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Singular limit of a degenerate chemotaxis-Fisher equation
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Abstract. We study the singular limit of a degenerate nonlinear di¤usion equation

which appears in a chemotaxis-growth model. We prove the convergence to the solu-

tion of a free boundary problem where the motion equation of the interface involve the

gradient of the chemotactic concentration and the critical velocity of a degenerate Fisher

equation.

1 Introduction

The equation that we consider in this paper arises in biomathematics. It

is a simplified version of a model of pattern formation during bacterial growth

that has attracted a lot of attention in the recent years. It actually describes

aggregation phenomena in bacteria colonies in the presence of an attractant.

The first model for this so-called chemotaxis phenomenon has been introduced

by Keller and Segel in [16] and [17] and reads as follows

ut ¼ ‘:ðDðuÞ‘uÞ � ‘:ðu‘wðvÞÞ
tvt ¼ Dvþ u� gv

qu

qn
¼ qv

qn
¼ 0;

8>>><
>>>:

where u is the density of biological population (eg. slime mold), v is the con-

centration of the chemotaxis substance, n is the outward normal vector on the

boundary of the domain and tb 0 is a chemotaxis time. Here, DðuÞb 0 is

the mobility coe‰cient of the slime mold and g > 0 represents the degradation

rate of v. The second term in the equation is accounting for the chemotaxis

e¤ect, wðvÞ being the sensitivity function of the chemotactic aggregation [23].
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The function w satisfies the assumption that w 0 > 0 to take into account the

attraction of the slime mold towards the regions of higher concentration of v.

For the Keller-Segel system, in the case that DðuÞ is constant, blow-up of

the u component of a solution may occur, which corresponds to an aggregation

phenomena; we refer in particular to [12], [7], [15], [22], [8], [11], [28]. A recent

survey of blow-up results can be found in [14].

Chemotaxis models including a growth e¤ect have been considered (see

[19], [5] and [29]). Such a model is typically a reaction-di¤usion system of the

form

ut ¼ ‘:ðDðuÞ‘uÞ � ‘:ðu‘wðvÞÞ þ f ðuÞ
tvt ¼ Dvþ u� gv;

�

where f ðuÞ is the growth term. Two types of hypotheses are classically con-

sidered for the function f , (i) f is logistic (or of Fisher-type) or (ii) f is

bistable. Mimura and Tsujikawa [19] consider a chemotactic model with

cubic-like nonlinear growth (case (ii)) and studied the problem of existence

and stability of standing pulse solutions of

ut ¼ eDuDu� k‘:ðu‘wðvÞÞ þ 1

e
f ðuÞ

etvt ¼ Dvþ u� gv;

8<
:

in R2 and for 0 < ef 1 su‰ciently small. Bonami, Hilhorst, Logak and

Mimura [3] studied the homogeneous Neumann boundary value problem for

this system of equations on a bounded domain in RN in the bistable case and

for t ¼ 0 and Du ¼ 1
e
. They established that the limiting behavior of the solu-

tion of the chemotaxis problem as e ! 0 is given by a free boundary prob-

lem involving mean curvature and the normal derivative of the chemotaxis

sensitivity.

In this paper, we consider the case (i) assuming that the growth term is

logistic. More precisely, we choose

f ðuÞ ¼ uð1� upÞ; ð1:1Þ

with p > 0. Besides we consider the case of a degenerate di¤usion, taking into

account population density pressure (see Morishita [20], Shigesada [24]). This

corresponds to the mobility coe‰cient DðuÞ ¼ D0u
m�1, for D0 > 0 and m > 1.

Precisely, we have the following system

ut ¼ e‘ðD0u
m�1‘uÞ � k‘:ðu‘wðvÞÞ þ 1

e
uð1� upÞ

etvt ¼ Dvþ u� gv:

8<
:
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Due to the non uniqueness of the travelling wave of this problem and the

degeneracy of the di¤usivity, the analysis of this model becomes extremely

complex. Therefore, to well understand the phenomena we have to consider

the above model in the simpler case of only one equation, assuming that v is

given. More precisely, we consider in this paper the following problem

qu

qt
¼ eDðumÞ � ‘:ðu‘vÞ þ 1

e
uð1� upÞ in W� ð0;T �

qu

qn
¼ 0 on qW� ð0;T �

uðx; 0Þ ¼ geðxÞ in W;

8>>>>><
>>>>>:

ð1:2Þ

where v ¼ vðx; tÞ represents here the sensitivity of the chemotaxis and is sup-

posed to be a given smooth function. Here WHRN is a smooth bounded

domain and n denotes the outward normal vector on qW. We assume that

m > 1, which makes the equation degenerate parabolic. Therefore we define

below the notion of a weak solution to this equation. We study the limiting

behavior of the solution u e to Problem (1.2) as e goes to zero. For a suitable

choice of initial data g e compactly supported in W, we prove that as e goes to

zero, the function ue converges to u0 on a time interval ½0;T � for some T > 0.

The limiting function u0 is the characteristic function of a smooth moving

domain Wt HHW, whose motion law is related to v by

Vn ¼
qv

qn
þ cm on Gt; t A ½0;T �; ð1:3Þ

where Gt ¼ qWt, n is the outward normal vector on Gt, Vn is the normal velocity

at a point on Gt and cm is a constant defined as the critical velocity of the fol-

lowing degenerate travelling wave Fisher problem

ðUmÞ00 þ cU 0 þUð1�U pÞ ¼ 0;

Uð�yÞ ¼ 1; UðþyÞ ¼ 0:

�
ð1:4Þ

More precisely, cm is defined in the following theorem, established in [10]

together with other properties of the travelling fronts of reaction-di¤usion-

advection equations (see also [1]).

Theorem 1.1 [10]. Assume that m > 1. Then there exists cm > 0 such that

(i) For 0 < c < cm, there is no weak solution to (1.4).

(ii) For any cb cm, there is a weak solution Uc to (1.4), which is unique up

to translation. For c > cm, Uc is strictly positive and strictly decreasing on R.

For c ¼ cm, Ucm is compactly supported from the right. We can uniquely define

Ucm by imposing the condition that
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Ucm > 0 on ð�y; 0Þ and Ucm ¼ 0 on ½0;þyÞ: ð1:5Þ

Moreover we have the following properties, recalled in [13].

Proposition 1.2 [13]. Let U be the unique solution of

ðUmÞ00 þ cmU
0 þUð1�U pÞ ¼ 0

Uð�yÞ ¼ 1; U > 0 on ð�y; 0Þ; U ¼ 0 on ½0;þyÞ:

�
ð1:6Þ

Then there exists k1 > 0 and a > 0 such that

jðUmÞ0ðzÞja k1UðzÞ for all z A R;

j1�UðzÞja k1e
�az for all z A R�; ð1:7Þ

jzU 0ðzÞja k1UðzÞ for all za�1:

In the case where v ¼ 0, the problem (1.2) has been considered in [13]. The

authors establish in this case the local-in-time convergence of the solution u e to

a step function taking values 1 and 0 on both sides of an interface moving with

constant normal velocity cm. Thus our results here extend the results of [13]

when a chemotaxis term arises in the equation for the density of bacteria u.

Our methods are similar to those used in [13]. But the determination of the

sub- and super-solution is more complicated.

The organization of the paper is as follows. In section 2, we give a

formal derivation of the motion law (1.3). In section 3, we show that if a

smooth initial interface G0 is given, the corresponding initial-value problem

for the front admits a unique smooth local-in-time solution G ¼ ðGtÞt A ½0;T �, for

some T > 0. In section 4, we define a notion of weak solution to Problem

(1.2) and define the modified distance function to the limit interface. In sec-

tion 5 we prove the convergence result using sub- and super-solutions. Finally

in section 6 we study an example of the radially symmetric case which has non

trivial solution in contrast to the model discused in [13].

2 Formal derivation of the interface motion equation

We show in this section how the front propagation law (1.3) can be derived

formally from Problem (1.2). Using the results of Theorem 1.1 in [10], we

consider the unique solution U ¼ Ucm to the problem (1.4) for c ¼ cm satisfying

(1.5). Let us consider a smooth moving boundary Gt ¼ qWt and let d be the

signed distance function to Gt defined in the neighborhood of Gt by

dðx; tÞ ¼ �distðx;GtÞ for x A Wt

distðx;GtÞ for x A WnWt

�

Fathi Dkhil104



and smoothly extended in W in order to satisfy

dðx; tÞ < 0 for all x A Wt; dðx; tÞ > 0 for all x A WnWt:

In particular, d ¼ 0 on Gt and j‘dðx; tÞj ¼ 1 in a neighborhood of Gt.

As in the formal derivation proposed in [4], we make the assumption that

for e small enough, the solution u e to Problem (1.2) can be approximated by

the function

~uuðx; tÞ ¼ U
dðx; tÞ

e

� �
:

Note that by the definitions of Ucm and of d, the function ~uuð: ; tÞ approximates

for e > 0 small enough the characteristic function wWt
. Our purpose here is to

find the evolution law for dðx; tÞ, assuming that the profile of ue is given by the

travelling wave Ucm .

For a given smooth function v, we define the operator L by

Lu :¼ ut � eDum þ ‘u:‘v� 1

e
uð1� upÞ þ uDv: ð2:1Þ

An easy computation gives that

L~uu ¼ ðUmÞ00

e
ð1� j‘dj2Þ þU 0

e
ðdt þ ‘d‘vþ cmÞ þ ðUmÞ0Dd þUDv:

Note that for x close to Gt, j‘dðx; tÞj ¼ 1 so that

L~uu ¼ U 0

e
ðdt þ ‘d‘vþ cmÞ þOð1Þ:

Since ue satisfies Lu e ¼ 0, we impose that for the approximation ~uu, the 1
e
term

drops which implies that

�dt ¼ ‘d‘vþ cm

on Gt. Since ‘d is the outward normal vector on Gt, this can be rewritten as

Vn ¼
qv

qn
þ cm on Gt;

which is equation (1.3).

3 The limit interface motion: Well-posedness

We consider the following problem

Vn ¼
qv

qn
þ cm on Gt; t A ð0;T �

Gt j t¼0 ¼ G0

8<
: ð3:1Þ

and we establish the following result.
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Theorem 3.1. Let v be a given smooth function, W0 HHW is a smooth

domain and G0 ¼ qW0 is the zero-level of a smooth function f0. Then there

exists a time T > 0 such that Problem (3.1) has a unique smooth solution G ¼
ðGt � ftgÞt A ½0;T �.

Proof. Let f0 be a smooth function, assume that G0 is given by

G0 ¼ fx A W; f0ðxÞ ¼ 0g ð3:2Þ

and that W0 is the connected component of WnG0 which contains

fx A W; f0ðxÞ < 0g:

Let T > 0 be a fixed constant that will be chosen later. For 0a taT , we

parameterize the interface G ¼ ðGtÞt A ½0;T � as follows.

Gt ¼ fx A W; f ðx; tÞ ¼ 0g; ð3:3Þ

where f : W� ½0;T � ! R is the unknown function. We consider the restriction

of f on the interface G so that we have

f ðx; tÞ ¼ 0 on Gt

after derivation with respect to t we obtain that

�ft ¼ ‘f :
qx

qt
:

Since

Vn ¼ � qx

qt
:
‘f

j‘f j
the equation (3.1) implies that

ft ¼ ‘v:‘f þ cmj‘f j:

Finally we can rewrite Problem (3.1) as a first order nonlinear evolution

equation for f ðx; tÞ of the form

ðPf Þ
ft ¼ aðx; tÞ:‘f þ cmj‘f j; x A W; t A ½0;T �
f ðx; 0Þ ¼ f0ðxÞ; x A W

�

where a is a smooth function. Problem ðPf Þ is therefore a first-order Hamilton-

Jacobi type problem. The local-in-time well-posedness of Problem ðPf Þ can be

found in [2] and [18].

We define the front Gt at time t by (3.3) where f is the unique solution of

ðPf Þ then it is shown in [6] and [9] that the propagation of Gt depends only on

the sets G0 and W0 but not on the choice of f0 satisfying (3.2). This ends the

proof of Theorem 3.1.
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4 Weak solutions and modified distance function

Since the equation for u in Problem (1.2) is parabolic degenerate, we need

to define a weak notion of solution to this problem.

Definition of a weak solution. A function u : W� Rþ ! R is a weak solu-

tion of Problem (1.2) if for all T > 0, (i) u A CðW� ½0;T �Þ and ‘ðumÞ A
L2ðW� ½0;T �Þ, (ii) for any function f A C1ðW� ½0;T �Þ with fb 0 in W� ½0;T �,
u satisfies the integral identity

ð
W

uðTÞfðTÞ ¼
ð
W

uð0Þfð0Þ þ
ðT

0

ð
W

uft � e‘ðumÞ‘fþ u‘v‘fþ 1

e
f ðuÞf

� �
:

By a sub- (resp. super-) solution of Problem (1.2), we mean a function u� (resp.

uþ) which satisfies (i) and (ii) with the equality replaced by a (resp. b).

It follows from these definitions that u is a weak solution of Problem (1.2)

if for all T > 0 we have

ðaÞ u A CðW� ½0;T �Þ and ‘ðumÞ A CðW� ½0;T �Þ;

and

ðbÞ Lu ¼ 0 a:e: in W� ½0;T �:

Similarly, u� (resp. uþ) is a weak sub- (resp. super-) solution of Problem (1.2) if

it satisfies aÞ and Lu� a 0 (resp. Luþ b 0), a:e:

Modified distance function. Let G ¼ ðGtÞt A ½0;T � be the solution to the front

propagation law given in Theorem 3.1. We define for x close to Gt, the dis-

tance function dðx; tÞ by

dðx; tÞ ¼ �distðx;GtÞ for x A Wt

distðx;GtÞ for x A WnWt

�

We choose d0 > 0 such that x 7! dðx; 0Þ is smooth in the tubular neighborhood

of G0

Gð2d0Þ ¼ fx A W; jdðx; 0Þj < 2d0g:

We define now d a smooth modification of d such that

d ¼ d in Gðd0Þ ¼ fðx; tÞ A W� ½0; t�; jdðx; tÞj < d0g;

d0 < jdja 2d0 and dd > 0 in Gð2d0ÞnGðd0Þ;

jdj ¼ 2d0 and dd > 0 in W� ½0; t�nGð2d0Þ:
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In particular, d ¼ 0 on Gt and j‘dðx; tÞj ¼ 1 in Gðd0Þ, and we have

dt þ cm þ ‘d‘v ¼ 0 on Gt ¼ fx A W; dðx; tÞ ¼ 0g

which implies that there exists k2 > 0 such that for all ðx; tÞ A W� ½0;T � we

have

jðdt þ cmj‘dj2 þ ‘d‘vÞðx; tÞja k2jdðx; tÞj ð4:1Þ

and

j‘dðx; tÞj þ jDdðx; tÞja k2: ð4:2Þ

We prove here the following result.

Theorem 4.1. Let W0 be a smooth bounded domain with W0 HHW and

G ¼ 6
t A ½0;T �ðGt � ftgÞ defined by (3.1) in Theorem 3.1 for T > 0 small enough.

Then there exist initial data ge satisfying

lim
e!0

geðxÞ ¼ wW0
ðxÞ

for all x A W such that the corresponding solution ue of (1.2) satisfies

lim
e!0

ueðxÞ ¼ wWt
ðxÞ

for all x A W and t A ½0;T �.

5 Sub-solution and super-solution

We define the functions uG as

uGðx; tÞ ¼ aGðeÞU
dðx; tÞH em1e

m2t

e

� �

with aGðeÞ ¼ 1GCe for some constants m1 > 1 and C;m2 > 0, and we shall

show the following

Proposition 5.1. Let e > 0 small enough and U ¼ Ucm be defined in (1.4)–

(1.5). Then there exist m1 > 1 and C;m2 > 0 such that u� and uþ defined above

are respectively sub- and super-solution of Problem (1.2).

Proof. To prove this proposition it is su‰cient to prove that

Luþ b 0 and Lu� a 0 a:e: on W� ½0;T �:

We first establish that

Luþ b 0 a:e: on W� ½0;T �:
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Since uþ ¼ 0 if dðx; tÞ > em1e
m2t then

Luþ ¼ 0 if dðx; tÞ > em1e
m2t:

Hence we establish Luþ b 0 on the subset where dðx; tÞa em1e
m2t.

An easy computation gives that

eLuþ ¼ aU 0½dt � em1m2e
m2t þ ‘d‘vþ cma

m�1j‘dj2�

þU ½�aþ amj‘dj2 þU pðapþ1 � amj‘dj2Þ þ eaDv� � eðUmÞ0amDd

¼: T1 þ T2 þ T3:

We first analyze T1 ¼ aU 0T 0
1, where

T 0
1 ¼ dt � em1m2e

m2t þ ‘d‘vþ cma
m�1j‘dj2

¼ dt þ cmj‘dj2 þ ‘d‘v� em1m2e
m2t þ cmðam�1 � 1Þj‘dj2

a k2jd � em1e
m2tj þ eðk2 �m2Þm1e

m2t þ cmjam�1 � 1jk2
2

where k2 is defined in (4.1) and (4.2).

*First case 0a da em1e
m2t. There exists e0 > 0 such that for all 0 <

e < e0 we have

em1e
m2T a d0

which implies that 0a d < d0 so that

jd � em1e
m2tja em1e

m2t:

Therefore we obtain that

T 0
1 a k2jd � em1e

m2tj þ eðk2 �m2Þm1e
m2t þ cmk

2
2 jam�1 � 1j:

We choose a ¼ aþ ¼ 1þ Ce, where C is determined later.

Hence

T 0
1 a e½ð2k2 �m2Þm1e

m2t þ 2cmCk
2
2 ðm� 1Þ�:

We choose m2 large enough to obtain T 0
1 a 0 in ½0;T � conclude that T1 b 0.

*Second case da 0. We have that

T 0
1 a k2jd � em1e

m2tj þ eðk2 �m2Þm1e
m2t þ cmjam�1 � 1jk2

2 :

With our choice of m2 in the first case we obtain

T 0
1 a k2jd � em1e

m2tj:

Since da 0 then
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d � em1e
m2t

e
a�m1 a�1:

Using (1.7) and the fact that U 0 a 0 we obtain

T1 ¼ aU 0T 0
1 b�ek1k2aU :

We analyze now T2 þ T3. We have

jT3j ¼ jðUmÞ0Ddamja eamk1k2U

which implies that

T2 þ T3 bU ½�aþ amj‘dj2 þU pðapþ1 � amj‘dj2Þ þ eaDv� ek1k2a
m�

bU ½�aþ am þ ðj‘dj2 � 1Þamð1�U pÞ

þU pðapþ1 � amÞ � eaK � ek1k2a
m�:

*If �d0 a da em1e
m2t then j‘dj ¼ 1. Using that

0a ð1�U pÞ d � em1e
m2t

e

� �
a ð1�U pÞ � d0

e

� �
a k1e

�aðd0=eÞ

then we have

jðj‘dj2 � 1Þamð1�U pÞja ð1þ k2
2 Þamk1e

�aðd0=eÞ a
ek1a

mð1þ k2
2 Þ

ad0
:

Hence

T2 þ T3 bU �aþ am þU pðapþ1 � amÞ � eaK � ek1k2a
m � ek1a

mð1þ k2
2 Þ

ad0

� �

therefore

eLuþ bU

�
�aþ am þU pðapþ1 � amÞ � eaK

� ek1k2a
m � ek1k2a�

ek1a
mð1þ k2

2 Þ
ad0

�
:

-First case 1 < ma pþ 1. We choose a ¼ aþ ¼ 1þ Ce such that

ð1þ eK þ ek1k2Þa� 1� ek1k2 � ek1
1þ k2

2

ad0

� �
am

a 0

which is satisfied if we choose

C > C0 ¼
K þ 2k1k2 þ k1

1þk2
2

ad0

m� 1
:
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-Second case mb pþ 1. We choose a ¼ aþ ¼ 1þ Ce such that

ð1þ eK þ ek1k2Þa� apþ1 þ e k1k2 þ ek1
1þ k2

2

ad0

� �
am

a 0

which is satisfied if we choose

C > C0 ¼
1

p
K þ 2k1k2 þ k1

1þ k2
2

ad0

� �
:

Therefore for this choice of aþ we obtain Luþ b 0 a:e: on W� ½0;T �.
We now prove that Lu� a 0 a:e: on W� ½0;T �. We have

eLu� ¼ aU 0½dt þ em1m2e
m2t þ ‘d‘vþ cma

m�1j‘dj2�

þU ½�aþ amj‘dj2 þU pðapþ1 � amj‘dj2Þ þ eaDv� � eðUmÞ0amDd

¼: T1 þ T2 þ T3:

We first analyze T1 ¼ aU 0T 0
1, where

T 0
1 ¼ dt þ em1m2e

m2t þ ‘d‘vþ cma
m�1j‘dj2

¼ dt þ cmj‘dj2 þ ‘d‘vþ em1m2e
m2t þ cmðam�1 � 1Þj‘dj2

b�k2jd þ em1e
m2tj þ eðk2 þm2Þm1e

m2t � cmjam�1 � 1j j‘dj2:

There exists e0 > 0 such that d0 > 2em1e
m2t for all e < e0.

*�d0 < �2em1e
m2t < d < �em1e

m2t. We have j‘dj ¼ 1 then

T 0
1 b�k2jd þ em1e

m2tj þ eðk2 þm2Þm1e
m2t � cmjam�1 � 1j:

We choose a ¼ a� ¼ 1� Ce where C is determined later. Hence

T 0
1 b�k2jd þ em1e

m2tj þ eðk2 þm2Þm1e
m2t � eðm� 1ÞCcm

b k2ðd þ em1e
m2tÞ þ eðk2 þm2Þm1e

m2t � eðm� 1ÞCcm

b eðm1m2e
m2t � Ccmðm� 1ÞÞ:

We choose m1 and m2 large enough to obtain

m1m2e
m2t � Ccmðm� 1Þb 0:

Hence T 0
1 b 0 and then

T1 a 0:

*�d0 � em1e
m2t a da�2em1e

m2t. We have j‘dj ¼ 1 and
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T 0
1 b�k2jd þ em1e

m2tj þ em1ðk2 þm2Þem2t þ cmðam�1 � 1Þ

b�k2jd þ em1e
m2tj

which implies that

T1 a eak1k2U :

*da�d0 � em1e
m2t. We have

T 0
1 b�k2jd þ em1e

m2tj þ eðk2 þm2Þm1e
m2t � ek3k

2
2 cm:

Hence

T1 a aU 0½k2ðd þ em1e
m2tÞ þ eðk2 þm2Þm1e

m2t � ek3k
2
2 cm�

a
eak1U

d0
½k2d0 � eðk2 þm2Þm1e

m2t þ ek3k
2
2 cm�

a eak4U :

Therefore

eLu� aU ½�aþ amðj‘dj2 � 1Þð1�U pÞ þ am þU pðapþ1 � amÞ

þ eaK þ ek1k2a
m� þ T1

aU ½�aþ amðj‘dj2 � 1Þð1�U pÞ þ amð1þ ek1k2Þ

þU pðapþ1 � amÞ þ eaðK þ k4Þ�

aU ½�aþ amð1þ 2ek1k2Þ þU pðapþ1 � amÞ þ eaðK þ k4Þ�

aU ½�að1� ek5Þ þ amð1þ 2ek1k2Þ þU pðapþ1 � amÞ�:

-First case 1 < ma pþ 1. We choose a ¼ a� ¼ 1� Ce such that

ð1� ek5Þa� ð1þ 2ek1k2Þam
b 0

which is satisfied if we choose

C > C0 ¼
k5 þ 2k1k2
m� 1

:

-Second case mb pþ 1. We choose a ¼ a� ¼ 1� Ce such that

ð1� ek5Þa� apþ1 � 2ek1k2a
m
b 0

which is satisfied if we choose

C > C0 ¼
1

p
ðk5 þ 2k1k2Þ:
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Therefore for these choices of aþ and a� we obtain

Lu� a 0aLuþ a:e: on W� ½0;T �:

This ends the proof of Proposition 5.1.

Finally the result of Theorem 4.1 is obtained for any initial data ge

satisfying

ð1� CeÞU dðx; 0Þ þ em1

e

� �
a geðxÞa ð1þ CeÞU dðx; 0Þ � em1

e

� �
: ð5:1Þ

6 The interface motion in the radially symmetric case

In this section we consider the particular case of radial symmetric where

the sensitivity function v is of the form vðt; xÞ ¼ hðjxjÞ þ kðtÞ with h a smooth

even function.

We prove here the following result.

Theorem 6.1. Let W ¼ Bð0;RÞ, W0 ¼ Bð0; r0Þ with 0 < r0 < R two ball in Rn

and let u e be the solution of Problem (1.2) with a radially symmetric initial data

g e satisfying (5.1). Then there are two cases

1. either h 0ðrÞ > �cm on ½r0;yÞ and
Ðy
r0

dr
cmþh 0ðrÞ ¼ T < þy then

lim
t!T

lim
e!0

ueðt; xÞ ¼ 1 for all x A W

2. or there exists ry > 0 depending only on h and r0 such that

lim
t!y

lim
e!0

ueðt; xÞ ¼
1 in Bð0; ryÞ
0 in Bð0;RÞnBð0; ryÞ

�

Proof. In this case, the solution of Problem (3.1) is Gt ¼ qBð0; rðtÞÞ where

rðtÞ is a solution to the following

r 0 ¼ h 0ðrÞ þ cm t > 0

rð0Þ ¼ r0

�
ð6:1Þ

which is a first-order ODE. We know that the solution of this problem is

either a constant r0 or is a strictly monotonous function. We distinguish here

the following three cases.

*First case h 0ðr0Þ ¼ �cm. This implies that r is a constant function and

then ry ¼ r0.

*Second case h 0ðr0Þ < �cm. Since h is an even function then h 0ð0Þ ¼ 0

which implies that there exists 0 < r < r0 such that h 0ðrÞ ¼ �cm. We obtain

then that ry ¼ supfr A ð0; r0Þ; h 0ðrÞ ¼ �cmg:
*Third case h 0ðr0Þ > �cm. In this case there are three possibilities.
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1) There exists r > r0 such that h 0ðrÞ ¼ �cm. We obtain then that

ry ¼ inffR; inffr > r0; h
0ðrÞ ¼ �cmgg.

2) h 0ðrÞ > �cm on ½r0;yÞ and
Ðy
r0

dr
cmþh 0ðrÞ ¼ T < þy, the solution rðtÞ of

6.1 blows up at this time T .

3) h 0ðrÞ> �cm on ½r0;yÞ and
Ðy
r0

dr
cmþh 0ðrÞ ¼ þy then ry ¼ inffR;yg ¼ R.

According now to the result obtained in Theorem 4.1 this ends the proof

of Theorem 6.1.

Remark 6.2. This result give the equilibrium points. The equilibrium ry
is stable if h 00ðryÞ < 0.
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