
Hiroshima Math. J.

34 (2004), 201–210

Practical fast algorithm for finite field arithmetics

using group rings

Makoto Matsumoto and Shigehiro Tagami

(Received October 27, 2003)

(Revised January 16, 2004)

Abstract. This paper studies a fast algorithm for finite field arithmetics, by repre-

senting a finite field as a residue of a group ring of a finite cyclic group, where the

frobenius (q-th power) operation is e‰ciently computable. When the characteristic of

the field is greater than 2, our algorithm is often much faster than a standard method

(NTL) in computing inverse and power. For example, ours is roughly 23.6 times faster

in computing power in F8191136 than NTL. The implementation contains a new scheme

for computing powers, which is applicable for any group if the q-th power operation is

negligibly fast.

1. Introduction

Let p be a prime number, q a power of p, and Fq the finite field of order q.

Our aim is a practical fast algorithm for arithmetic operations such as addition,

multiplication, power, and inversion in Fqd , assuming that we have those for Fq.

A most naive method to represent Fqd is to use a polynomial basis.

Choose a generator a A Fqd as a ring over Fq, then

Fqd ¼ Fq½a�GFq½t�=jaðtÞ

for the minimal polynomial jaðtÞ of a over Fq. Thus, addition and multi-

plication are done in the polynomial ring Fq½t� and then the residue modulo

jaðtÞ is taken. The inverse is given by Euclidean algorithm.

There is a more sophisticated method called a normal basis, which is a

linear basis of Fqd over Fq in the form of faq j j 0a ja d � 1g. An advantage

is that the q-th power operation (often called the frobenius operation)

Fq : Fqd ! Fqd ; x 7! xq

can be computed by a cyclic shift of the coe‰cients with respect to the normal

basis, which enables e‰cient exponentiation and inversion (for such basics on

finite field algorithms, refer to [8]).

Date: Oct 27, 2003.

1991 Mathematics Subject Classification. Primary 11T71, 11T21; Secondary 94A60.

Key words and phrases. Finite field, algorithm.

Sophisticated algorithms attain low order of computational complexity

using a normal basis, see for example [5]. However, when implemented, they

are often slower than the naive polynomial basis method, because the sophis-

ticated algorithms are complicated and require (practically too) large d to be

advantageous over the naive method.

As evidence, the naive polynomial basis method is adopted in NTL

(Number Theory Library), which is one of the fastest libraries at present for

algebraic operations including finite field arithmetics. NTL is designed through

the actual time comparisons between many sophisticated and naive methods,

and adopts the naive methods with deliberate optimizations. It is freely avail-

able to the scientific community from http://www.shoup.net/ntl.

S. Gao et al. [5] introduced a new method, which has both the simplicity

of polynomial basis and the e‰ciency of the frobenius operation in normal

basis. The idea is to represent Fqd as a subring of a group ring, where arith-

metics are more e‰cient. The purpose of this paper is to realize this idea in

a software, and compare it with NTL. We introduce a data structure which

enables an e‰cient implementation of the frobenius operation. We develop

algorithms for power and inversion, using the quick frobenius operation

e¤ectively. As a result, our method is much faster than NTL, if the char-

acteristic of the field is greater than 2.

2. Cyclic group rings

The following is a modified version of [5], where Fqd is constructed as a

residue of a group ring. Take a generator a A Fqd as a ring over Fq, and let m

be the multiplicative order of a (hence m is coprime to p). Then we have a

surjective ring homomorphism

Pr : Fq½t�=ðtm � 1Þ ! Fqd ; t 7! a:ð1Þ

The left hand side is a group ring over the cyclic group, which we shall call

a cyclic group ring, or CGR. (The term cyclotomic ring used in [10] has a

di¤erent meaning in number theory.) Using its polynomial basis ti ði ¼ 0;

1; . . . ;m� 1Þ, the q-th power frobenius operation is computed by

Fq :
Xm�1
i¼0

ait
i 7!

Xm�1
i¼0

ait
i

 !q
¼
Xm�1
i¼0

ait
½iqðmodmÞ� ¼

Xm�1
i¼0

a½iq�1ðmodmÞ�t
i;

where q�1 is taken modulo m. Thus, q-th power operation can be realized by

a permutation of the coe‰cients. We represent elements of Fqd by any of its

inverse images in the cyclic group ring. Addition, multiplication and power

operations can be computed in the cyclic group ring. The inverse can be com-

Makoto Matsumoto and Shigehiro Tagami202

puted as a special case of power, using [7] (see Theorem 3.3). To check the

equality of two elements in Fqd , we do not need to compute the projection Pr.

Let cðtÞ :¼ ðtm � 1Þ=jaðtÞ. Since tm � 1 has no multiple factor, ja and c are

coprime. Thus, two elements x; y A Fq½t�=ðtm � 1Þ have the same image in Fqd

if and only if cðtÞðx� yÞ ¼ 0 in Fq½t�=ðtm � 1Þ. In the implementations in this

paper, we treat only the cases where m ¼ d þ 1 and consequently cðtÞ ¼ t� 1.

To find such a pair ðm; dÞ, the following lemma is useful.

Lemma 2.1. Let q be a power of a prime p, d a positive integer, and m be

a positive integer coprime to q. If d equals the order of q in the multiplicative

group ðZ=mÞ� of Z=m, then there exists a A Fqd such that (1) is surjective.

Conversely, if m is the minimum positive integer such that for some a A Fqd

(1) is surjective, then d is the order of q in ðZ=mÞ�.

Proof. Let b be a primitive m-th root of unity in the algebraic closure of

Fq. The condition is equivalent to that d is the degree of the minimum

polynomial of b, which is the order of the action of the frobenius operation on

b by Galois theory, in other words, the order of q in ðZ=mÞ�. r

The computational complexity in the cyclic group ring is a function of m,

and thus m far larger than d is not practical. For example, if ðqd � 1Þ=ðq� 1Þ
is a prime, m must coincide with it and is practically too large. In the other

extreme, if m is a prime and if q is a generator of ðZ=mÞ�, then d ¼ m� 1 and

m is optimally small.

Remark 2.2. The probability that q generates ðZ=mÞ� is explicitly known

under the generalized Riemann hypothesis, if m is a prime [3]. For example,

assume q ¼ p, pD 1 mod 4 and let MqðxÞ denote the number of primes m not

exceeding x for which q is a generator of ðZ=mÞ�. Then we have

MqðxÞ ¼ C
x

loge x
þO

x loge loge x

log2e x

 !
;

where C ¼ 0:39 � � � ¼
Q

p:prime 1� 1
pðp�1Þ

� �
. For general q, a similar but a little

complicated asymptotic formula is given there. These show that the optimal case

d ¼ m� 1 occurs rather often.

Remark 2.3. When Fqd 0 requires a large m to be represented using (1), it is

often the case that some of its finite extensions Fqd can be realized for a much

smaller m. Then we may compute Fqd 0 inside Fqd . See the table of such d 0; d in

[6], which treats a hardware implementation for the case p ¼ q ¼ 2. For ex-

ample, if q ¼ 2 and d 0 ¼ 127, then 2127 � 1 is a Mersenne prime and hence this is

the required m, but for d ¼ 508 ¼ 4 � 127, the required m is 509.

Practical fast algorithm for finite field arithmetics 203

3. Software implementation

There are a number of studies on implementation of arithmetics using

CGR (cyclic group ring, often called redundant representations), e.g. [4] [5] [2]

[6] [10]. They treat mostly only the case of p ¼ q ¼ 2 and hardware imple-

mentations, and pay little attention to software implementations.

One purpose of this paper is to give a software implementation of CGR

and to compare its speed with NTL. Unexpectedly, it turns out that in the

case of p ¼ q ¼ 2, CGR is much slower than NTL, whereas for p ¼ q > 2,

CGR is faster.

A problem in a software implementation lies in the frobenius operation.

It involves a permutation of coe‰cients, whose time-complexity is Oð1Þ in

hardware but is OðmÞ in a naive software implementation. To solve this, we

shall introduce a data structure which enables a frobenius operation just by one

time multiplication in Z=m.

An element x of a CGR

Fq½t�=ðtm � 1Þ

is realized as an array of elements of Fq of length m, with two integer variables

named skip s and origin i with values in Z=m. The skip s should be coprime

with m.

Assume that the array consists of a½0�; a½1�; . . . ; a½m� 1�, the skip is s, and

the origin is i. Then the tuple ða; s; iÞ represents the polynomial

Xm�1
j¼0

a½i þ sj ðmod mÞ�t j A Fq½t�=ðtm � 1Þ:

In this representation, multiplication by t is computed as the change of the

origin

i i � s ðmod mÞ;

and thus multiplication of two arbitrary elements

f ðtÞ
Xm�1
j¼0

a½i þ sj ðmod mÞ�t j
 !

can be done as usual, by adding a½i þ sj ðmod mÞ�ð f ðtÞ � t jÞ for j ¼ 0; . . . ;

m� 1.

Frobenius operation Fq is realized as the change of the skip

s s� q�1 ðmod mÞ:

We may precompute q�1 A Z=m for e‰ciency.

Makoto Matsumoto and Shigehiro Tagami204

Remark 3.1.

1. We may dispense with the origin, if we do not need to make multi-

plication by t j fast.

2. Since a frobenius operation is much faster than a multiplication in this

representation, from now on, we shall neglect the time consumed in

frobenius operations in the evaluation of the time complexity.

Power. Using the q-th power frobenius operation, the following q-ary

method [9, P. 464] gives an algorithm for n-th power with logq n times

multiplications, with precomputation of a table of size q.

We assume that n is q-adically expanded:

n ¼
Xk
j¼0

cjq
j ðcj A f0; 1; . . . ; q� 1g; ck 0 0Þ:ð2Þ

Let y be a variable, set to xck . Then, for j ¼ k � 1 to 0, we iterate the

following:

y yq; y yxcj :

If we precompute xc for all 0 < ca q� 1, this gives an algorithm with

blogqðn� 1Þc times multiplications. An experiment with q ¼ 8191 shows that

keeping such a large table is time-consuming. If we precompute x2 s

for s ¼
1; 2; . . . ; blog2ðq� 1Þc, and use them to compute xcj , then the required number

of multiplications is in average

blogqðn� 1Þc � blog2ðq� 1Þc=2@ 0:5 log2 n

and the size of the precomputation table is blog2ðq� 1Þc.
An improvement is as follows. Let b be a fixed positive integer. We

precompute x; x2; . . . ; x2 b�1. Put

h :¼ blog2ðq� 1Þc þ 1; hb :¼ dh=be:

Let y A Fqd be a variable, first set to 1. Let us consider the 2-adic

expansion of each cj ð j ¼ 0; 1; . . . ; kÞ appearing in (2). Let 0a dj a 2b � 1 be

the integer represented by the consecutive b bits of cj starting from the ðbhbÞ-th
bit and ending at the ðbhb � bþ 1Þ-st bit (a sequence of 0 is supplemented at

the left in the 2-adic expansion of cj). We execute

if dj 0 0 then y y� ðxdj Þq
j

; for j ¼ 0; 1; . . . ; k � 1:ð3Þ

This is computable using k times multiplications, since xdj is pre-computed.

Then, execute

y y2
b

;

Practical fast algorithm for finite field arithmetics 205

redefine dj ð j ¼ 0; . . . ; kÞ to be the integer represented by the consecutive b bits

of cj starting from the bðhb � 1Þ-th bit and ending at the ðbðhb � 1Þ � bþ 1Þ-st
bit, and execute (3) again.

Iterate this process with dj being the integer given by the bs-th bit to the

ðbs� bþ 1Þ-st bit of cj ð j ¼ 0; . . . ; kÞ for s ¼ hb; hb � 1; . . . ; 1, then we obtain

y ¼ xn. (The above describes the first two steps: s ¼ hb; hb � 1.)

Theorem 3.2. The above algorithm computes the power xn using

ðð1� 2�bÞblogq nc þ bÞhb @
1� 2�b

b
log2 nþ log2 q

times multiplications in average, using a precomputation table of size 2b � 1.

In this theorem, we neglect the number of frobenius operations, and we

need 2b � 1 times multiplications for the precomputation table.

Proof. The coe‰cient 1� 2�b is the probability that dj 0 0. To

compute (3) we use ð1� 2�bÞblogq nc times multiplications, and it is iterated hb
times. We iterate y y2

b

for hb times, and each iteration requires b times

multiplications. r

This order is comparable to the asymptotically optimal method given in [1].

The optimal value of b depends on other parameters. In the following imple-

mentations, we selected the optimum value of b through experimentation.

Sometimes b ¼ 5 is optimal (see § 4). The consumed time for computing a

power using an optimal b (including the time for constructing the precom-

putation table) is roughly 1=3 of that using b ¼ 1.

Inverse. To compute the inverse, we may use the following method by

Itoh and Tsujii [7, Theorem 3] (they describe the case q ¼ 2m, but the method is

applicable to general q).

For x A ðFqd Þ� and an integer s, let us define

NsðxÞ :¼
Ys�1
j¼0

xq j

:

Thus, Nd is the norm function and NdðxÞ A F�q . Its inverse can be computed in

Fq. Then we have

x�1 ¼ ðNd�1ðxÞÞqðNdðxÞÞ�1:ð4Þ

We can compute Nd�1ðxÞ using 1:5blog2ðd � 1Þc times multiplications in aver-

age, by reading the 2-adic expansion of d � 1 from the top to the bottom and

by using

Makoto Matsumoto and Shigehiro Tagami206

N2sðxÞ ¼ NsðxÞ � ðNsðxÞq
s

Þ; N2sþ1ðxÞ ¼ ðNsðxÞ � ðNsðxÞq
s

ÞÞq � x:

This scheme computes the inverse of x by 1:5blog2ðd � 1Þc þ 1 times multi-

plications in Fqd and one time inversion in Fq. With a little more care, we

obtain the following. Let HwðnÞ denote the number of 1’s in the 2-adic expan-

sion of a positive integer n (i.e. Hamming weight).

Theorem 3.3 [7]. An inversion in Fqd using (4) requires blog2ðd � 1Þcþ
Hwðd � 1Þ � 1 times multiplications in Fqd if q ¼ 2, and in addition one time

multiplication in Fqd and one time inversion in Fq if q > 2.

This theorem is applicable not only to CGR but also to any Fqd , if time

consumed by frobenius operation is negligible.

4. Comparison of speed

We implemented the above algorithm in C-programming language, and

compared its speed with NTL. We implemented only the cases p ¼ q and

d ¼ m� 1.

4.1. p ¼ q ¼ 2. In this case, NTL is much faster than ours. Table 1 lists

the consumed time (in seconds) for frobenius operation, multiplication, in-

version, and power, each iterated for 10000 times, for p ¼ q ¼ 2 and d ¼ 130.

CGR means our algorithm.

This superiority of NTL seems to come from the following. A unit object

which NTL treats is a polynomial of degree up to 32, represented in a 32-bit

word. NTL has a very fast multiplication of two such polynomials (resulting

in a 64-bit word), well optimized for pipelined 32-bit machines. While, the

unit object for CGR is 1-bit.

We tested a modified version of CGR where all the 32-bits in one word are

used, but it is not much faster than the original, since the permutation of the

coe‰cients becomes more di‰cult and time-consuming.

We also tested smaller m’s, and similar superiority of NTL was observed.

Table 1. Consumed time for four operations

(each iterated 10000 times) by CGR and NTL

for F2130 .

Operation CGR (sec.) NTL (sec.)

frobenius 0.008 0.011

multiplication 2.417 0.054

inverse 19.448 0.048

power 277.641 2.798

Practical fast algorithm for finite field arithmetics 207

4.2. p ¼ q > 2. In this case, our method is much faster than NTL. Table 2

lists the consumed time for frobenius operation, multiplication, inversion, and

power by CGR and NTL (each iterated 10000 times), for fixed value of d ¼ 18

with five selected values p ¼ 3; 13; 127; 8191; 32713, each of which generates

ðZ=19Þ�. For optimal power-computation using Theorem 3.3, the value b ¼
3; 4; 4; 5; 5 (respectively for p ¼ 3; 13; 127; 8191; 32713) is selected through ex-

perimentation. For each power-computation, the precomputation table of size

2b is constructed.

Table 3 lists a similar table, where p ¼ 8191 is fixed and d is varied among

46; 82; 102; 136. First three kinds of operations are iterated 10000 times,

whereas power is executed only one time, since it is time-consuming. The

value b ¼ 5 is chosen, which is optimal except for d ¼ 136. In each power-

computation, the precomputation table of size 2b is constructed.

Table 2. Consumed time (sec.) for four operations (each iterated 10000 times)

by CGR and NTL for Fp18 , p ¼ 3; 13; 127; 8191; 32713.

p ¼ 3 p ¼ 13 p ¼ 127

Operation CGR NTL CGR NTL CGR NTL

frobenius <0.01 3.596 <0.01 8.280 <0.01 20.623

multiplication 0.119 2.056 0.148 2.172 0.186 2.298

inverse 0.815 4.817 0.860 7.540 1.041 8.434

power 2.304 59.090 3.109 142.759 6.218 266.819

p ¼ 8191 p ¼ 32713

Operation CGR NTL CGR NTL

frobenius <0.01 40.821 <0.01 41.858

multiplication 0.126 2.176 0.237 2.292

inverse 0.977 8.804 1.173 8.918

power 10.149 527.647 12.871 665.900

Table 3. Consumed time (sec.) for frobenius operation, multiplication, inverse (each iterated 10000

times), and power (one time), using CGR and NTL for F8191 d , d ¼ 46; 82; 102; 136.

d ¼ 46 d ¼ 82 d ¼ 102 d ¼ 136

Operation CGR NTL CGR NTL CGR NTL CGR NTL

frobenius <0.01 171.174 <0.01 352.017 <0.01 374.146 <0.01 720.518

multiplication 0.763 10.004 1.652 20.302 2.350 21.641 3.379 41.832

inverse 6.730 43.869 17.701 112.583 30.244 159.630 53.812 262.646

power* 0.023 0.845 0.084 2.448 0.148 3.565 0.356 8.400

(* Power is iterated only one time.)

Makoto Matsumoto and Shigehiro Tagami208

These results show that arithmetics in CGR is much faster than NTL for

p ¼ q > 2. For example, in the case of F8191136 , multiplication is 12 times,

inversion is 5 times, power is 23 times faster, respectively.

In NTL, arithmetic operations over F2 are very fast. Table 4 shows the

comparison of the speed of CGR for F8191136 and NTL for F21768 (note that

8191136 ¼ 21767:98���). Here, for power-computation in CGR, the optimal value

b ¼ 7 is selected through experimentation. The precomputation table of size

2b is constructed in each power-computation. Among 2121.4 seconds for the

power-computation, precomputation consumes 792.4 seconds. In this com-

parison, NTL is faster than CGR by a factor of 3@4.

Although not listed, the consumed time for power-computation when b ¼ 5

is 2187:1 seconds, not much more than 2121:4 seconds for b ¼ 7.

5. Conclusion

We give an e‰cient software implementation of arithmetic operations in a

finite field Fqd , using the cyclic group ring over Fq. From the viewpoint of the

e‰ciency, the method is practical when q generates the multiplicative group

ðZ=ðd þ 1ÞÞ�.
In these implementations, the q-th power frobenius operation is very

e‰cient. We introduced two algorithms for general Fqd , which is practical if

the frobenius operation is e‰cient. One is an algorithm for power (Theorem

3.2), and the other is a version of Itoh-Tsujii inversion for q0 2 (Theorem 3.3).

For q ¼ 2, the naive method adopted in NTL is faster than ours, but for

q > 2 ours are faster by a factor of 5 to 23.

These would be useful in a cryptographic system, where we need a variety

of e‰cient discrete log problems (not only those based on F2 d).

Acknowledgment

The authors are thankful to P. Hellekalek for informing us of NTL and

other fast algorithms for finite field arithmetics.

Table 4. Consumed time (sec.) for four

operations (each iterated 10000 times)

by CGR for F8191136 and NTL for F21768 .

Operation CGR NTL

frobenius 0.012 0.146

multiplication 3.961 1.520

inverse 53.812 12.752

power 2121.4 744.4

Practical fast algorithm for finite field arithmetics 209

References

[1] E. F. Brickell, D. M. Gordon, K. S. McCurley and D. B. Wilson, Fast exponentiation with

precomputation (Extended Abstract). in: Proceedings of Eurocrypt ’92, Lecture Notes in

Computer Science 658, 200–207, (1993).

[2] G. Drolet, A new representation of elements of finite fields GFð2mÞ yielding small com-

plexity arithmetic circuits. IEEE Transaction on Computers, 47, 938–946, (1998).

[3] C. Hooley, On Artin’s conjecture. J. Reine Angew. Math. 225, 209–220, (1967).

[4] S. Gao, J. von zur Gathen and D. Panario, Gauss periods and fast exponentiation in finite

fields, Lecture Notes in Computer Science 911, 311–322, (1995).

[5] S. Gao, J. von zur Gathen, D. Panario and V. Shoup, Algorithms for exponentiation in

finite fields. J. Symbolic Computation 29, 879–889, (2000).

[6] W. Geiselmann and H. Lukhaub, Redundant representation of finite fields. in: Proc. Public

Key Cryptography, Lecture Notes in Computer Science 1992, 339–352, (2001).

[7] T. Itoh and S. Tsujii, A fast algorithm for computing multiplicative inverses in GFð2mÞ
using normal bases. Information and Computation 78, 171–177, (1988).

[8] D. Jungnickel, Finite Fields, Structure and Arithmetics. B.I. and F.A. Brockhaus AG,

Mannheim, 1993.

[9] D. E. Knuth, The Art of Computer Programming. Vol. 2. Seminumerical Algorithms, 3rd

Ed. Addison-Wesley, Reading, Mass., 1997.

[10] H. Wu, M. A. Hasan, I. F. Blake and S. Gao, Finite field multiplier using redundant

representation. IEEE Transaction on Computers, 51, 1306–1316, (2002).

Makoto Matsumoto

Department of Mathematics

Graduate School of Science

Hiroshima University

Hiroshima 739-8526 JAPAN

E-mail address: m-mat@math.sci.hiroshima-u.ac.jp

Shigehiro Tagami

Department of Mathematics

Graduate School of Science

Hiroshima University

Hiroshima 739-8526 JAPAN

Makoto Matsumoto and Shigehiro Tagami210

