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Singular limit of a degenerate chemotaxis-Fisher equation
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ABSTRACT. We study the singular limit of a degenerate nonlinear diffusion equation
which appears in a chemotaxis-growth model. We prove the convergence to the solu-
tion of a free boundary problem where the motion equation of the interface involve the
gradient of the chemotactic concentration and the critical velocity of a degenerate Fisher
equation.

1 Introduction

The equation that we consider in this paper arises in biomathematics. It
is a simplified version of a model of pattern formation during bacterial growth
that has attracted a lot of attention in the recent years. It actually describes
aggregation phenomena in bacteria colonies in the presence of an attractant.
The first model for this so-called chemotaxis phenomenon has been introduced
by Keller and Segel in [16] and [17] and reads as follows

u, =V.(Dw)Vu) = V.(uVy(v))
twy=Adv+u—yv
ou Ov

oo

where u is the density of biological population (eg. slime mold), v is the con-
centration of the chemotaxis substance, v is the outward normal vector on the
boundary of the domain and 7 > 0 is a chemotaxis time. Here, D(u) > 0 is
the mobility coefficient of the slime mold and y > 0 represents the degradation
rate of v. The second term in the equation is accounting for the chemotaxis
effect, y(v) being the sensitivity function of the chemotactic aggregation [23].
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The function y satisfies the assumption that y’ > 0 to take into account the
attraction of the slime mold towards the regions of higher concentration of v.

For the Keller-Segel system, in the case that D(u) is constant, blow-up of
the u component of a solution may occur, which corresponds to an aggregation
phenomena; we refer in particular to [12], [7], [15], [22], [8], [11], [28]. A recent
survey of blow-up results can be found in [14].

Chemotaxis models including a growth effect have been considered (see
[19], [5] and [29]). Such a model is typically a reaction-diffusion system of the
form

{ u, =V.(Dw)Vu) = V.(uVy()) + f(u)

Ty = Av+u — yv,

where f(u) is the growth term. Two types of hypotheses are classically con-
sidered for the function f, (i) f is logistic (or of Fisher-type) or (i) f is
bistable. Mimura and Tsujikawa [19] consider a chemotactic model with
cubic-like nonlinear growth (case (ii)) and studied the problem of existence
and stability of standing pulse solutions of

1
uy = eDydu — kV.(uVy(v)) + Ef(u)
ety = Av+u — yv,

in R?> and for 0 <&« 1 sufficiently small. Bonami, Hilhorst, Logak and
Mimura [3] studied the homogeneous Neumann boundary value problem for
this system of equations on a bounded domain in R” in the bistable case and
fort=0and D, = % They established that the limiting behavior of the solu-
tion of the chemotaxis problem as ¢ — 0 is given by a free boundary prob-
lem involving mean curvature and the normal derivative of the chemotaxis
sensitivity.

In this paper, we consider the case (i) assuming that the growth term is
logistic. More precisely, we choose

S ) = u(l =), (L1)

with p > 0. Besides we consider the case of a degenerate diffusion, taking into
account population density pressure (see Morishita [20], Shigesada [24]). This
corresponds to the mobility coefficient D(u) = Dou”~!, for Dy > 0 and m > 1.
Precisely, we have the following system

1
u; = eV(Dou~'Vu) — kV.(uVy(v)) + gu(l —ul)

ety = Av+u — yv.
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Due to the non uniqueness of the travelling wave of this problem and the
degeneracy of the diffusivity, the analysis of this model becomes extremely
complex. Therefore, to well understand the phenomena we have to consider
the above model in the simpler case of only one equation, assuming that v is
given. More precisely, we consider in this paper the following problem

%:gd(u’”)—V.(qu)—i—%u(l —u’) inQx(0,T]

ai’:O on 0Q x (0, T] (12)
ov

u(x,0) = g°(x) in Q,

where v = v(x, t) represents here the sensitivity of the chemotaxis and is sup-
posed to be a given smooth function. Here Q c R" is a smooth bounded
domain and v denotes the outward normal vector on 022. We assume that
m > 1, which makes the equation degenerate parabolic. Therefore we define
below the notion of a weak solution to this equation. We study the limiting
behavior of the solution u® to Problem (1.2) as ¢ goes to zero. For a suitable
choice of initial data g* compactly supported in £, we prove that as ¢ goes to
zero, the function u® converges to #° on a time interval [0, T'] for some 7 > 0.
The limiting function u° is the characteristic function of a smooth moving
domain Q, cc 2, whose motion law is related to v by

0
V,="4¢, onl,tel0,T], (1.3)
on
where I; = 0Q,, n is the outward normal vector on 77, ¥, is the normal velocity
at a point on /; and ¢, is a constant defined as the critical velocity of the fol-
lowing degenerate travelling wave Fisher problem

{(U’”)"+CU’+U(1—UP)_O, (1.4)

U(—0)=1, U(+wx)=0.

More precisely, ¢, is defined in the following theorem, established in [10]
together with other properties of the travelling fronts of reaction-diffusion-
advection equations (see also [1]).

THEOREM 1.1 [10]. Assume that m > 1. Then there exists c¢,, > 0 such that

(i) For 0 < c < ¢y, there is no weak solution to (1.4).

(i) For any ¢ = ¢y, there is a weak solution U, to (1.4), which is unique up
to translation. For ¢ > ¢y, U, is strictly positive and strictly decreasing on R.
For ¢ = ¢, U, is compactly supported from the right. We can uniquely define

Cm
U, by imposing the condition that
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U,, >0 on (—w0,0) and U,

. =0 on [0,400). (L.5)
Moreover we have the following properties, recalled in [13].

ProposITION 1.2 [13]. Let U be the unique solution of

{(U’”)"—i—ch’+ U(l-U?) =0 (1.6)
U(-w)=1, U>0on (—0,0), U=0 on [0,+0).
Then there exists ki >0 and o > 0 such that

(U™ (z)| <k U(z)  for all z€R,

1 - U(2)| < kie™ for all zeR_, (1.7)

|zU'(2)] < k1 U(2) Sfor all z < —1.

In the case where v = 0, the problem (1.2) has been considered in [13]. The
authors establish in this case the local-in-time convergence of the solution u* to
a step function taking values 1 and 0 on both sides of an interface moving with
constant normal velocity ¢,,. Thus our results here extend the results of [13]
when a chemotaxis term arises in the equation for the density of bacteria u.
Our methods are similar to those used in [13]. But the determination of the
sub- and super-solution is more complicated.

The organization of the paper is as follows. In section 2, we give a
formal derivation of the motion law (1.3). In section 3, we show that if a
smooth initial interface I is given, the corresponding initial-value problem
for the front admits a unique smooth local-in-time solution I" = (I3),.(o 7y, for
some T > 0. In section 4, we define a notion of weak solution to Problem
(1.2) and define the modified distance function to the limit interface. In sec-
tion 5 we prove the convergence result using sub- and super-solutions. Finally
in section 6 we study an example of the radially symmetric case which has non
trivial solution in contrast to the model discused in [13].

2 Formal derivation of the interface motion equation

We show in this section how the front propagation law (1.3) can be derived
formally from Problem (1.2). Using the results of Theorem 1.1 in [10], we
consider the unique solution U = U,,, to the problem (1.4) for ¢ = ¢, satistying

(1.5). Let us consider a smooth moving boundary I; = 02, and let d be the
signed distance function to I; defined in the neighborhood of I7 by

—dist(x,I;) for x e Q,
d e —
(x,1) { dist(x,I;)  for x e Q\Q,
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and smoothly extended in Q in order to satisfy
d(x,1) <0 for all xeQ,, d(x,t) >0 for all xe Q\Q,.

In particular, d =0 on I; and |Vd(x,?)] =1 in a neighborhood of ;.

As in the formal derivation proposed in [4], we make the assumption that
for & small enough, the solution u* to Problem (1.2) can be approximated by
the function

&

u(x, 1) = U(

Note that by the definitions of U,, and of d, the function #(.,) approximates
for ¢ > 0 small enough the characteristic function y,. Our purpose here is to
find the evolution law for d(x, ¢), assuming that the profile of u* is given by the
travelling wave U, .

For a given smooth function v, we define the operator L by

a(:0)

1
Lu = u,—sAu’”+Vu.Vv—Eu(1 —uf) + udv. (2.1)

An easy computation gives that

~ (Um)// ) U/ s/
Lii="——(1 = Vd]*) + — (di + VdVv + ) + (U")'4d + Uv.

Note that for x close to I;, [Vd(x,¢)] =1 so that
/

U
Lu =

&

(d +VdVv+cy) + O(1).

Since u® satisfies Lu® = 0, we impose that for the approximation u, the % term
drops which implies that

_d[ = VdVU + Cm
on I;. Since Vd is the outward normal vector on [, this can be rewritten as
ov
Vi=——+c¢m on [,
on

which is equation (1.3).

3 The limit interface motion: Well-posedness

We consider the following problem

0
Vn:a—Z—i—cm on I3, te (0,T]

Ft|r:0 =1y

(3.1)

and we establish the following result.
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THEOREM 3.1. Let v be a given smooth function, Qy cc Q is a smooth
domain and Iy = 0Qqy is the zero-level of a smooth function fy. Then there
exists a time T > 0 such that Problem (3.1) has a unique smooth solution I =

(i x {1} e o, 7-
Proor. Let fy be a smooth function, assume that Iy is given by
Iy ={xeQ filx) = 0} (32)

and that Qo is the connected component of Q\I, which contains

{xeQ, fo(x) <0}.

Let T > 0 be a fixed constant that will be chosen later. For 0 <t < T, we
parameterize the interface I = (I7),. o 7] as follows.

= {xeQ f(x,1) =0}, (33)
where f : Q x [0,T] — R is the unknown function. We consider the restriction
of f on the interface I" so that we have

flx,0)=0 on [;

after derivation with respect to ¢ we obtain that

0
—f=vr.Z
ot

Since
ox Vf

oV

the equation (3.1) implies that
S =VoVf +cn|VS].

Finally we can rewrite Problem (3.1) as a first order nonlinear evolution
equation for f(x,¢) of the form

P fi=alx, ).V +c,|Vf], xe€Q,t€[0,T)]
( -’){f<x,0> — fol). veQ

where a is a smooth function. Problem (F7;) is therefore a first-order Hamilton-
Jacobi type problem. The local-in-time well-posedness of Problem (Pr) can be
found in [2] and [18].

We define the front I; at time ¢ by (3.3) where f is the unique solution of
(Pr) then it is shown in [6] and [9] that the propagation of I} depends only on
the sets I and Q) but not on the choice of f; satisfying (3.2). This ends the
proof of Theorem 3.1.
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4 Weak solutions and modified distance function

Since the equation for u in Problem (1.2) is parabolic degenerate, we need
to define a weak notion of solution to this problem.

Definition of a weak solution. A function u:Q xR, — R is a weak solu-
tion of Problem (1.2) if for all 7 >0, (i) ue C(Qx[0,T]) and V(u™)e
L*(Q x [0, T)), (ii) for any function ¢ € C1(Q x [0, T]) with ¢ >0 in Q x [0, T},
u satisfies the integral identity

T

|, utryacr) = |

Q

mmwm+j

0

JQ <u¢, — V™V +uVoVe + if(u)qﬁ) .

By a sub- (resp. super-) solution of Problem (1.2), we mean a function u_ (resp.
uy) which satisfies (i) and (ii) with the equality replaced by < (resp. >).

It follows from these definitions that u is a weak solution of Problem (1.2)
if for all 7> 0 we have

(a) ueC@x1[0,7T]) and V(@™ eC(Qx]0,T)),
and
(b) Lu=0 ae.  in Qx][0,T].
Similarly, u_ (resp. uy) is a weak sub- (resp. super-) solution of Problem (1.2) if

it satisfies @) and Lu_ <0 (resp. Luy > 0), a.e.

Modified distance function. Let I" = (7). ry be the solution to the front
propagation law given in Theorem 3.1. We define for x close to [7, the dis-
tance function d(x,?) by

- [ —dist(x, I;) for x €
d(x, 1) = { dist(x,I;)  for x e Q\Q,

We choose dy > 0 such that x — d(x,0) is smooth in the tubular neighborhood
of Iy

I'(2dy) = {x e Q,|d(x,0)| < 2d,}.
We define now d a smooth modification of d such that
d=d in I'(dy) = {(x,1) € 2 x [0,4],|d(x,1)| < do},
do < |d] < 2dy and dd >0 in I"'(2do)\I"(dy),
ld|=2dy and dd>0 in Q x[0,]\I"(2d).
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In particular, d =0 on I; and |Vd(x,?)| =1 in I'(dy), and we have
di+cy +VdVeo =0 on I} ={xeQ,d(x,t) =0}

which implies that there exists k, > 0 such that for all (x,7) e Q x [0, T] we
have

(d + cw|Vd|* + VdVD)(x,1)] < kald(x, )] (4.1)
and
\Vd(x,1)| + |4d(x, 1)| < k». (4.2)
We prove here the following result.

THEOREM 4.1. Let Qo be a smooth bounded domain with Q) cc Q and
I = Ute[O. (L1 x {1}) defined by (3.1) in Theorem 3.1 for T >0 small enough.
Then there exist initial data g° satisfying

lim g*(x) = 7g,(%)
for all x € Q such that the corresponding solution u® of (1.2) satisfies
lim u(x) = 70,(x)

for all xe Q and te0,T).

5 Sub-solution and super-solution
We define the functions uy as

us(¥,1) = <>U(M)

&

with a4(e) =1 + Ce for some constants m; > 1 and C,my > 0, and we shall
show the following

PROPOSITION 5.1.  Let ¢ > 0 small enough and U = U,,, be defined in (1.4)—
(1.5).  Then there exist m; > 1 and C,my > 0 such that u_ and u defined above
are respectively sub- and super-solution of Problem (1.2).

Proor. To prove this proposition it is sufficient to prove that
Lu, >0 and Lu <0 ae  on Qx]0,T].
We first establish that

Luy >0 ae.  on Qx[0,T].
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Since uy =0 if d(x,1) > emje™' then
Lu, =0 if d(x,t) > emje™".

Hence we establish Lu; >0 on the subset where d(x,?) < emje™".
An easy computation gives that

eLuy = aU'[d, — emimye™ + VdVv + ¢y |Vd|*]
+ Ul—a+a"|\Vd)* + U (a"*" — a"|Vd|*) + eadv] — e(U™)' a" Ad
=T+ T+ Ts.
We first analyze 7 = aU'T]|, where
T! = d, — emimye™ +VdVv + ca” ' |Vd|?
=d, + c|Vd)* + VdVv — emimye™™ + ¢,y(a” " = 1)|Vd|?
< kald — emie™!| + e(ky — ma)mie™' + ¢la™ " — 1]k3

where k;, is defined in (4.1) and (4.2).
*First case 0 < d < emje™!. There exists gy > 0 such that for all 0 <
& < &y we have

eme™T < d,
which implies that 0 < d < dp so that
|d — emie™| < emye™.
Therefore we obtain that

T| < kald — emye™"| + e(ky — my)mye™' + cpk3la™ ' —1].

We choose a = a, =1+ Ce, where C is determined later.
Hence

T| < &[(2ky — my)mye™" + 2¢,,Ck3(m — 1)].

We choose m, large enough to obtain 7] <0 in [0, 7] conclude that 77 > 0.
*Second case d < 0. We have that

T| < kald — emye™"| + e(ky — my)mye™' + cpla™ " — 1]k3.
With our choice of my in the first case we obtain
T| < kald — emye™'|.

Since d < 0 then
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d — emje™!
— < -m < —1.

€
Using (1.7) and the fact that U’ <0 we obtain
T\ =aU'T{ > —¢kikpaU.
We analyze now 7> + 73. We have
T3] = |(U™)' 4da™| < ea™kiky U
which implies that
Ty + T3 > Ul—a+ a"|Vd|* + UP(a”™" — a”|Vd|*) + cadv — ekikra™]
> Ul—a+a" + (Vd|* — 1)a"(1 — UP)
+ UP(a?*! — a™) — eaK — ekykra™).

*If —dy < d < emje™' then |Vd|=1. Using that

_ myt
0<(1-U? (%) <(1-U") (_@) < ke *do/e)
&

&

then we have

dkam (14 k2
((Vd)> = Da" (1 — U?)| < (1 + k2)a"kye " D/2) < %.

Hence

kia"(1+ k3
T+ T > Ul:_a+am+UP(ap+1_am)_SaK_Sklkzam_gla(—i—z)}

O£d0

therefore

elu, > U{—a_q_a’” + U”(al’“ R
kya™ (1 + k2
_ dhikoa™ — gikoa — M] _

O(d()

-First case | <m < p+ 1. We choose a =a, =1+ Ce¢ such that

1+k22 m
(1+6K+8k1k2)a— 1 _8k1k2_8k17 a” <0
0

which is satisfied if we choose
14k2
K +2kiky + ki

C>Cy= m—1
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-Second case m > p+ 1. We choose a = a, =1+ Ce¢ such that

1+ k2
(1+8K+8k1k2)a—ap+l+8(k1k2+8k1 ;;1 2)(1"1 <0
0

which is satisfied if we choose

1 1 ?
C>C0:—(K+2k1k2+k1 +k2>
P ady

Therefore for this choice of a; we obtain Lu, >0 a.e. on Q x [0, T).
We now prove that Lu_ <0 a.e. on Q x [0,7]. We have

eLu_ = aU'[d, + emimye™ + VdVv + cpa” ' |Vd|?]
+ Ul—a+ a"\Vd|* + UP(a"*" — a"'|\Vd)?) + eadv] — e(U™) a" Ad
=T+ T+ Ts
We first analyze T} = aU'T], where
T| = d, + emymye™' +-VdVo + cpa™! \vd|*
=d, + ¢,|Vd)* + VdVv + emimye™ + ¢,(a"' = 1)|Vd|?
> —lo|d + emye™| + e(ky + my)mye™' — ¢la™ " — 1] |Vd|?.

There exists gy > 0 such that dy > 2eme™! for all ¢ < g.
*—dy < —2emje™!' < d < —empe™'. We have |Vd| =1 then

T| > —ky|d + emie™'| + e(ky + my)mie™" — c,la™ " —1].
We choose a =a_ =1— Ce¢ where C is determined later. Hence
T| > —ka|d + emie™'| + e(ky + ma)mie™" — e(m — 1) Cey,
> ky(d + emie™?) + elky + mo)my ™" — e(m — 1)Ceyy
> e(mimae™" — Cepy(m — 1)).
We choose m; and mj; large enough to obtain
mynae™ — Cepy(m —1) > 0.
Hence 7| >0 and then
T <0.

*—dy —eme™' <d < —2emje™'. We have |Vd| =1 and
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T| > —ka|d + emie™'| + emy (ky + ma)e™ + ¢,y(a™ ' — 1)
> —ky|d + emye™!

which implies that
T < eaki1kyU.

*d < —dy — emie™!. We have

T| > —ky|d + emye™'| + e(ky + may)mye™" — ek3k226,,,.

Hence
T\ < aU'lky(d + emye™") + e(ky + my)mye™" — sk3k22cm]
kU
< gad(l) [kzd() — E(kz + mz)mle’"zt + 8k3k22Cm]
< eak,U.
Therefore

eLu_ < Ul—a+a"([Vd|* = 1)(1 — U?) + a" + U?(a"*' — a™)
+ eaK + ekikra™) + T

Ul—a+ a"([Vd|* — 1)(1 — U?) + a" (1 + ek1k2)

IA

+ UP(a"™ — a™) + ea(K + ky)]
< Ul—a+a™(1 + 2ekika) + UP(aP™ — a™) + ea(K + ky)]
< Ul—a(l — ¢ks) + a™(1 + 2ekiky) + UP(a?*! — a™)].
-First case 1 <m < p+1. We choose a =a_ =1 — Ce such that
(1 —éeks)a— (1 + 2ekiky)a™ =0
which is satisfied if we choose

ks + 2k
 om—=1

C>Cy

-Second case m > p+ 1. We choose a =a_ =1— Ce such that
(1 — eks)a — a’™' — 2ekykya™ > 0

which is satisfied if we choose

1
C>Cy= ;(ks +2k1k2).
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Therefore for these choices of a; and a_ we obtain
Lu <0<Lu, ae  on Qx]0,T].

This ends the proof of Proposition 5.1.
Finally the result of Theorem 4.1 is obtained for any initial data ¢°
satisfying

(1- cau(M) <g*(x) < (1+ cau(M). (5.1)

6 The interface motion in the radially symmetric case

In this section we consider the particular case of radial symmetric where
the sensitivity function v is of the form wv(¢, x) = h(|x|) + k(¢) with & a smooth
even function.

We prove here the following result.

THEOREM 6.1.  Let Q = Ao gy, L0 = B(0,,) With 0 <19 < R two ball in R"
and let u® be the solution of Problem (1.2) with a radially symmetric initial data
gt satisfying (5.1). Then there are two cases

1. either h'(r) > —cy on [ry,00) and ff;c - f,:,(r) =T <+ then

IILH} !E% ut(t,x) =1 for all xeQ

2. or there exists roy, > 0 depending only on h and ry such that

{1 in '@(O,M,)

lim lim (2, x) = 0 in B0,r\D0.r,)

t—o0 ¢—0
PrOOF. In this case, the solution of Problem (3.1) is I7 = 0% g, .;)) Where
r(¢) is a solution to the following

{r’h’(r)Jrcm t>0

r(0) =g (6.1)

which is a first-order ODE. We know that the solution of this problem is
either a constant ry or is a strictly monotonous function. We distinguish here
the following three cases.

*First case h'(rg) = —c¢,.  This implies that r is a constant function and
then r,, = ry.

*Second case h'(ry) < —cp. Since h is an even function then A’(0) =0
which implies that there exists 0 < r < ry such that 4'(r) = —¢c,,. We obtain
then that r,, = sup{r e (0,ry),h'(r) = —cn}.

*Third case /'(rg) > —c,. In this case there are three possibilities.
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1) There exists r>ry such that h'(r) = —c,. We obtain then that
ro = Inf{R,inf{r > ro,h’(r) = —cpn }}.

2) h(r) > —cn on [ro,00) and [ =% = T < +o0, the solution r(r) of
6.1 blows up at this time 7.

3) /1’(() > —¢,, on [ry, o) and rf.cmiz’.(r) = +0o0 then r,, = inf{R, o0} = R.

According now to the result obtained in Theorem 4.1 this ends the proof
of Theorem 6.1.

REMARK 6.2. This result give the equilibrium points. The equilibrium r,
is stable if h"(ry) < 0.
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