for jxjbR1.

Thus we see thatð
jx�yja1

KðyÞueðyÞ1þe

jx� yjn�2
dyaCkuekyKðxÞ

ð
jx�yja1

1

jx� yjn�2
dyaCk‘uek2jxj

�2
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holds by (2.1) and Lemma 3.1 (kueke
y is uniformly bounded). Next, we

decompose ð
jx�yjb1

KðyÞ
jx� yjn�2

 !2n=ðnþ2�ðn�2ÞeÞ

dy ¼ I1 þ I2 þ I3 þ I4

with

I1 ¼
ð
1ajx�yjajxj=2

KðyÞ
jx� yjn�2

 !2n=ðnþ2�ðn�2ÞeÞ

dy;

I2 ¼
ð
jxj=2ajx�yja2jxj

KðyÞ
jx� yjn�2

 !2n=ðnþ2�ðn�2ÞeÞ

dy;

I3 ¼
ð

jx�yjb2jxj
2jxjbjyjbjxj

KðyÞ
jx� yjn�2

 !2n=ðnþ2�ðn�2ÞeÞ

dy;

I4 ¼
ð
jx�yjb2jxj
jyjb2jxj

KðyÞ
jx� yjn�2

 !2n=ðnþ2�ðn�2ÞeÞ

dy:

On 1a jx� yja jxj=2, we see jyjb jxj=2bR0 and get

I1 aCjxj�4n=fnþ2�ðn�2Þeg
ðjxj=2
1

r�2nðn�2Þ=ðnþ2�ðn�2ÞeÞþn�1 dr

aCðjxj�4n=ðnþ2�ðn�2ÞeÞ þ jxj�nðn�2Þð1þeÞ=ðnþ2�ðn�2ÞeÞÞ:

For I2, we have

I2 aCjxj�2nðn�2Þ=ðnþ2�ðn�2ÞeÞ
ð
jyjaR1

þ
ð
R1ajyja3jxj

 !
KðyÞ2n=ðnþ2�ðn�2ÞeÞ

dy

aCðjxj�2nðn�2Þ=ðnþ2�ðn�2ÞeÞ þ jxj�nðn�2Þð1þeÞ=ðnþ2�ðn�2ÞeÞÞ;

since jx� yja 2jxj implies jyja 3jxj. Similarly, for I3, we get

I3 aCjxj�2nðn�2Þ=ðnþ2�ðn�2ÞeÞjxj�4n=ðnþ2�ðn�2ÞeÞ
ð
jxjajyja2jxj

dy

aCjxj�nðn�2Þð1þeÞ=ðnþ2�ðn�2ÞeÞ:

Finally, for I4, we note that jx� yjb 2jxj with jyjb 2jxj implies jx� yjb jyj=2
(indeed, jx� yjb jyj � jxjb jyj � jyj=2). Thus we have
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I4 aC

ð
jx�yjb2jxj
jyjb2jxj

jyj�2n2=ðnþ2�ðn�2ÞeÞ
dyaCjxj�nðn�2Þð1þeÞ=ðnþ2�ðn�2ÞeÞ:

Hence we obtain

ð
jx�yjb1

KðyÞ
jx� yjn�2

 !2n=ðnþ2�ðn�2ÞeÞ

dy

0
@

1
A
ðnþ2�ðn�2ÞeÞ=ð2nÞ

¼ ðI1 þ I2 þ I3 þ I4Þðnþ2�ðn�2ÞeÞ=ð2nÞ

aCðjxj�2 þ jxj�ðn�2Þð1þeÞ=2 þ jxj�ðn�2ÞÞ:

Thus we have

ueðxÞaCk‘uek2jxj
�2 þ Ck‘uek2jxj

�minf2; ðn�2Þð1þeÞ=2gð3:3Þ

¼ Cejxj�minf2; ðn�2Þð1þeÞ=2g

for jxjbR1, with Ce ¼ Ck‘uek2, again by (2.1) and Lemma 3.1 for the es-

timate of the second term.

By (3.3), we can estimate the right-hand side of (3.1) directly. We again

decompose ð
R n

KðyÞueðyÞ1þe

jx� yjn�2
dy ¼ J1 þ J2 þ J3 þ J4 þ J5

with

J1 ¼
ð
jx�yja1

KðyÞueðyÞ1þe

jx� yjn�2
dy;

J2 ¼
ð
1ajx�yjajxj=2

KðyÞueðyÞ1þe

jx� yjn�2
dy;

J3 ¼
ð
jxj=2ajx�yja2jxj

KðyÞueðyÞ1þe

jx� yjn�2
dy;

J4 ¼
ð

jx�yjb2jxj
2jxjbjyjbjxj

KðyÞueðyÞ1þe

jx� yjn�2
dy;

J5 ¼
ð
jx�yjb2jxj
jyjb2jxj

KðyÞueðyÞ1þe

jx� yjn�2
dy:

Then, denoting the generic constant (may dependent on e) by Ce, we have, via

the step similar to the previous one,
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J1 aCejxj�2�minf2; ðn�2Þð1þeÞ=2gð1þeÞ
ð
jx�yja1

1

jx� yjn�2
dy

aCejxj�2�minf2; ðn�2Þð1þeÞ=2gð1þeÞ;

J2 aCejxj�2�minf2; ðn�2Þð1þeÞ=2gð1þeÞ
ðjxj=2
1

r dr

aCejxj�minf2; ðn�2Þð1þeÞ=2gð1þeÞ;

J3 aCejxj�ðn�2Þ
ð
jyjaR1

þ
ð
R1ajyja3jxj

 !
KðyÞueðyÞ1þe

dy

aCeðjxj�ðn�2Þ þ jxj�minf2; ðn�2Þð1þeÞ=2gð1þeÞÞ;

J4 aCejxj�ðn�2Þjxj�2�minf2; ðn�2Þð1þeÞ=2gð1þeÞ
ð
2jxjbjyjbjxj

dy

aCejxj�minf2; ðn�2Þð1þeÞ=2gð1þeÞ;

J5 aCe

ðy
jxj
jyj�minf2; ðn�2Þð1þeÞ=2gð1þeÞ�1

dy

aCejxj�minf2; ðn�2Þð1þeÞ=2gð1þeÞ:

Thus we obtain

ueðxÞaCejxj�minf2; ðn�2Þð1þeÞ=2gð1þeÞ

for jxjbR1 if minf2; ðn� 2Þð1þ eÞ=2gð1þ eÞa n� 2. If minf2; ðn� 2Þ �
ð1þ eÞ=2gð1þ eÞ > n� 2, then we are done. For fixed e > 0, repeating this

process l times so that minf2; ðn� 2Þð1þ eÞ=2gð1þ eÞl > n� 2, we have

ueðxÞaCejxj�ðn�2Þð3:4Þ

for jxjbR1. We should note here that the decay rate jxj�ðn�2Þ is never

improved in view of the estimate in J3.

Then as in Theorem 2.4 of Li and Ni [10] (the estimate of the second order

of the expansion), we obtain

ueðxÞ ¼ ~CCejxj�ðn�2Þ þ heðxÞ:ð3:5Þ
with

~CCe :¼ lim
jxj!y

jxjn�2
ueðxÞ ¼

1

ðn� 2Þon

ð
R n

KðxÞu1þe
e dx;ð3:6Þ

and heðxÞ ¼ Oðjxj�ðn�2Þð1þeÞÞ being a higher order term. Since (3.4) holds for

jxjbR1 with R1 independent of e, (3.5) holds also for jxjbR1. r

Asymptotic behaviors of least-energy solutions 99



Remark 3.1. The reason why we have obtained the exact decay rate is

that the dominant term in the estimate of J3 is jxj�ðn�2Þ and that the iteration is

no longer e¤ective to gain the decay rate due to this term.

Ce may go to infinity as e # 0 because k‘uek2 may go to infinity and the

iteration needs more times (unbounded) as e # 0.

Remark 3.2. Under (K) and (K.1), according to Theorem 2.16 of Li and

Ni [10], ue is expanded as follows:

ueðxÞ ¼
Ce

jxjn�2
þ 1

jxjn�2

X2keþ1

m¼1

C1;m; e

jxjðn�2Þme
þ 1

jxjn�1

Xke
m¼1

C2;m; e

jxjðn�2Þme
ð3:7Þ

þ ae � x
jxjn 1þ

Xke
m¼1

C3;m; e

jxjðn�2Þme

 !
þ Re

x

jxj2

 !
1

jxjn�1

for jxjbR1, where ke is an integer such that ðn� 2Þkeea 1 < ðn� 2Þðke þ 1Þe,
C1;m; e, C2;m; e, C3;m; e are constants (not necessarily positive), ae A Rn is a

constant vector, and ReðtÞ is a Lipschitz continuous function near t ¼ 0 with

Reð0Þ ¼ 0. Note that R1 can be taken larger than R�. The assumption (K.1)

is needed to have the exact expansion as above. Without (K.1), it is hard to

obtain the expansion (3.7).

Carefully following the proof of Theorem 2.16 of [10], we can obtain the

constants C1;m; e.

Lemma 3.3. The constant C1;m; e in (3.7) satisfies

C1;m; e ¼
ð�1ÞmCð1þeÞm

e cm0

ðn� 2Þ2memm!
Qm

l¼1ð1þ leÞ
ð3:8Þ

for m ¼ 1; 2; . . . ; ke.

Proof. A proof is done by following the proof of Theorem 2.16 of [10].

So we give a sketchy proof. The essential part is to express (1.1) as

Due þ jxj�2ðc0 þ c1jxj�1 þ k1ðxÞÞ
C1þe

e

jxjðn�2Þð1þeÞ
jxjn�2

ue

Ce

 !1þe

¼ 0ð3:9Þ

on jxjbR1 and expand C�1
e jxjn�2

ue step by step.

In what follows, fi and ui; e represent the remainder terms. First, we note

that the equation (1.1) is expressed as

Due þ C1þe
e c0jxj�ðn�2Þð1þeÞ þ f1ðueÞ ¼ 0

on jxjbR1. Note that the original proof is done via the Kelvin transforma-
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tion. However, we can prove this lemma directly since we know the decay

order. Then, as in (2.22) of [10] (p. 203), we have

ue ¼ Cejxj�ðn�2Þ � C
ð1þeÞ
e c0

ðn� 2Þ2ð1þ eÞe
jxj�ðn�2Þð1þeÞ þ u1; e:

The expression is seemingly a contradictory one since the coe‰cient of the

second term is apparently larger than that of the first term. However, the

second term is eventually almost cancelled out by u1; e since ue is always

positive.

Next, using the expansion, we see that ue satisfies

Due þ C 1þe
e c0jxj�ðn�2Þð1þeÞ � C

ð1þeÞ2
e c20

ðn� 2Þ2ð1þ eÞe
jxj�ðn�2Þð1þ2eÞ þ f2ðueÞ ¼ 0:ð3:10Þ

Then we have via the method of the deduction of (2.22) in [10],

ue ¼ Cejxj�ðn�2Þ � C
ð1þeÞ
e c0

ðn� 2Þ2ð1þ eÞe
jxj�ðn�2Þ�ðn�2Þe

þ C
ð1þeÞ2
e c20

2ðn� 2Þ4ð1þ eÞð1þ 2eÞe2
jxj�ðn�2Þð1þ2eÞ þ u2; e:

Indeed, three terms from the top satisfy (3.10) with f2 1 0 (calculate Dðue � u2; eÞ
as a radial function). Moreover, the ‘‘uniqueness’’ of the top three terms are

verified as in the proof of Theorem 2.16 of [10] (p. 203). Thus C1;2; e is

obtained. To obtain C1;3; e, we again repeat the argument. Thus ue satisfies

Due þ C1þe
e c0jxj�ðn�2Þð1þeÞ � C

ð1þeÞ2
e c20

ðn� 2Þ2ð1þ eÞe
jxj�ðn�2Þð1þ2eÞ

þ C
ð1þeÞ3
e c30

2ðn� 2Þ4ð1þ eÞð1þ 2eÞe2
jxj�ðn�2Þð1þ3eÞ þ f3ðueÞ ¼ 0:

Then we have

C1;3; e ¼ � C
ð1þeÞ3
e c30

6ðn� 2Þ6ð1þ eÞð1þ 2eÞð1þ 3eÞe3
:

Inductively, we obtain the conclusion. r

As for the other terms in (3.7), we have the following estimate. Let us

define

CðeÞ :¼ max Ce; max
1amake

jC1;m; ej
� �

:
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Lemma 3.4. The constants in (3.7) of C1;m; e ðke þ 1ama 2ke þ 1Þ,
C2;m; e, jaejC3;m; e and ReðxÞ for fixed x are at most of order CðeÞ in e.

Proof. We again consider the process of the proof of Lemma 3.3. Also

confer to the deduction of (2.22) in [10]. It is easy to see that ð1þ eÞm a

ð1þ eÞke a ð1þ eÞ1=fðn�2Þeg
a 2e1=ðn�2Þ for any su‰ciently small e > 0.

For coe‰cients C1;m; e with 1ama ke, e
m appears in the denominator to

cancel out the previous term as mentioned in the deduction of C1;2; e in the

proof of Lemma 3.3. The powers in x of the terms in the coe‰cient C1;m; e

ð1ama keÞ converge to �ðn� 2Þ as e # 0. These terms induce the higher e

dependence.

C1;m; e with ke þ 1ama 2ke þ 1 is determined in the same way as in the

proof of Lemma 3.3. But a new e power does not appear since ðn� 2Þð1þmeÞ
with ke þ 1ama 2ke þ 1 never converges to n� 2 as e # 0.

C2;m; e, ae, C3;m; e and ReðxÞ are determined by the terms in (3.9) which are

products of jxj�ðn�2Þð1þmeÞ term and c1jxj�1 or k1ðxÞ inductively. Indeed, when

the terms up to C1;ke; ejxj
�ðn�2Þð1þkeeÞ are obtained, (3.9) can be written as

Due þ
c0 þ c1jxj�1 þ k1ðxÞ

jxj2
Xke
k¼1

C1;m; e

jxjðn�2Þð1þmeÞ

 !
þ f4ðueÞ ¼ 0

with f4 being a remainder term. Thus we see that C2;m; e, ae, C3;m; e and ReðxÞ
are determined from the product of jxj�1 or keðxÞ with C1;m; ejxj�ðn�2Þð1þmeÞ.

Since the powers of other terms never converge to jxj�ðn�2Þ, the above

process shows that the coe‰cients and Re cannot create the higher e depen-

dence as in CðeÞ. To keep ue positive on jxjbR1, they must be at most of the

order CðeÞ. r

Using (3.7) and Lemma 3.4, we show the boundedness of the maximum

point of ue.

Lemma 3.5. Suppose that (K) and (K.1) hold. Then the maximum point

of the least-energy solution ue is uniformly bounded.

Proof. By (K.1), using the expansion (3.7), we can express ue as

ueðxÞ ¼
Ce

jxjn�2
þ f1; eðxÞ

jxjn�2
þ f2; eðxÞ

jxjn�1
þ ðae � xÞ f3; eðxÞ

jxjn þ Re
x

jxj2

 !
1

jxjn�1
;ð3:11Þ

with

f1; eðxÞ ¼
X2keþ1

m¼1

C1;m; e

jxjðn�2Þme
; f2; eðxÞ ¼

Xke
m¼1

C2;m; e

jxjðn�2Þme
; f3; eðxÞ ¼ 1þ

Xke
m¼1

C3;m; e

jxjðn�2Þme
:
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Note that f1; eðxÞ, f2; e, ~ff3; eðxÞ :¼ ðae � xÞ f3; eðxÞ and Reðx=jxj2Þ in terms of e are

at most of the order of CðeÞ by Lemma 3.4. Then we can express

ueðxÞ ¼
CðeÞ
jxjn�2

Ce

CðeÞ þ
f1; eðxÞ
CðeÞ þ f2; eðxÞ

CðeÞjxj þ
~ff3; eðxÞ

CðeÞjxj2
þ

~RReðxÞ
CðeÞjxj

( )
;ð3:12Þ

with ~RReðxÞ :¼ Reðx=jxj2Þ.
Suppose that the maximum point Qj of uej (ej # 0 as j ! y) tends to

infinity. We may suppose that jQj j > R1 for any j and fix x0 so that

jx0jbR1. Then we have

1 <
uej ðQjÞ
uej ðx0Þ

ð3:13Þ

¼ jx0j
jQjj

� �ðn�2Þ
Ce

CðeÞ þ
f1; ej ðQjÞ
CðejÞ

þ
f2; ej ðQjÞ
CðejÞjQjj

þ
~ff3; ej ðQjÞ

CðejÞjQjj2
þ

~RRej ðQjÞ
CðejÞjQjj

Ce

CðeÞ þ
f1; ej ðx0Þ
CðejÞ

þ
f2; ej ðx0Þ
CðejÞjx0j

þ
~ff3; ej ðx0Þ

CðejÞjx0j2
þ

~RRej ðx0Þ
CðejÞjx0j

8>>>><
>>>>:

9>>>>=
>>>>;

¼:
jx0j
jQjj

� �n�2

Lj ;

We consider the behavior of Lj. Here we note that constants in the

denominator and those in the numerator are the same and that the remainder

terms ~ff3; ej ðQjÞ=ðCðeÞjQjj2Þ and ~RRej ðQjÞ=ðCðeÞjQjjÞ are negligible compared with

three terms in the numerator due to their decay properties as jQjj ! y.

In view of (3.4), since each term has a decay order and since the absolute

value of each coe‰cient in (3.7) are bounded by CðejÞ, the case where the

numerator goes to infinity while the denominator stays bounded is impossible.

In the case where the denominator converges to 0, if we can find suitable

point x� ðjx�jbR1Þ independent of e so that uej ðx�Þ stay uniformly away from

zero, we can replace x0 by x�.

If this is not the case, then the denominator converges locally uniformly to

0. In this case, the decay property of the expanded functions in (3.7) shows

that the numerator decays faster than the denominator.

Similarly, if the both of the denominator and the numerator go to infinity,

the decay order shows that the slower growth of the numerator. Thus, the

inequality (3.13) is violated if jQjj ! y. We complete the proof. r

4. Proofs of Theorems 1.2, 1.3 and 1.4

Now we are in a position to prove Theorems 1.2, 1.3 and 1.4.
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Proof of Theorem 1.2. Since

lim
e#0

Se ¼
ðn� 2Þ2

4c0

by Theorem 1.1, we immediately see that

lim
e#0

k‘uek22 ¼ lim
e#0

Sð2þeÞ=e
e ¼ lim

e#0

ðn� 2Þ2

4c0

( )ð2þeÞ=e

! 0; if c0 > ðn� 2Þ2=4;
y; if 0 < c0 < ðn� 2Þ2=4:

�

Thus we have the desired limiting behavior. Moreover, by (1.4), we have

k‘ueke
2 ¼ Sð2þeÞ=2

e ! ðn� 2Þ2

4c0

as e # 0.

Now, we consider the behavior of kueky. If lime#0k‘uek2 ¼ 0, then by

(2.1) and the proof of Lemma 3.1, we see that kueky ! 0 as e # 0.

When lime#0k‘uek2 ¼ y, suppose that lim sup#0kueky < y. Letting

ueðxÞ
kueky

¼ WeðyÞ; x ¼ y

e
;

we see that WeðyÞ is a solution to

DyWe þ
1

e2
K

y

e

� �
kueke

yW 1þe
e ¼ 0:

Since lime#0 e
�2Kðy=eÞ ¼ c0jyj�2 locally uniformly in Rnnf0g, by choosing a

subsequence if necessary (still denoted by e), We converges locally uniformly in

Rnnf0g to W, where W is a solution to

DyW þ C

jyj2
W ¼ 0 in Rn

with C :¼ c0 lime#0kueke
y < ðn� 2Þ2=4. The limiting equation does not have

any positive solution which is bounded near the origin unless C ¼ 0. Thus

W 1 0 if 0 < C < ðn� 2Þ2=4. However, concerning the constant ~CCe in (3.5),

since we have

ueðxÞ ¼ kuekyWeðyÞ ¼ ~CCee
n�2jyj�ðn�2Þ þ he

y

e

� �
;

we obtain lime#0 e
n�2 ~CCe ¼ 0 in view of the local uniform convergence of We to

Yoshitsugu Kabeya104



W 1 0. Since the boundedness of ue implies the boundedness of ‘ue in view

of the equation, we have

lim
e#0

k‘uek22 ¼ lim
e#0

ð
R nnBR

j‘uej2dx ¼ y;

for any R > 0. In view of (3.5), we see thatð
R nnBR

j‘uej2dxaC ~CC2
e

as e # 0 with C > 0. Thus we haveð
RnnBR

j‘uej2dx ¼ oðe�2ðn�2ÞÞ

as e # 0.

However, we have seen

lim
e#0

k‘uek22 ¼ lim
e#0

ðn� 2Þ2

4c0

 !ð2þeÞ=e

¼ y;

thus the growth order of k‘uek2 is faster than e�2ðn�2Þ. Hence we get a con-

tradiction for 0 < C < ðn� 2Þ2=4.
If C ¼ 0, then there is a possibility of W 1 1. In this case, as in the last

part of the proof of Lemma 3.2, we have

Weð2yÞ
WeðyÞ

¼ 2�ðn�2Þ þ oð1Þ

as e # 0. This contradicts the uniform convergence of We to 1. The case

where W 1 0 is proved as in 0 < C < ðn� 2Þ2=4.
Thus we have reached a contradiction for 0aC < ðn� 2Þ2=4, that is, we

have proved kueky ! y as e # 0 if 0 < c0 < ðn� 2Þ2=4. r

Proof of Theorem 1.3. In this case, since lime#0k‘uek e
2 ¼ 1, we need

careful calculations. Suppose that lim supe#0k‘uek2 < y. Then by (2.1), we

see that kueky is bounded. Then, choosing a subsequence if necessary, we see

that uej converges to ~UU A D locally uniformly in Rn, where ~UU is a nonnegative

solution to

D ~UU þ KðxÞ ~UU ¼ 0:

Note that this equation has only ~UU 1 0 as a nonnegative solution by the

Pohozaev identity (1.7). Thus, the convergence does not depend on sub-

sequences. Moreover, by Lemma 3.5, the maximum point of ue is bounded.

Thus, kueky ! 0 as e # 0.
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Let v̂veðxÞ :¼ ueðxÞ=kueky. Then v̂ve satisfies

Dv̂ve þ KðxÞkueke
yv̂v1þe

e ¼ 0; kv̂veky ¼ 1:

Suppose that kuek e
y ! c > 0 as e # 0. Then, since the maximum point is

bounded, v̂ve converges to a nontrivial function (along a subsequence).

However, again by the Pohozaev identity, the limiting equation has only v̂v1 0

as a solution, which is a contradiction.

Suppose that kuek e
y ! 0 as e # 0. Then, v̂ve converges to 1 locally uni-

formly in Rn. However, as in the last part of the proof of Theorem 1.2 for

0 < c0 < ðn� 2Þ2=4, there exists large R > 0 independent of e such that

v̂veð2xÞ
v̂veðxÞ

¼ 2�ðn�2Þ þ oð1Þð4:1Þ

for jxjbR. Hence, the local uniform convergence of v̂ve to 1 is impossible.

Thus we see that lime#0kueky ¼ y and lime#0k‘uek2 ! y.

By Theorem 1.1, k‘uek2e=ð2þeÞ
2 ¼ Se ! 1 as e # 0, i.e., k‘uek e

2 ! 1 as e # 0.

Thus the proof is complete for any case. r

Using Lemmas 3.1, 3.2 and 3.5, we prove Theorem 1.4.

Proof of Theorem 1.4. It is easy to see that veðyÞ satisfies

DyveðyÞ þ
1

e2
K

y

e

� �
max

jxjbR=e
ueðxÞ

� �e
v1þe
e ¼ 0:

Since maxjyjbR veðyÞ ¼ 1 and since lime#0 e
�2Kðy=eÞ ¼ c0=jyj2 locally uniformly

on fy j jyjbRg, by choosing a subsequence if necessary, veðyÞ converges to

VðyÞ locally uniformly on fy j jyjbRg, where VðyÞ is a solution to

DV þ c0c�

jyj2
V ¼ 0ð4:2Þ

with c� being an accumulation point of ðmaxjxjbR=e ueðxÞÞe as e # 0.

Suppose that c� can be taken as c� ¼ 0. As in the proof of Lemma

3.5, the maximum point ~QQe of veðyÞ (maxjxjbR=e ueðxÞ ¼ veð ~QQeÞ) is uniformly

bounded in view of the decay (3.5). Thus there exists y0 ðjy0jbRÞ such that

Vðy0Þ ¼ 1. Since (4.2) yields DV ¼ 0 in this case, V might satisfy V 1 1.

However, by (3.5), the local uniform convergence to 1 is absurd as in (4.1)

(consider the ratio veð2y1Þ=veðy1Þ with su‰ciently large jy1j). Thus V cannot

be a positive constant in this case. Hence c� must be positive.

As for the estimate of the upper bound of c�, we use (2.1) and Lemma

3.1. By them, we have

kueky a ~CCk‘uek2
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with ~CC > 0 independent of e. Combining Theorem 1.1 with (1.4), we see

that k‘ueke
2 ! ðn� 2Þ2=ð4c0Þ as e # 0. Thus we obtain lim supe#0kuek

e
y a

ðn� 2Þ2=ð4c0Þ. Since

lim
e#0

1

e2
K

y

e

� �
¼ c0

jyj2
;

choosing a subsequence, we see that veðyÞ converges locally uniformly in

fy j jyjbRg to V, which is a solution to

DV þ ~cc

jyj2
V ¼ 0;

VðQ�Þ ¼ 1; lim
jyj!y

VðyÞ ¼ 0;

8>><
>>:ð4:3Þ

where 0 < ~cca ðn� 2Þ2=4 and jQ�jbR. Note that (4.3) has a solution (at

least a radial one). Thus we obtain the desired conclusion. r

5. Appendix

Here we give a proof of Lemma 2.1 for the sake of self-containedness.

Proof of Lemma 2.1. Since SðlÞ is attained by UðxÞ ¼
ð1þ jxj2�lÞ�ðn�2Þ=ð2�lÞ, we haveð

R n

j‘U j2dx ¼ ðn� 2Þ2on

ðy
0

rn�1r2�2lð1þ r2�lÞ�2ðn�lÞ=ð2�lÞ
dr

since Ur ¼ �ðn� 2Þð1þ jxj2�lÞ�ðn�2Þ=ð2�lÞ�1jxj1�l. Letting r ¼ r2=ð2�lÞ, we getðy
0

rnþ1�2lð1þ r2�lÞ�2ðn�lÞ=ð2�lÞ
dr

¼ 2

2� l

ðy
0

rð2n�3lþ2Þ=ð2�lÞð1þ r2Þ�2ðn�lÞ=ð2�lÞ
dr:

Letting r ¼ tan y, we haveðy
0

rnþ1�2lð1þ r2�lÞ�2ðn�lÞ=ð2�lÞ
dr

¼ 2

2� l

ð p=2
0

sin2ðn�2lþ2Þ=ð2�lÞ�1 y cos2ðn�2Þ=ð2�lÞ�1 y dy:

Since the beta function Bðp; qÞ is defined as

Bðp; qÞ ¼ 2

ð p=2
0

sin2p�1 y cos2q�1 y dy
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and since Bðp; qÞ ¼ GðpÞGðqÞ=Gðpþ qÞ, we obtainð
Rn

j‘U j2dx ¼ ðn� 2Þ2on

2� l
B

n� 2lþ 2

2� l
;
n� 2

2� l

� �

¼
ðn� 2Þ2onG

n� 2lþ 2

2� l

� �
G

n� 2

2� l

� �

ð2� lÞG 2ðn� lÞ
2� l

� � :

Similarly, we haveð
R n

jxj�l
U 2ððn�lÞ=ðn�2ÞÞ dx

¼ on

ðy
0

rn�1�lð1þ r2�lÞ�2ðn�lÞ=ð2�lÞ
dr

¼ 2on

2� l

ðy
0

rð2ðn�1Þ�lÞ=ð2�lÞð1þ r2Þ�2ðn�lÞ=ð2�lÞ
dr

¼ 2on

2� l

ð p=2
0

sin2ðn�lÞ=ð2�lÞ�1 y cos2ðn�lÞ=ð2�lÞ�1 y dy

¼ on

2� l
B

n� l

2� l
;
n� l

2� l

� �

¼

on

2� l
G

n� l

2� l

� �� �2

G
2ðn� lÞ
2� l

� � ;

where r ¼ r2=ð2�lÞ and r ¼ tan y as before. Thus we obtain

SðlÞ ¼
Ð
Rn j‘U j2dx

ð
Ð
R n jxj�l

U 2ðn�lÞ=ðn�2Þ dxÞðn�2Þ=ðn�lÞ

¼ ðn� 2Þ2on

2� l

G
n� 2lþ 2

2� l

� �
G

n� 2

2� l

� �

G
2ðn� lÞ
2� l

� �

�

8>>>><
>>>>:

on

2� l

� �ðn�2Þ=ðn�lÞ G
n� l

2� l

� �� �2ðn�2Þ=ðn�lÞ

G
2ðn� lÞ
2� l

� �� �ðn�2Þ=ðn�lÞ

9>>>>=
>>>>;

�1
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¼ ðn� 2Þ2 on

2� l

� �ð2�lÞ=ðn�lÞ

�
G

n� 2lþ 2

2� l

� �
G

n� 2

2� l

� �

G
n� l

2� l

� �� �2ðn�2Þ=ðn�lÞ
G

2ðn� lÞ
2� l

� �� �ð2�lÞ=ðn�lÞ :

Thus the first part is proved.

Since our aim is to let l " 2, we need the asymptotic expansion of the

gamma function. The expansion formula (Stirling’s formula, see e.g., Taylor

[14], p. 267, (A.39)) yields

GðzÞ ¼
ffiffiffiffiffiffi
2p

p
e�zzz�1=2 þ LðzÞ;

near z ¼ y with limjzj!y ezz�ðz�1=2ÞLðzÞ ¼ 0. The formula yields

G
n� 2lþ 2

2� l

� �
¼

ffiffiffiffiffiffi
2p

p
e�ðn�2lþ2Þ=ð2�lÞ n� 2lþ 2

2� l

� �ðn�2lþ2Þ=ð2�lÞ�1=2

þ L1ðlÞ;

G
n� 2

2� l

� �
¼

ffiffiffiffiffiffi
2p

p
e�ðn�2Þ=ð2�lÞ n� 2

2� l

� �ðn�2Þ=ð2�lÞ�1=2

þ L2ðlÞ;

G
n� l

2� l

� �
¼

ffiffiffiffiffiffi
2p

p
e�ðn�lÞ=ð2�lÞ n� l

2� l

� �ðn�lÞ=ð2�lÞ�1=2

þ L3ðlÞ;

G
2ðn� lÞ
2� l

� �
¼

ffiffiffiffiffiffi
2p

p
e�2ðn�lÞ=ð2�lÞ 2ðn� lÞ

2� l

� �2ðn�lÞ=ð2�lÞ�1=2

þ L4ðlÞ;

where LiðlÞ ði ¼ 1; 2; 3; 4Þ are lower order terms as l " 2. Thus we have

G
n� 2lþ 2

2� l

� �
G

n� 2

2� l

� �
¼ 2pe�2ðn�lÞ=ð2�lÞðn� 2lþ 2Þðn�2lþ2Þ=ð2�lÞ�1=2

� ðn� 2Þðn�2Þ=ð2�lÞ�1=2ð2� lÞ1�2ðn�lÞ=ð2�lÞ þ L5ðlÞ
and

G
n� l

2� l

� �� �2ðn�2Þ=ðn�lÞ
G

2ðn� lÞ
2� l

� �� �ð2�lÞ=ðn�lÞ

¼ ð2pÞð2n�l�2Þ=ð2ðn�lÞÞ22�ð2�lÞ=ð2ðn�lÞÞe�2�2ðn�2Þ=ð2�lÞ

� n� l

2� l

� �2þ2ðn�2Þ=ð2�lÞ�ð2n�l�2Þ=ð2ðn�lÞÞ
þ L6ðlÞ

¼ 8pe�2ðn�lÞ=ð2�lÞ n� l

2� l

� �2ðn�lÞ=ð2�lÞ�ð2n�l�2Þ=ð2ðn�lÞÞ
þ L7ðlÞ;

Asymptotic behaviors of least-energy solutions 109



where LiðlÞ ði ¼ 5; 6; 7Þ are lower order terms. Hence we see that

SðlÞ ¼ ðn� 2Þ2 on

2� l

� �ð2�lÞ=ðn�lÞ

� e�2ðn�lÞ=ð2�lÞðn� 2lþ 2Þðn�2lþ2Þ=ð2�lÞ�1=2ðn� 2Þðn�2Þ=ð2�lÞ�1=2ð2� lÞ1�2ðn�lÞ=ð2�lÞ

4e�2ðn�lÞ=ð2�lÞ n� l

2� l

� �2ðn�lÞ=ð2�lÞ�ð2n�l�2Þ=ð2ðn�lÞÞ

þ L8ðlÞ

¼ n� 2

4

on

2� l

� �ð2�lÞ=ðn�lÞ ðn� 2lþ 2Þn�2lþ2ðn� 2Þn�2

ðn� lÞ2ðn�lÞ

( )1=ð2�lÞ

� ð2� lÞð2�lÞ=ð2ðn�lÞÞðn� lÞð2n�l�2Þ=ð2ðn�lÞÞ þ L9ðlÞ;

where L8ðlÞ and L9ðlÞ are lower order terms with liml"2 LiðlÞ ¼ 0 ði ¼ 8; 9Þ.
Note that

lim
l"2

1

2� l
log

ðn� 2lþ 2Þn�2lþ2ðn� 2Þn�2

ðn� lÞ2ðn�lÞ

( )

¼ lim
l"2

ðn� 2lþ 2Þ logðn� 2lþ 2Þ þ ðn� 2Þ logðn� 2Þ � 2ðn� lÞ logðn� lÞ
2� l

¼ � lim
l"2

�2 logðn� 2lþ 2Þ � 2þ 2 logðn� lÞ þ 2f g ¼ 0

by l’Hospital’s rule. Thus we have

lim
l"2

ðn� 2lþ 2Þn�2lþ2ðn� 2Þn�2

ðn� lÞ2ðn�lÞ

( )1=ð2�lÞ

¼ 1:

Moreover, by limx!þ0 x
x ¼ 1, we see that

lim
l"2

SðlÞ ¼ ðn� 2Þ2

4
¼ Sð2Þ

as desired. r

Remark 5.1. Since the area of the unit sphere is given by on ¼
2pn=2ðGðn=2ÞÞ�1, SðlÞ coincides with SRðp; q; a; b; nÞ in Lemma 3.1 of [6]

with p ¼ 2, q ¼ 2ðn� lÞ=ðn� 2Þ, a ¼ 0, b ¼ �ðn� 2Þl=f2ðn� lÞg and g ¼
nð2� lÞ=f2ðn� lÞg.
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