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ABSTRACT. Ravenel (8] has introduced p-local spectra T'(m) for m > 0. The Adams-
Novikov Ej-term converging to 7.(7(m)) is isomorphic to

EXt 1) (BP., BP.),

where I'(m+ 1) = BP.[tyi+1,tm+2,- -], and thus we may follow the chromatic method
introduced in [4] to compute the E>-term. One of the crucial point is to determine the
Ext groups Exty,. ) (BP:, M]'). In particular Ext?(m +1)(BP*,MZI) has already been
known except for p =2 and m = 1. In this paper we will give the explicit description
of the last unknown case.

1. Introduction

The homotopy groups of Ravenel spectrum 7 (m) give information
on the homotopy groups of spheres using “‘the method of infinite descent”,
which was the main subject of [8] Chapter 7. Its BP-homology group is
given by BP.(T(m)) = BP,[t1,...,t,]. The Adams-Novikov E,-term for T'(m)
is

EXt;P,(BP)(BP*v BP.(T(m))),

which is isomorphic to Extr,.1)(BP., BP.) by the change-of-rings isomor-
phism. So this object is computable using the chromatic spectral sequence
introduced in [4]. Define comodules M, by

M}Z = U;;linBP*/(p? R Um—l,vnofa ot Uno10+n71)

as usual. Then the chromatic E;-term is

E}' = EXtf ) (BP., Mp).
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We can determine the structure of this Ext group beginning with the s-th
Morava stabilizer algebra Extr,.1)(BP., M) by Bockstein spectral sequences

EXt;(erl)(BP*’ M\"Ln) = EXt;(erl)(BP*’ Mn+l )

s—n—1

Recently, these Ext groups have been researched by the first author,
Ravenel, Shimomura and their coworkers. Notice that Shimomura denotes
our Extr, i (BP., M",) by Extgp pp(BP,, M ,[m]), and he has determined
the complete structure of Extr,.; (BP., M ) in [9] for m = s> —s— 1.

Moreover, Ext?-<m +1>(BP*7M21) is known for various p and m. In par-

ticular, it is determined by

Ichigi-Nakai-Ravenel [2] for p=2and m>3 or p>3 and m > 2,

Ichigi-Shimomura [3] for p=3 and m=1,
Mitsui-Shimomura [5] for p>5and m=1,
Ichigi [1] for p=2 and m = 2.

The purpose of this paper is to determine the structure of
Ext?-(m +1>(BP*7M21) in case that p =2 and m =1, which had been the last
unsolved case. We will define integers a(k) in (4.2) and elements %; (k > 0)
inductively on k by

)%0 = U4
and X =xf, +J, for k=1,

where each j; is vy-multiple and defined in (4.4). We will see that )%k/vg(k)
is in Ext}(BP.,M}) and that the image of %/v"*) under the connect-
ing homomorphism o : Ext?—(z)(BP*, M) — Extlr(z)(BP*7 M?) is nontrivial and
cohomologous to the image of vfk /v‘;(k).

Denote Z/(p)[vE',v3] by K(2), and Z/(p)[va,v3] by k(2)
Then our main theorem is

respectively.

* *

THEOREM 1.1. Assume that p=2. Then, as a 05113(2)*—m0dule,
Extg(z)(BP*,le) is the direct sum of
(i) the cyclic Z/(2)[v;,v§—rl]-modules isomorphic to Z/(Z)[UQ,U;LI]/(UZ(k))
generated by fc,i/v;(k) Jor k>0 and 2 ys>0; and
(i) v3'K(2),/k(2),, generated by 1/v} for j=> 1.

Although Ichigi-Shimomura [3] has shown that x; for p =3 are the same
as those for p > 3 [5], our result shows that p = 2 case differs from the odd p
cases.
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In §2 we review some basic facts about Brown-Peterson theory (cobar
complex, Bockstein spectral sequence and Morava stabilizer algebra). In §3
we list up formulas for the right unit #; on Hazewinkel generators v, and
elements w4 and ws given in (3.2). In §4 we construct key elements x; and
compute the first cobar differential d = 5z — 5, on Xx. The proof of Theorem
1.1 is completed in §5.

We wish to thank Ippei Ichigi for reading carefully a draft of this paper
and checking some calculations. We also would like to thank the referee for
his helpful advice.

2. Bockstein spectral sequence

Hereafter we will abbreviate Extr,  (BP., M) to Extp,, (M) for
simplicity.

It is well known that Exty,. (M) can be computed as cohomology
groups of the cobar complex

0— M i) Cll"(m+l)(M) i’ CIZ“(erl)(M) & ﬂ CIIS(HHI)(M) i’ R

where Cp, (M) =1T(m+ 1)®"® M (nfold tensor product). The differ-
entials of this complex are defined using the right unit 7, and the coproduct 4
of Hopf algebroid (BP.,I'(m+1)). In particular we have dy =5z — 5, and
Ext%mﬂ)(M) = ker dj.

We will determine the structure of Ext?(m +1)(le) for p=2 and m=1
using Bockstein spectral sequence. In fact, the following lemma plays a fun-
damental role.

Lemva 2.1 ([4] Remark 3.11). Assume that there exists a v3'k(2),-
submodule B' of Ext}(z)(le) for each t < N, such that the following sequence
is exact:

P 1/v

0 — Extly (MY) 22 B 2, B

C A gVl BN 0 B (M),
where 0 is the restriction of the coboundary map

Then the inclusion map i,: B' — Ext’r(z)(le) is an isomorphism between
k(2),-modules for each t < N.

In order to apply this lemma we will construct a module B® which satisfies
the above condition. Because B has a submodule isomorphic to Extg(z)(Mf),
it is a natural way to construct B’ by extending Ext?—<2)(M30).
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The following generalization of Morava-Landweber theorem is straight-
forward.

LemMa 2.2 (cf. [8] Proposition 7.1.7). For any prime p, we have
(23) Exty o (MY) = K(3),[ta] = Z/(p)[v3", va).

This Ext group is the starting point to construct B’. Notice that for
x/vh € B there is an element x’ = x + (v}-multiples) such that x'/vi™ e B if
6(x/vh) = 0. In this sense, an element of BY is divided by v; and we obtain
a new element in B° if its & image is zero.

We will choose elements %, (k > 0) each of which is v} plus vy-multiples
in (4.3) and (4.4), and denote the minimal exponent of v, by a(k) (4.2) such

that J(xx /vg(k>) #0. Then the following lemma is standard.
LemMA 2.4. We may define B® in Lemma 2.1 by
v;lE(Z)*{ﬁk/vg(k) k=0 and pys>0}@v;'K(2),/k(2),,
if the set
o5 /,.a(k)y . 1 0
(2.5) {0(x2/057) 1k =0 and pfs>0} < Extr (M)

is linearly independent over Z/(p)[vi'], where & is the coboundary map in

Lemma 2.1.

In order to check the condition (2.5) we have to know the first coho-
mology Ext}(z)(Mf), which has fortunately been obtained in [7].

ProposiTION 2.6 ([7] Theorem 1.1).
(2.7) Extp ) (M3) = K(3) {h0. b1, b b0, ho 1, ho o, ps ),

where each fz,-, j is the class corresponding to t,.’ijl and ps is a suitable element
with degree 0.

By this proposition the basis of the vector space Ext}(z)(Mf) is described
explicitly, so that it is easy to confirm whether the set (2.5) is linearly in-
dependent or not.

3. Preliminary calculations

Here we list up some formulas which we will use in §4. By the formula
(1.1) and (1.3) in [4], we can deduce the formulas of #g(v;).

LemMA 3.1. The right unit

Ng - 3 BP, — v3'BP, ®pgp I'(2)
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on Hazewinkel generators v; are expressed as

nr(v3) = v3 mod(2,v1),

_ 4, 4
Nr(va) = va + 2ty + V302 mod(2,v;),

_ 4 8 , .8 4
Hr(vs) = vs + V3t + 0385 + V513 + oty mod(2,vy),
Nr(ve) = v + vits + vty + 0565 + 0383 + 02ty mod(2, vy, 03),
nr(v7) = vy + vg‘lz + vstgz + vfftg + U4l316

+ v;6t4 + véétf + v;‘t§’3 + v3t§ mod(2, vy, v7).

Define elements W; € v3'BP, (i =4,5) by
(3.2) W = 03105
and s = 3" (v + vaW]).
LemMMmA 3.3. The differentials
d =ng = :v3'BP, — v3' BP. ®pp, I'(2)
on W; are expressed as
d(y) = u%tz + v§v§]t3 + vzvgltg‘ + t§ mod(2,v;),
d(ws) = t§ + v;t3 + v§v4t22 + vglvgtz
+02(03'85° + 03t + 038 +v3tvin) mod(2, vy, v3).

PROOF. d(W4) is straightforward by Lemma 3.1. For d(Ws), we observe
that
d(v3'v) = 6§ + vits + 03 0ad® + 03 0f 12 + vav3' 1],

1, 22y o116 5 2 ~1,20 | 5.6, 324
d(v3 vaWwy) = v3 vaty” +v30aty + 02(v5 15 + 035 4+ 03°V5Ly)

modulo (2,171,1;%). Summing these two congruences, we have the desired

formula.

By this lemma we have d(W4) = v3t, + 15 and d(Wws) = 1§ + vles + vjvad +
v3'vit, modulo (2,vy,v;). These show that

h=v3°1
and = vy 1y + 0370413 + 03504

in Extlr(z)(BP*, M30) So we may replace le,,- with le,i+3 and IA127,- with fzz,,-+3 in
(2.7). Therefore Proposition 2.7 implies



142 Hirofumi NAKAI and Daichi YoRiTOMI

COROLLARY 3.4.
Exty o (M3) = K(3).{h1,2, k1 3,0 4,104, b 5,1 6, p3 )

We will use this K(3),-basis rather than the one of (2.7) because it would
allow us to make the construction of X; ecasy.

4. The elements x; and its J-image

The elements X; are constructed by adding some v,-multiples to ufk €

Ext?r(z)(Mf). In other words, they satisfy the equality
0f o2 = %}/vs

in Ext%(z)(M;). In this section we will make the full description of Xx; and
compute the first cobar differential

d=ng—n :v3'BP, — v3'BP, ®pp I'(2)

on X; in Lemma 4.5.
From now on, we set v3 =1 for simplicity because v; is a unit in
v3!'BP,. Define elements ¢; (1 <i<6) by

$r =024 04, py=viWa vy, By =0 1y
¢y = 035 + W, ¢s = V30§ + v} and b6 = VW] + 1.
Using Lemma 3.1 and Lemma 3.3 we can compute d(¢;) easily.
LemMmaA 4.1.  The differentials on ¢; are expressed as
d(¢)) = v215% + v36 + v303° mod(2, vy, v5%),
d(¢,) = v3t + 0315 + 035 mod(2, vy, vy"),
d(p) = va(t5 + 62 + vitd) + V30,502,
+03(63* + 80 + 118 + 084)%) mod(2, vy, v3),
d(dy) = 1,° + 1,7 + 0,057 + 0,245,

192

+1 640 16 .64 64 128

+ 1890 4 01068 1 084 mod (2, vy, v3),
d(gs) = v3t’" mod(2, v1,v3),

d(¢) = v3t3 mod(2, vy, v8).
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Define integers a(k) (k > 0) inductively on k by

(4.2)

Define elements % € v3!BP. (k > 0) inductively on k by

2k 0<k<2
3.2k1 B<k<4
50 (k =5),
103 (k =6),
207 (k=1),
49255 +a(k —4) (k=38).

A ~2 A
(4.3) Xp = Xj_1 + Vies
where
(4.4) 0
7 9 11 10,4 ¢ 13,16
Uyp1 + vy + 0y 3 0y ugXn 0704 s
15,16 14,20 5
+ 070,705 + vy v Xy
27,4
05" v P
vy + 03083 + 03008 % + 037 vi0¢, + v
Ve =9 v0P% + v, + v i, + viP%0Ww?

205”§¢1

+ v‘”“(

492’ s

Then we have

LEMMA 4.5.

364X5—|—U412 J‘QZX2—|-U413( 16¢2+¢6)
xl +¢5+U‘{60¢5)—|—U415( 16¢3+U‘%56¢1)
+U416(¢ +Ul6 32+0328A16_~_Ul28 52)

R-a(Rk—a + X2_5)

2A 2k+2

5 1 Jor 0 <k <2,
o322 2 for 3<k <4,
v30v3ei® for k=15,

10,216 Jor k=6,
v 0418 for k=1,
o202 d (%) for k= 8.

143
for 0 <k <2,
for k =3,
for k =4,
for k=15,
for k =6,
for k=17,
for k =8,
for k > 9.

Modulo (2, v, U;Ld(k)), the differentials on Xy are expressed as
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Proor. For 0 < k < 2, it directly follows from (3.1). For k = 3, we have

d(vig)) = 036" + vy 12+ 03713°,
d(v3¢y) = v3' o + 0715 + 0,713,
d(vy' 3) = 03 (65 + 137 + 0313 + 0500ty + (65 + 150 + 13° + 0§1°),
(viovi‘ 1) = 030385 + 0 0 + 05t 0l
d(0)0¢y) = v30)n + vlSulerd,
d(v3°0,°¢3) = 03000 (1 + 157 + v415),
d(0y*0°%)) = 0350385 + 00843

modulo (2,v1,v)’). Summing these congruences, we obtain

d(33) = 05657 + 02 (3% + 152) + vt vin® + o (50 + 13° + 0,557 4+ v8,%)
+ 0513 4 03 (0] 13 + 0313%)

and  d(%3) = 032 (65° + 157) + 03 03" + 02 (5" + 15 + 035 + 051°)

17,2 18,16
+ 078 + ol (048 + vi¥n®)

modulo (2,v1,v)%). For k=4, we have

d(3,) = (Uz U4¢1)

28, 4,32
037U,

and  d(x4) = 03} (3% + 1)

modulo (2,v;,v3!). For k=35, we have

48 516y _ 128 | 16,32 64 16
d(v3*5) = 03°(13° + 157 + 0% + 0n°),

d(v3'v,59)) = v3%0,5(137 + v3n + v31°),
( 44 64 ) _ 1)481)24[216,
d(v3°%3) = 33 (3% + 652) + 0 070 + 0?80 + 138 + 09437 4+ v81)%)

+ 0315 + 03t (v + 1),
d(v3' %) = 03 (17 + 15

modulo (2,v1,v5°). Summing these congruences, we obtain
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AN 48,64 , 128 50 2.16 , 5116
d(Ps) =0y (5" +137°) + vy v3ty” + 03 070
+ 032(130 + ljé + vj6t3l6 + ujétgz + v?téﬁ)

53,2

+ 03 18 16)

2+ vt + ol
and  d(%s) = v3°0;0° + 03 0,°0 + V(B0 + 4,° + 0,05 + 0,087 + v8°)
53.2 54/.4.2 18 .16
+ 03t + 03 (0585 +0,°1,°)

modulo (2,v1,v3°). For k=6, we have

d(v03¢)) = v {d(vg)¢y + np(v3)d(¢1)}

— ,,100 4.32 103
=0, 5"+,

(04118 o) + VI8 + o310 + o221,

102, 3242 _ 102,322 , 32,16 104, 32 8
d(vy vy wy) = vy (03t +v3 ) + vy vyt

98 325\ _ 102,32,16
d(v3°v;"%2) = vy 038,

101 44\ _ 103 4 104 4.4 105 2.16
d(vy vyhy) = vy vyta + vy V3 + Uy Uyl

modulo (2,v1,v1%). Summing these congruences, we obtain

SN 1000432 102322 103 16
d(Ys) = vy vty + 0y 037ty + vy valy
+ 03 (15 + oitf + vin® + 08 + vin®) + vi 00"

and  d(fe) = 0Pyl 4l 4 10 L 2 4 s A6 s
+ vizt364 + vg‘tz16 + 0516t§’2) + véosvftzm

modulo (2,v1,v1%). For k =7, we have

d(37) = d(v3°vidy)

= 03%{d(v}) ¢y + nR(v3)d($))}

206,,2 .32 207

208
vy U "+ 05

vy +03%(6" + 030) + 03”030

and d(x7) v§07v4t28 + v%og(tgo + t§6 + 12320 + 124 + vfftg + vfftgz + vf4t316 + vf4t364

64,128 | 4.8 | 832 | 3264 2092
+ 0,57+ 05t + 055 F 057ty ) F vy U5t

modulo (2,v1,v3!%). For k =8, we have
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4142 .16 415,16 416

d(v%“fcs) =0, Uity U300 U, (z§° + ti6 + vi6l§6 + uj"t? + Ugtz“’)

+ 0378 + 038 (04 + i),
41316 4 \ _ 415 16 416 16 4
d(v7v3°¢y) = vy 0 1 03 0,1,

41516 4 \ _ 416/, 16,4 | 16,32 , .20.8
d(v3°0,°d3) =05 (vg 15 + 013" + Vi 1),

414,205 \ _ 416,20 8 | 418 1816
d(vy v X)) = 05005 5 U5 0,08,

d(042116¢4) = 042116(46 + Z‘128 4 Uiélg% + UA:28Z316 + t2192 =+ 1540 + 0;6134 + 02412128),

16,32 16 4256 48 .64 144 .32

d(v3'%0}5w3) = v§10(0}082 + 0813 + o318 + 0832,

Uy Uy Ws

414\ _ 416,48 .64
d(vy"¢s) =v5 vy ",

d( 416,128 ~ 16

1 128 16 128128
Uy 04T W

_ 416 144,32 192,16
=0y (07 F 0BT 0T LT o),

— 416,192 .16
=0, Uyt ,

=>

412,192
d(vy ‘v, "X

v, s 3 oty oG
414,160 ; \ _ 416,160 ,64
d(v5 %0, ps) = v5 v, 085,

415,256 4 \ _ . 416,256,32
d(vy vy ¢y) = vy 0757,

417 .2

)

)

)

A0 P8 RP) = p416(p128 32 1 128,256 4 pl60,64 | 256,32y
)

)

)=v3 0

419)_

modulo (2,v1,v5 Summing these congruences, we obtain

d(yy) = 03030 + 030

416

192 | ,640
+ v,

(I;EO + fH + I 128 16,16 16,32

R VR ol R R o TR 2

128,32 | 128,128 | 128,256 | 816 | 16,64 | 64 128
+ 0,757+ 0,67 07 F 05t o5ty +us ™)

and  d(%g) = 030 (03052 + v,545%)
= U;l6vi6d(f€4)
modulo (2,v,v5").

For k > 9, we prove the formula by induction. Assume that the con-
gruence

(4.6) d(Xk-1) Uég‘zkiﬁ??k—sd(fk—s) mod(v;”(k’”)

is satisfied. Notice that (4.2) may be rewritten as
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2 fork=0 (4),
N 2 fork=1 (4),
alk) =2tk =1+ 03 ik =2 (@),
1 fork=3 (4).

This suggests that we should compute d(X;) modulo (U;M

modulo (véﬂi(k) ).

by o
8, = v;(k)fa(k 4)
Then d(Z;) is computed as

(4.7) d(z) = VBTN (% 42k y)

_.a
=,

Define integers n(k) by

n(k) =
364
alk —4) —a(k — 8)
By definition, Z,_4 is divisible by v3* ¥

Ug(k%d(k%) d(Xk—4)Zk-4 = vi

a
)

for some z. Because d(%x_4) is trivial modulo (v

(k)—a(k—4)

(k)—alk—4)4n(k) (

(k)) rather than

Denote x; + )2,%71 by zx. By definition, z; is related to z;_4

U Xk—4Zk—4-

Xk—4)Zk—a + Np(Xk-4)d (Zr-4)).

for k=9,

for k = 10,
for k =11,
for k =12,
for k > 13.

so that we observe that

. d()ACk,4)U;(k)Z

Xk—4)

<k74)) and the inequality

alk) +n(k) = a(k) +3

is satisfied, we can ignore the first term of (4.7) modulo (v}

3+alk) ). We can also

apply the similar statement for the second term. Thus we have

(4.8) d(z) = AP g d (s

mod(vg(k>+3).

On the other hand, by assumption (4.6) we have

(4.9)

_ 492k 4
= l)2

5 _ 49.2k5 22
d(x;il) =0 g Xj_sd(Xj_s)

Xk,4d()AC1%75).

Summing (4.8) and (4.9), we obtain the desired formula.

5. Proof of the Theorem 1.1
Define integers ¢(k) (k= 0) by
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0 for0 <k <4,
2 fork=5
5.1 ¢(k) = ’
(1) k=9 for 6 <k <7,

2k=4 4 ¢(k —4) for k > 8.

This is the exponent of v4 in d(X;) and thus Lemma 4.5 is rewritten as

2 for 0 <k <2,
(138 +4%) fork =3,
(5.2) d(%k) = Ug(k)vf;(k) (132 +1§*) for k =0 mod(4),
13 for k=1 and 2 mod(4),
B for k =3 mod(4).
modulo (v;ﬂi(k)). By (5.2) and the multiplicative property of #, we obtain
ill,k+2 for 0 <k <2,
) . | (st hys) for k=3,
(53)  oxy/0y) =07 UL (s 4 hag) for k =0 mod(4),
le’4 for k =1 and 2 mod(4),
hi 3 for k = 3 mod(4).

Because of the condition (2.5), it suffices to show that these elements are
linearly independent over Z/(2) (recall that we set v3 = 1).

For k > 8, set k = ko + 4k, with 4 <ky <7 and k; > 1. Then (5.1) may
be rewritten as

24(16“*1 + 168724 +16>+ 16 + 1 (
25(16M -1 +16M72+ ... 4162+ 16 + 1 (
26(16M -1 +16M72 + .. 4162+ 16 + 1) + 1 for k =2 mod(4
27(1651 7 416572 + .. + 162+ 16+ 1) + 1 for k =3 mod(4).
Denote 2K(s — 1) + é(k) (the exponent of v4 in 5()%2/1;?“)) by D(k,s). The
next is the table which classified D(k, s) according to the classes 41 ; (2 <j<4)

or hy;+hy i (j=4,5) (see (5.3)).

for k =0 mod(4),
+2 fork=1 mod(4

3

)
);
)
)

— — — —

class exponent of vy4

hi D(0,s)

i3 D(1,s), D(7, ), D(7 + 4ky,s)

hi 4 D(2,s), D(5,5), D(6,5), D(5+ 4ky,s), D(6 + 4k,s)
hya+hys || D@3,s)

hs+hyg || D(4,s), D4+ 4ki,s)
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In order to confirm that the set of elements (5.3) is linearly independent, it is
enough to check that two D(k,s) belonging to the same class are different each
other. For example, D(k,s) corresponding to A; 3 are

D(1,5) =2(s— 1),
D(7,s) =2"(s— 1) + 1,
D(7 + dky,s) =271 (s — 1) +27(165 71 162 4. .. 4162 +16 + 1) + 1.

D(l,s) is clearly different from other cases because only D(l,s) is even.
Moreover, we see that
D(7,5) =1 mod(2%),

but  D(7+4k,s)=2"+1  mod(2}).

because s — 1 is even, so D(7,s) # D(7 + 4k, s).
We also have to confirm that two integers D(7 + 441,s1) and D(7 + 443, 52)
are different each other whenever (4,s1) # (¢2,52). Assume that

D(7+44,s1) = D(T+44,5)
with 4 < /. Then we see that
A5 — 1) =27 (5 — 1) = 27(1677 416772 - + 167 + 16 + 1)
— 2716+ 1602 - 4167 + 16 + 1)

=27(16""" + 16772 + ... 4 16")
=27 1670167771 16727172 4 ... 116+ 1)
_ 27+4/1<16/2—/1—1 41607072 4L 416+ 1).

Dividing both sides by 2741 we have

sp—1 =280 (g — 1) = 1627471 41677072 4.+ 16+ 1.

Observe that the left hand side is even (because s; — 1 is even) while the right
hand side is odd in this equality. This is a contradiction and we can conclude
that D(7 + 4/1,5‘1) # D(7 + 4/2752).

Similar statements are satisfied in other cases, too. Consequently, (5.3) is
a linearly independent set over Z/(2) and thus B is isomorphic to our target
Exty ) (M3).

Appendix A. A beginner’s guide to the calculation by Mathematica program

Here we exhibit some Mathematica programs which would be useful for
those who are working in BP theory. The programming is not so difficult, but
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there are few guides for programming in terms of Brown-Peterson theory or
related topics. That is why we think that it might be better to give explanation
for the program which we used to obtain the results in this paper.

Our steps to obtain the results in this paper were as follows: First we
used Mathematica to obtain the exact definition of a(k) (4.2) and y, (4.4).
Next we confirmed it both by Mathematica and by hand.

Because it is possible to make some mistakes in programming, it is not
good to depend only on calculating by computer, we think. However, it is of
benefit to reduce the amount of our computational jobs. (We usually waste
almost of our time to get exact definition of X, and a(k)!) So we checked our
results not only by computer but also by hand. In fact, the first author used
Mathematica to obtain the results of [6] and [2] in a similar way.

The first author studied how to program using Mathematica from some
programs by D. C. Ravenel. We thank him so much for giving us his useful
Mathematica programs and permission to exhibit some of them here.

A.1. Definition of some functions. We must specify a prime number at first.
For example, if we set p =2, then we write

Clear[pl; p = 2;

Denote /; (generators of BP. ® Q) by 1[i] and Hazewinkel generators v;
by v[i] as usual. Because of formulas

phL = v
i1
and p/i:v,-+Zvi’ik/k for i >2
k=1

we can express 1[i] using v[i] as

Clear[l, v, t];
1[0] = 1; 1[1] = v[11/p; t[0] = 1;
1[i_] := Expand]
(vii] + sum[v[i - k1" (p"k)*1[k], {k, 1, 1 - 1}])/p
17 1 >= 25

The following program (originally due to Ravenel) is designed in order to
define the algebra structure of the right unit #y : BP, — BP.(BP).

(A.1) Clear[RU, RRU]
RU[x_ + y_] := RU[x] + RU[Y];
RU[x_*y_1 := RU[X]*RU[Y];
RU[x_/y_1 := RU[xX]/RU[Y];
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RU[x_"i Integer] := RU[Xx]"i;
RU[x Rational] := x;
RU[x_Integer] := x;
RU[x _Rational*y ] := X*RU[Y];
RU[x_Integer*y ] := x*RU[Y];
RRU[x_] := Expand[RU[X] - X];

Here the symbol RU means the right unit #; and RRU means the reduced right
unit 7z —#,. Recall that ng(v;) is given by the recursive formulas

nr(v1) = pig(4)

i—1

k
and  np(vi) = prg(4) = Y (0! Dng(4).
k=1

If we denote 7z(4;) by RUonl[i], then the above formulas are rewritten

(A.2) Clear[RUonl]
RUonl[i ] := Sum[l[k]*t[i - k]"(p"k), {k, 0, i}];
RU[v[1]] = Expand[p*RUonl[1l]];
RU[v[i_]] := Expand[p*RUonl[i]
- Sum[RU[vV[i - k]]"(p"k)*RUonl[k],
{k, 1, 1 - 1}11;

Under these preparations, we can make the program calculate #g(v;). For
example, input as

In[l] := RU[V[1]]
RU[V[2]]
RU[V[3]]

Then the corresponding outputs are

out[l] := 2t[1] + Vv[1]
out[2] := -4t[1]1% + 2t[2] - 5t[1]%v[1] - 3t[1]v[1]? +v[2]
out[3] := -16t[1]7 - 4t[1]t[2]% + 2t[3] - 56t[1]°v[1]
- 4t[11%t[2]v[1] - t[21%v[1] - 85t[1]°v[1]?
- 2t[11%t[2]v[1]% - 70t[11%[1]® - 2t[1]t[2]v[1]’®
- 36t[11%v[1]* - t[2]v[1]* - 11t[1]%v[1]>
- 2t[1]v[1]® + t[11%v[2] - 4t[1]t[2]v[2]
- 2t[11%v[1]v[2] - 2t[2]v[1]Vv[2] - t[1]%v[1]®v[2]
- t[1]v[11°v[2] - t[1]v[2]1% + v[3]
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A.2. Programs for mod p calculation. Here we introduce some programs
which we actually used to obtain the results in this paper.

If there are so many processes in running programs, then a computer
would need very long time (or stop). So, whenever we do programming, we
must make our best effort at designing programs so as to reduce the size of
computation.

When we do calculations modulo p, then we put the following program in
front of (A.l):

Clear[PM, PR, SP]

PM[x ] := PolynomialMod[xX, p];

PR[xXx , e_] := PolynomialRemainder([x, Vv[2]"e, V[2]];
SP[x_Plus, k_] := (#"(p"k)) & /@ x

SP[x_Times, k ] := (#"(p"k)) & /@ x

SP[x_Integer, k_ ] := x

SP[x_, k_1 := x"(p"k)

and change the first line of (A.1) into

Clear[RU, RRU, padic, pdigits]
padic[i_] := IntegerDigits[i, p];
pdigits[i_] := Length[padic[i]];
the fifth line of (A.1) into
RU[x_"i Integer] := Product[
SP[RU[x]"(padic[i][[pdigits[i] - k]1), k],
{k, 0, pdigits[i] - 1}];
and the fourth line of (A.2) into
RU[V[i_]] := PM[p*RUonl[i]
- Sum[RU[v[i - k]]"(p"k)*RUonl[k],
{k, 1, 1 - 1}11;
In the above program PM[(polynomial)] means the reduced polynomial
modulo (p), PR[(polynomial), ¢] means the reduced polynomial modulo (v5),

and SP[> ;x;,k] (each x; is a monomial) means >, x/ ‘.
In this paper we considered the right unit M) — M; ® BP.(BP)/(11), so
we set

t[1l] = 0; v[1] = 0;
Moreover, because M, is vi-local, we may also set

v[3] = 1;
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For d(x¢) (0 <k <?2), input data of x; as

Clear[a, Xx]
a[0] = 1; a[l] = p; a[2] = p"2;
x[0] = v[4]; x[1] = x[0]"p; x[2] = x[1]"p;

Do[
Print[""]
Print["d(x[", i1, "]) is computed as follows:"]
Print[" a[", 1, "]=", a[i]]
Print[" x[", i1, "]1=", x[1i]]
Print[" d(x[", i, "]1)=", PM[RRU[X[1i]]],
" mod (", p, ",v[1])"]
Print[" d(x[", i, "]1)=", PR[PM[RRU[Xx[i]]1], 1 + a[i]],
" mod (", p, ",v[1],", V[2]7(1 + a[i]), ")"]
, {i, 0, 2}
1

Then the corresponding outputs are

d on x[0] is computed as follows:

a[0] = 1
x[0] = v[4]

d(x[0]) = t[2]*v[2] + t[2]v[2]* mod (2,v[1])
d(x[0]) = t[2]1*V[2] mod (2,v[1],v[2]%)

d on x[1] is computed as follows:

a[l] = 2

x[1] = v[4]?

d(x[1]) = t[21%v[2]® + t[2]%v[2]® mod (2,v[1])
d(x[1]) = t[2]1%v[2]? mod (2,v[1],v[2]°)

d on x[2] is computed as follows:

a[2] = 4

x[2] = v[4]*

d(x[2]) = t[2]1'%v[2]* + t[21%v[2]'¢ mod (2,v[1])
d(x[2]) = t[2]'°v[2]1* mod (2,v[1],v[2]°)

For d(x;) (k = 3), programming becomes more complicated because there
are many monomials in %, — %7 ;. The next program is designed in order to
make outputs easy to see.



154 Hirofumi NAKAI and Daichi YoRiTOMI

Do[Dx[ j] = PM[RRU[xX[J]]], {J, O, 2}];

Result[k_] := (
DA[k, i ] = RRU[A[k, i]];
Dy[k] =
Collect[PM[Sum[PR[PM[DA[k, i]], aa[k]],
{i, ElementNum[k]}11, V[2]];
Dx[k] = Collect[PM[SP[Dx[k - 1], 1] + Dy[k]], Vv[2]];
RU[x[k]] = Dx[k] + x[k];

Print["If we set "]
Print[" a[", k, "]1=", a[k]]
Print[" aa[", k, "]=", aal[k]]
Print["then we have "]
Do[Print[" d(A[", k",", i, "]1)=", PR[PM[DA[k, i]],
aalk]l]l, " mod(", v[2]"(aal[kl), "),"1,
{i, ElementNum[k]}]
Print["Summing these congruences, we have "]
Print[" d(y[", k, "1)=", Dy[k],
" mod(", v[2]"(aalk]), "),"]
Print["Consequently, we obtain "]
Print[" d(x[", k, "]1)=", PR[Dx[k], aa[k]],
" mod(", v[2]"(aalk]), ")"]
Print[" d(x[", k, "]1)=", PR[Dx[k], 1 + a[k]],
" mod(", v[2]17(1 + a[kl), ")"]
)i

Here the symbols a[k], x[k], Dx[k] and Dy[k] mean a(k), X, d(X)
and d(y,) respectively, and aa[k] is a larger integer than a[k]. Notice
that we actually computed d(%;) modulo (v3*') in the proof of Lemma
4.5.

Each A[k,i] consists of elements added to x;_;, i.e.,
Jr=) Ark,i]
i

and DA[k,i] is d(A[k,1]). ElementNum[k] is the number of such A[k,1i]
(so i runs from 1 to this number in the above sum).
The next program defines w; (i =4,5) in (3.3):

Clear([w];
w[4] = v[5]; w[5] = V[6] + v[4]*V[5]"2;
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Under these preparations, we are ready to compute d(x;) for k > 3. For
example, input data of elements of X3 — %7 as

Clear[k, A]
k = 3;

Alk, 1] = v[2]"8*w[4]1"4;

Alk, 2] = v[2]"7*x[0];

Alk, 3] = v[2]7(11)*w[4];

Ark, 4] = v[2]1"9*x[1];

Alk, 5] = v[2]"(12)*SP[w[5], 2];
Alk, 6] = v[2]7(11)*v[4]7(16)*x[0];
Alk, 7] = v[2]1"(10)*v[4]"4*x[1];
Alk, 8] = v[2]7(15)*v[4]7(16)*w[4];
Alk, 9] = v[2]7(13)*v[4]7(16)*x[1];
Alk, 10] = v[2]"(16)*v[4]"(16)*SP[w[5], 2];
Alk, 11] = v[2]"(15)*v[4]"(32)*x[0];
Alk, 12] = v[2]"(14)*v[4]"(20)*x[1];

ElementNum[k] = 12; a[k] = 12; aal[k] = 19;
Result[k]

Then the corresponding outputs show the same results as described in the
proof of Lemma 4.5. We have got the results on d(x;) for higher k in similar
ways. We believe that interested readers can follow k > 4 cases, referring to
the above-mentioned programs.

To obtain d(x;) we needed about 1.733 second for & = 3, 0.233 second for
k=4, 1.233 second for k =5, 0.817 second for k =6, 0.4 second for k =7,
11.967 second for k = 8, and so on, with Mathematica Ver. 4.1 and 667 MHz
PowerBook G4 with Mac OS Ver. 9.2.2.

Of course, we think that the programs exhibited here might be naive and
that some professional persons can make better programs. We will appreciate
it if the reader could show us a better way.
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