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ABSTRACT. It is known that the incompressible spanning surfaces for a fibred knot are
unique. Also for a 2-bridge knot its incompressible spanning surfaces were classified by
Hatcher and Thurston. In this paper we shall give the classification of the incom-
pressible spanning surfaces for prime knots of 10 or less crossings, which include many
non-fibred and non-2-bridge knots. Furthermore, we determine the associated sim-
plicial complex IS(K) for each prime knot K of 10 or less crossings, which describes the
relations between equivalence classes of incompressible spanning surfaces for K.

Introduction

It is known that the incompressible spanning surfaces for a fibred knot
are unique in the sense stated below (cf. [17]). Also for a 2-bridge knot its
incompressible spanning surfaces were classified by Hatcher and Thurston [8].
In this paper we shall give the classification of the incompressible spanning
surfaces for prime knots of 10 or less crossings which include many non-fibred
and non-2-bridge knots. Furthermore, we determine the associated simplicial
complex IS(K) for each prime knot K of 10 or less crossings, which was
introduced in [11] to describe the relations between equivalence classes of
incompressible spanning surfaces for K.

Let L be an oriented link in the 3-sphere S°, and let E(L) = S* — Int N(L)
be its exterior where N(L) is a fixed tubular neighborhood of L. We shall use
the term “spanning surface” for L to denote a surface S = XN E(L) where X is
an oriented surface in S3 such that 0 = L, X has no closed component and is
possibly disconnected and that XN N(L) is a collar of X in ~. Two spanning
surfaces for L are said to be equivalent if they are ambient isotopic in E(L) to
each other. A spanning surface S is incompressible (resp. of minimal genus) if
each component of S is zj-injective in E(L) (resp. the Euler number y(S) is
maximum among all the spanning surfaces for L). In this paper “link” always
means oriented link. 1If L is a knot, then the classification of the incompres-
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sible spanning surfaces is independent of the choice of an orientation of L.
We prove the following

THEOREM A. (1) The incompressible spanning surfaces for every prime
knot of 10 or less crossings are unique except for the following knots (see [15,
Appendix C] for the notation):

T4 83 95 9% 913 913 93 103 1011 106 1053
2 2 2 4 2 3 2 2 2 4 3

1024 1028 103 103 1033 1037 1035 10s3 107 1068 1074
3 2 2 3 4 2 2 2 2 2 3

(B)

(I)  Each knot in the table (B) has exactly two, three or four equivalence
classes of incompressible spanning surfaces according to the number written under
the knot, moreover any of them is of minimal genus.

We note that a composite knot 5,#5, has infinitely many non-equivalent
minimal genus spanning surfaces by Eisner [2]. Also in the case of 11 or
more crossings there are many prime knots which have infinitely many non-
equivalent incompressible spanning surfaces ([14], [7], [10] and others). For
each prime knot K of 10 or less crossings, it is easy to find a minimal genus
spanning surface S whose genus equal to one half of the degree of the
Alexander polynomial of K; hence if K is out of the list in (B), then S is a
unique incompressible spanning surface for K. Each knot in (B) is a 2-bridge
knot except for the last four, 10s3, 1047, 10¢s, 1074, and the assertion (II) for
these 2-bridge knots follows from Hatcher and Thurston [8]. The classification
of the incompressible spanning surfaces for the remaining four knots forms one
of the main parts of the paper: The concrete classification will be given in
§o.

Let L be a non-split link, and let #S(L) denote the set of equivalence
classes of incompressible spanning surfaces for L. For an incompressible
spanning surface S, [S] denotes its equivalence class. In [11] we associated
a simplicial complex IS(L) with L as follows: The set of vertices is #S(L).
Vertices 0,01, ...,0r € #S(L) span a k-simplex if there are representatives
Sieo; (0<i<k) so that S;NS; = for all i< j. Note that if JS(L)
consists only one equivalence class, then IS(L) is a point. We now quote the
following result.

THeoREM 0.1 ([11, Th. A]). The associated complex IS(L) is connected.

It follows that if JS(L) consists of two equivalence classes ¢ and ¢, then

IS(L) = « % The complex IS(L) describes the relations between equiva-

lence classes in #S(L). We will determine the complexes for the prime knots
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of 10 or less crossings. It seems that even for the 2-bridge knots in (B), their
complexes can not be determined by the results in [8]. We prove the following

THEOREM C. (1) For the knots K = 918, 1018, 1054 and 1034,

gl 011 g01
]S(K) —e— o @

(the definition of o; = [S(i, j)] is given in §6).
(2)
[s7] IS (7]

IS(1074) = o——o——

where S', S and T are given by Figure 6.15.
(3) For the knots K = 919,101 and 1033,

g101 0111 0000 0010
IS(K)Z ° Py Py °

(the definition of oy = [S(i, j, k)] is given in §6).

Our approach is based on the works of Gabai [3], [6] and Kobayashi [13].
Gabai introduced and developed the theory of sutured manifolds which is
powerful in the study of knots and links. Using this theory Kobayashi gave a
sufficient condition of the minimal genus spanning surfaces for the given link
being unique, and then showed that the knots in the table (B) is the prime
knots of <10 crossings whose minimal spanning surfaces are not unique. We
extend Kobayashi’s method in some directions.

We explain our method in brief. For a given S with [S]e .#S(L),
let #S(L,S) denote the set of #e #S(L) such that 5 # [S] and there is a
representative F en with FNS = ¢, ie. there is an edge in IS(L) which
connects # and [S]. Then, as corollaries of Theorem 0.1 we have

CoroLLARY 0.2. IS(L) ={[S]} if and only if JS(L,S) = .
CoroLLARY 0.3. Suppose that there exists an S' with [S'] € JS(L,S).
Then IS(L) = e—e " if and only if
(%) JS(L,S) ={[S"]} and  IS(L,S’) = {[S]}.

Thus, roughly speaking, Theorem 0.1 means that the problem of deciding
IS(L) can be reduced to the study of “essential y-surfaces” in the “comple-
mentary sutured manifolds” for some incompressible spanning surfaces. In §1
and §2 we give the definitions of these notions and investigate their basic
properties. The assertion (I) in Theorem A follows from Corollary 0.2 by
checking that each complementary sutured manifold for the given minimal
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genus spanning surface has no essential y-surface, and this work of checking
essentially due to Kobayashi [12] (see §6). To prove the assertion (II) for non-
2-bridge knots 1053, 1047, 10¢s, we must apply Corollary 0.3 in the case that S
is a plumbing of two surfaces S; and S;. In §3, under the assumptions that
both S; are unique incompressible spanning surfaces for L; = dS; and that
neither L nor L, are fibred (in this case there exists an S’, a “dual” of S, with
[S'] e SS(L,S)), we give a criterion to satisfy the condition (%) in Corollary
0.3 (Theorem 3.12). The assertion (II) for 1074 is shown as a corollary to
Theorem C (2). To prove the assertions in Theorem C we give, under the
same assumptions as above, a sufficient condition that .#S(L) consists of three
equivalence classes (Theorem 3.15). Moreover, in §5 we treat some kind of
iterated plumbings and determine the associated complexes (Theorems 5.4 and
5.10). These theorems form the main parts of this paper in a technical sense,
and they are formulated in terms of “marked sutured manifolds”. In §4 we
consider decompositions of a marked sutured manifold. In §6 by applying the
method developed in §§3, 4 and 5 we give a proof of Theorems A and C.

The author thanks Tsuyoshi Kobayashi, Hiroshi Goda and Makoto
Sakuma for valuable conversations and helpful comments.

1. Essential y-surfaces

A sutured manifold (M,y) is a compact oriented 3-manifold M together
with a subset y =« 0M which is a union of finitely many pairwise disjoint annuli.
For each component of y a suture, i.e. an oriented core circle, is fixed, and s(y)
denotes the set of sutures. Moreover every component of R(y) = M — Int y is
oriented so that the orientations on R(y) are coherent with respect to s(y). Let
R, (y) (resp. R_(y)) denotes the union of those components of R(y) whose
normal vectors point out of (resp. into) M. In the case that (M,y) is
homeomorphic to (F x [0,1], 0F x [0,1]) where F is a compact oriented 2-
manifold, (M,y) is called a product sutured manifold.

A properly embedded compact oriented 2-manifold (possibly disconnected)
S < M is said to be a y-surface if S has no closed component, the oriented
boundary 0S is contained in Inty and isotopic to s(y) in p. A y-surface S
is parallel to a surface in R(y) if there is an embedding e : (S,0S) x [0,1] —
(M,y) so that ¢g =id : S — S and ¢,(S) = R(y): Note that ¢;(.S) is a union of
some components of R(y). A y-surface S is essential if S is incompressible in
M and not parallel to a surface in R(y). A yp-isotopy of M is an isotopy {h}
of M such that hy =id, n,|R(y) =id and i(y) =y for all 0 <t < 1. Two y-
surfaces in M are equivalent if they are ambient isotopic to each other by a
y-isotopy. Let &(M,y) denote the set of equivalence classes of essential y-
surfaces in M. For an essential p-surface S, [S], denotes its equivalence
class. It is easy to see the following

v
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LemMmA 1.1. Let (M,y) be a sutured manifold, and let S be a y-surface.
Suppose that OM is connected and that S is parallel to a surface in R(y) by an
embedding e : (S,08) x [0,1] = (M,y) with ey =ids and e|(S) = R(y). Then
e1(S) = Ry (7) or R_().

Exampre. (Figure 1.1 (1), (2))

Ve Y2
Sz
Z
Si
% =
~ X
S>
(M. 72)

(M, v1)

(1) y,-surface g, is parallel
o R.(y))

(2) 5, isanessential y,-surface

Fig. 1.1

We will state the definitions of two kind of operations on sutured
manifolds (cf. [3], [6]). Let (M,y) be a sutured manifold. A product disk
A< M is a properly embedded disk such that 04 intersects s(y) transversely
in two points. For a product disk 4 = M, we get a new sutured manifold
(M’,»") in the way shown in Figure 1.2. This decomposition

(M,y) % (M)

is called a product decomposition. We note that
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(1.2) each component of R(y) is incompressible if and only if so is each
component of R(y’).

We next introduce another kind of operation. An octagon Q =« M is a
properly embedded disk such that 0 intersects s(y) transversely in four points.
Then we have two decompositions of (M, y):

%(2) B(©)

in the way shown in Figure 1.3, and we call them octagonal decompositions.
Note that both M, and Mg are homeomorphic to the manifold obtained by
cutting M along Q.

a(Q)

~_W/ %_“-

r4

(M, 7) ﬁ(\&

Fig. 1.3

Now let (M,y) 4 (M';y") be a product decomposition of a sutured
manifold where 4 is a product disk, and let S < M be an essential y-surface.
Suppose that M is irreducible. Then we can move S by a y-isotopy so that
0S =s(y) and that SNA4 is a single arc 4 connecting the two points of
04N s(y). By cutting S along A, we obtain a y’-surface Sy = M'.

Lemma 1.3. Let (M, y) (M',y") be a product decomposition. Suppose
that M is irreducible and 0M' is connected. Then for each essential y-surface
S < M, the y'-surface S, = M' is also essential. Moreover if two essential y-
surfaces S and S' = M are equivalent, then so are S, and S).

Proor. First note that M’ is irreducible and 0M is connected since M
is irreducible and dM’ is connected. Let S = M be an essential p-surface.
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Clearly S, is incompressible in M’. Suppose that S, is parallel to a surface
in R(y"). Then there is an embedding e : (S,,dS,) x [0,1] — (M’,y’) so that
=id: Sy — Sy and ¢;(Sy) = R(y’). Since oM’ is connected, e;(Sy) =
R+(y) or R_(y') by Lemma 1.1. We assume that e;(Sy) = R, (y’). Since
R, (y") is obtained by cutting R, (y) along the arc 04N R, (y), the embedding
e:(8S4,084) x[0,1] = (M',y") can be extend to an embedding é: (S,0S) x
[0,1] — (M, y) so that &y =id : S — S and &;(S) = R.(y). Hence S is parallel
to a surface in R(y), and this is a contradiction. Thus S, is essential.
Next we suppose that S and S’ = M are two essential y-surfaces and
they are equivalent. We may assume that S =0S'=s(y), SN4=S5"N4
and 4=SN4 is an arc connecting the two points of d4Ns(y). Let
h:M x[0,1] - M be a y-isotopy such that sy = id and /,(S) =S’. By the
definition of p-isotopy and the above assumption, we may assume that
h|0M =1id (0 <¢<1). Consider the restriction 4:S x [0,1] — M. By the
standard method as in the proof of [9, Lemma 6.5], we can move A|S x [0, 1]
to a homotopy ¢: S x [0,1] = M so that gy =1id, g1 = |S, ¢,/0M = id and
g4 =1id (0 <t <1). From this we have a homotopy ¢’ : Sy x [0,1] — M’
so that gy =id, ¢{(Ss) =S} and ¢,|0S, =1id (0 <r<1). Hence by Wald-
hausen [16, Cor 5.5], we get a y’-isotopy {/,} of M’ which carries S, to S/.
Lemma 1.3 is proved. []

Thus under the same assumption as in Lemma 1.3, we can define a map
@@A : (’Sa(Ma y) - (gJ(M,a y/)7 [S]y = [Sﬁ]y"
Moreover we can easily verify the following

ProposiTiON 1.4. Let (M, y) (M',y") be a product decomposition.
Suppose that M is irreducible and O0M' is connected. Then the wmap
Ep: EM,y) — E(M',y") is bijective.

Now we consider another situation. Let (M ,y) (M',»") be a product
decomposition where M is irreducible. Suppose that (M’ y’) is a disjoint
union of two connected sutured manifolds (M,y;) and (M,y,). Suppose
further that (M>,y,) is a product sutured manifold. Let S = M be an essential
y-surface, and assume that SN A4 is a single arc. Then we obtain a y,-surface
Ss1=SNM; c M. Itiseasy to see that S, is also essential. Moreover if
two essential y-surfaces S and S’ < M are equivalent, then so are S, ; and
S’ |- Hence a map

éﬂA,l : g(May) Héﬂ(Mhyl% [S]y'_> [SA,l]yl
is well defined. We can easily Verify the following

ProposiTiION 1.5, Let (M, y) (M',y") be a product decomposition.
Suppose that M is irreducible and that (M’,y’) has two components (M,,y,) and
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(M>,7,). Suppose further that (My,y,) is a product sutured manifold and oM,
is connected. Then the map &4, : E(M,y) — E(My,y,) is bijective.

Now we consider octagonal decompositions.

PROPOSITION 1.6. Let
%(Q) B(Q)
(My,7,) & (M,y) — (M/f’y/)’)
be octagonal decompositions, where Q = M is an octagon. Suppose that M is
irreducible and 0M, = 0Mp is connected. If (M,y) has an essential y-surface,
then (My,y,) or (Mp,y) has an essential y,- or yz-surface.

Proor. We note that 0M is connected and M, and My are irreducible by
the assumption. Let S < M be an essential y-surface. By using the cut and
paste argument, we can move S by a y-isotopy so that 6S = s(y) and SNQ is
a union of two arcs. There are two cases as shown in Figure 1.4, where
{a,b,c,d} = 0QNs(y). We assume that the case (o) holds

(o)

Fig. 1.4

Then we get a p,-surface S, = M, by cutting S along SNQ. Clearly S,
is incompressible in M,. We will show that S, is not parallel to a surface
in R(y,). If not, then there is an embedding e: (S,,dS,) x [0,1] — M, so
that ¢g =id : S, — S, and ¢;(S,) = R(y,). By Lemma 1.1, ¢;(S,) = R.(y,) or
e1(Sy) = R_(y,). We assume that ¢;(S,) = R;(y,). In this case there are two
possibility (i) and (ii) near the cutting disk € as shown in Figure 1.5. However
the case (ii) is impossible. In fact, for the y-surface S there is a compressing
disk B as shown in Figure 1.6, and this contradicts to the assumption that S is
incompressible. On the other hand, if the case (i) holds, then e : (S,,dS,) x
[0,1] — (M,,y,) can be extended to an embedding é: (S,dS) x [0,1] — (M, y)
so that ¢y =ids and &,(S) = R.(y), and this is also a contradiction. Thus
Proposition 1.6 is proved. []

We close this section by showing the following lemma which is used in the
latter sections.
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LemMma 1.7. Let X be connected Haken 3-manifold such that 0X is a union
of incompressible tori. Let Y be a compact irreducible 3-submanifold of X
( possibly disconnected) such that each component of Fr(Y) is a properly
embedded incompressible surface in X. Let F and F' be two properly embedded
orientable incompressible surfaces in X ( possibly disconnected) which satisfy the
following properties (1)—(4). Then there is an isotopy {h;} of X keeping Y fixed
so that hy =1id and h(F)=F’:

(1) FUF cX-Y.

(2) Each component of 0X contains at most one component of 0F, and F
has no closed component.

(3) There is a homotopy f:F x[0,1] - X such that fy=1id: F — F,
fi: F — F' is a homeomorphism and f(0F x [0,1]) = 0X.

(4)  There is no component of F which is parallel to a component of Fr(Y).
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ProOF. In the case when F is connected, the lemma is (essentially) proved
in [12, LEmma 2.4]. We prove the lemma in general cases by induction on the
number of the components of F. Let Fy,...,F; denote the components of F.
Then F’ has the same number of components F/,...,F/ by (3). We may
assume that each restriction f : F; x [0,1] — X of the homotopy in (3) gives a
homotopy between F; and F/ with f(0F; x [0,1]) c 0X (1 <i<k).

We assume that the lemma holds for & <n, and we will prove it for
k=n (n>2). By the assumption, there is an isotopy {e;} of X keeping Y
fixed so that ¢g=id and e/(|J,_,., F) = ,-;, | F/- Put F* =ei(F,).
Then F*UF,cX —(YUU,_,., ,F) and f*=fo((et]Fn)”" xidp,1)):
F* x[0,1] — X is a homotopy between F* and F, with f*(0F* x [0,1]) c 0X.
Take a regular neighborhood Y’ of (), _,_, F, in X with Y'N(YUF*U
F)) = . We see that F* is not parallel to any component of Fr(Y)UFr(Y’).
In fact F* = e (F,) is not parallel to any component of Fr(Y) by (4). Also if
F* is parallel to a component of Fr(Y’), then F, is parallel to F, for some
1 <i<n-1, and hence F, is ambient isotopic to F;. Since 0F, # & by (2),
some component of X contains at least two components of JF, 0F, and
OF;. This contradicts (2). Now we can apply the lemma in the case that F' is
connected to (X, Y, F,F')= (X, YUY’ F* F!). Hence we get an isotopy {e;}
of X keeping Y U Y’ fixed so that ¢) = id and ¢’(F|") = F,. By connecting two
isotopies {¢;} and {e/}, we have the desired isotopy {/,}, and Lemma 1.7 is
proved. []

2. Complementary sutured manifolds and Murasugi sums

We assume that the 3-sphere S is oriented. Let L = S* be an (oriented)
link and S < E(L) a spanning surface for L. Let (N(S),d) = (S x [—1,1],
0S x [-1,1]) be the product sutured manifold associated to S where
Sx[-1,1] < E(L) is a regular neighborhood of S. We assume that the
orientation of dS induces that of s(d) so that R_(6) = S x {—1} and R, (J) =
S x {1}. The complementary sutured manifold for S is the sutured manifold
(M, ) = (CI(E(L) = N(5)),CI(OE(L) —9)) with R_(y) = Ry(9) and R (y) =
R_(9). If L is non-split, then E(L) and M are irreducible. We also note
that 0M is connected if and only if so is S. Let .#S(L) denote the set of
equivalence classes of incompressible spanning surfaces for L. For a given
incompressible spanning surface S, let #S(L,S) denote the set of n € 4S(L)
such that 7 # [S] and there is a representative F e with FNS = .

ProposITION 2.1. Let L be a non-split link, S a connected incompressible
spanning surface for L and (M,y) the complementary sutured manifold for
S. Then the inclusion M < E(L) induces a well defined map 15:8(M,y) —
IS(L,S), [F], — [F]. Moreover is is bijective.
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Proor. Every essential y-surface F is regarded as an incompressible
spanning surface for L which is not equivalent to S by the definitions. If two
y-surfaces Fy and F; are isotopic by a y-isotopy {/,;} of M, then the isotopy can
be extended to an isotopy of E(L) since 4, | R(y) =id (0 <t <1) and N(S) =
Sx[-1,1]. Thus M < E(L) induces a well defined map i5:&(M,y) —
IS(L,S), [F], — [F].

For each ne #S(L,S) there is a representative F ez so that F < M.
Clearly F is an essential y-surface, and hence is is surjective. Next suppose
that two essential p-surfaces F and F’ are ambient isotopic in E(L) by
an isotopy {e¢;}. Then we can apply Lemma 1.7 to (X,Y,F,F')=
(E(L),N(S),F,F’"). In fact (1) holds clearly, (2) holds since F is a spanning
surface for L, and if we set f; =¢/|F (0<t<1), then f: F x[0,1] — E(L)
satisfies the desired condition in (3). Moreover if there is a component A of F
which is parallel to some component of Fr(N(S)), then 4 = F and F is parallel
to Ry(y) or R_(y) in M. This contradicts the assumption that F is an es-
sential y-surface; hence (4) holds. Thus by Lemma 1.7, F and F’ are ambient
isotopic in E(L) by an isotopy keeping N(S) fixed. This implies that g is
injective. Proposition 2.1 is proved. []

An oriented surface X~ < S3 is a Murasugi sum of compact oriented
surfaces X and X, = S if there are 3-balls V; and V> = S3 satisfying the
following property (see [4, §0], [13, §5]):

(2.2) ViUV, =53, ViNVy=0Vi=0adV,, X, cV; (i=1,2),
2=21UX, and D=XN2X, is a 2n-gon.

When D is a 4-gon the Murasugi sum is also called a plumbing of X, and
22. PutL:@Z, L,»:&Zi, SZZQE(L) and S,:Z,HE(L,) Then we will
also say that S is a Murasugi sum of Sy and S,. Note that ' = (X — D)U D’
is an oriented surface with 02’ =L where D' =0V, —IntD. By a tiny
isotopy of S* keeping L fixed we can move X’ so that ’NXNE(L) = & (see
Figure 3.4). We will say that 2’ (resp. S’ =2'NE(L)) is a dual of X (resp.
S).  Note that 2’ (resp. S’) is also a Murasugi sum of 2| and X} (resp. S| and
S}) where 2] = (X; — D)UD’ and S/ = Z/NE(L;) (i=1,2). D’is also called
a dual of D. Gabai showed that the Murasugi sum operations hold the
following natural properties:

ProrosiTiON 2.3 ([4], [S]). (1) S is of minimal genus if and only if so are
both S| and S,.

(i) S is incompressible if so are both S| and S,.

(i) L is a fibred link with fibre S if and only if both Ly and L, are fibred
links with fibres Sy and S, respectively.
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Now we show the following

PropoOSITION 2.4. Let L be a non-split oriented link and S a connected
incompressible spanning surface for L. Suppose that S is a Murasugi sum of
S1 and Sy, where S; is a spanning surface for an oriented link L; (i=1,2).
Suppose further that L, is a fibred link with fibre S». Then Ly is non-split, and
S| is connected and incompressible. Moreover there is a bijection

¢ IS(L,S) — IS(Ly, Sy).

ProoF. Clearly the connectedness of S implies that of S;. Let (M,y) be
the complementary sutured manifold for S. Since S is connected so is dM.
By the same argument as in the proofs of [6, Th. 3.1] and [13, Th. 5.1], there is
a finite sequence of product decompositions

Ay 45 Ay
(M,V) - (Nlaal) — (Nnvén)

so that (N,,0,) is homeomorphic to the complementary sutured manifold for S
and that ON; are all connected. Since S is incompressible in E(L), each
component of R(y) is incompressible in M. Hence each component of R(J,) is
incompressible in N, by (1.2), and then S; is incompressible in E(L;).

Since L is non-split, M is irreducible. This implies that N, is irreducible,
and hence L is non-split. By Proposition 2.1 there are bijection i5 : &(M,y) —
JS(L,S) and 15, : €(Ny,0,) — F#S(L1,S1). Thus by applying Proposition 1.4
to each step of the above sequence of product decompositions, we get a bi-
jection ¢ : SS(L,S) — 4S(L1,S1). O

Also Boileau and Gabai showed the following

ProposiTiON 2.5 ([6, Cor. 3.2]). Let L be a non-split link and S a
spanning surface for L. Suppose that S is a Murasugi sum of S| and S, where
S; is an incompressible spanning surface for a link L; (i=1,2). Suppose
further that L; is not a fibred link (i=1,2). Then S and its dual S’ are not
equivalent.

Propositions 2.4 and 2.5 together with Corollary 0.2 in the introduction
imply the following

COROLLARY 2.6. Let L be a non-split link and S a connected spanning
surface for L which is a Murasugi sum of Sy and Sy where S; is a incompressible
spanning surface for a link L; (i =1,2). Then #S(L) = {[S]} if and only if one
of Ly and Ly, say L, is a fibred link and 9S(L,) = {[S2]}.
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3. Plumbings and marked sutured manifolds

Let L be a non-split link and S its spanning surface. We suppose that

(3.1) S is connected, and S is a plumbing of S; and S, which are unique
incompressible spanning surfaces for links L; and L, respectively.

Hence S;, S» and S are of minimal genus by Proposition 2.3 (i). If L; or L, is
fibred, then we have .#S(L) = {[S]} by Corollary 2.6. On the other hand, in
the case

(3.2) neither L; nor L, are fibred,

JS(L) contains at least two distinct equivalence classes [S] and [S'] where S’
is a dual of S by Proposition 2.5. If the plumbing is in the form shown in
Figure 3.1 in addition, then S can be regarded as a connected sum of S; and
S,, and hence #S(L) contains infinitely many equivalence classes of minimal
genus by Eisner [2]. In this section, under the assumptions (3.1) and (3.2), we
will give a necessary and sufficient condition that .#S(L) consists of exactly
two equivalence classes [S] and [S’] (Theorem 3.12), and also give a sufficient
condition that #S(L) consists of three equivalence classes (Theorem 3.15).
These conditions will be formulated in terms of marked sutured manifolds.

Vo e

Fig. 3.1

A marked sutured manifold (M ,y, A) is a sutured manifold (M,y) together
with a properly embedded arc 4 = R(y), and we call A a mark on (M,y). If
there is a product disk 4 =« M with 4 as an edge (see Figure 3.2), then
(M,y,B) is also a marked sutured manifold where B is the opposite edge of A4,
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(M., 7v)

Fig. 3.2

and we call B an opposite mark of A relative to 4. The following lemma is
easily verified.

LemMA 3.3. Let (M,y, A) be a marked sutured manifold.  Suppose that M
is irreducible and each component of R(y) is incompressible. If there is a
product disk with A as an edge, then the ambient isotopy types of such disks are
unique, and hence so are the isotopy types in R(y) of opposite marks of A.

Let L be a non-split link and S its spanning surface. Suppose that S is a
plumbing of S; and S, where S; is a spanning surface for a link L; (i =1,2).
We call D=S,NS, the plumbing disk. Let (M,,y,) and (M,,y,) (resp.
(N1,01) and (N,,d;)) be the complementary sutured manifolds (resp. the
associated product sutured manifolds) for S, S| and S, respectively. We will
make marked sutured manifolds (M;,y;, 4;) and (N;,0;,4;) (i=1,2) as fol-
lows: We first consider (M,,y,) and (N;,0;). Let I} be a core arc of D
relative to the embedding D < S, i.e. I is a properly embedded arc in S so
that D is a regular neighborhood of I} in S|. Push out /; from S; to the side
on which S, is attached, and consider this arc A4; to be properly embedded in
R(y;) = R(01). Thus we get marked sutured manifolds (My,y;,4;) and
(N1,01,A41). By the same way we also get (Ma,y,,42) and (N2,02,A42) (see
Figure 3.3). These markings correspond to the way of plumbing of S} and S,.

PropoSITION 3.4. Let L be a non-split link and S a spanning surface for
L. Suppose that (3.1) and (3.2) hold. Let (M;,y;, A;) (i =1,2) be the marked
complementary sutured manifolds associated with the plumbing S = S1US,.
Suppose that there is no product disk in M; with A; as an edge for each
i=1,2. Then JS(L,S) ={[S']} where S' is a dual of S.

Proor. By the definition of the plumbing S = S;US,, there are 3-balls
Vi, Vo c S3 such that S° = ViUVy, ViNVya=0V =0V, SicV; (i= 1,2)
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2, V2, Aa)

§=85UpS:

Fig. 34

and D=S1NS, < V) is a 4-gon. Also S’ is a plumbing of two surfaces Sj
and S5 such that S; < V;, S{NS}=D'<dV, and CI(S] —D’) is a parallel
copy of CI(S; — D) (see Figure 3.4).

Let (M,y), (My,y,) and (M>,y,) be the complementary sutured manifolds
for S, S; and S, respectively. We may assume as in the proof of [6, Th. 3.1]
that (Figure 3.5)

(3.5) ViNR_(y) = R-(n), ViNR.(y) = Ry(y;) — Int N(D),
V2N R_(y) = R-(y,) — Int N(D), VaNR(y) = Ri(2)-
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Fig. 3.6

Now let F be an incompressible spanning surface for L such that
[F]le SS(L,S). We can regard F as a y-surface in M. Consider the disk
X =MNoVy: X is properly embedded in M and 0X intersects s(y) trans-
versely in four points. By moving F by a y-isotopy, we may assume that F
intersects X transversely in two arcs, and there are two cases as shown in
Figure 3.6. We may assume without loss of generality that the case (1) holds.
Put M/ =MNV;and F;=FNV; (i=1,2). Then we get a sutured manifold
(M;,7%) so that F, becomes an incompressible yj-surface in M;. Note that
(M3, %) is homeomorphic to (M>,7,). By the assumption that S, is a unique
incompressible spanning surface for L,, F> is parallel to a surface in R(y;) in
M. Let e: (F,,0F>) x [0,1] — (M3,,) be an embedding so that ey =id : F>
— F, and e((F,) is a union of some components of R(y;). Since S is
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connected, so are S and S, and also R.(y3) and R_(y5). Thus e (F;) =

R (73) or R_(p3).
Now let (P,1) denote the sutured manifold

(CI(E(L) — N(SUS")), CI(OE(L) — N(6SU3S")))
= (CI(M — N(S8")),Cl(y — N(2S")))

Then (P,1) has two components (P;,A;) and (P, 4») which satisfy the fol-
lowing properties: (for i = 1,2) P;NdV; is a union of two disks 4;, 4] which
are product disks in P; and A,UA; decomposes (P;, ;) into two sutured
manifolds (P;,,4;,) and (P;p,4; ) so that

(3.6.1) (Pi4,Aiy) 1s homeomorphic to the product sutured manifold
(CI(S3-; — D) x [-1,1],(0CI(S3-; — D)) x [=1,1]) and (Pip,Aip) is
homeomorphic to (M;,y;) (Figure 3.7).
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CasE 1 ¢(F,) =R_(y}). In this case, using the product structures
of e(F, x [0,1]) €« M, and (P ,,7%,4), We can push (F,0F) into (Py,4;) by
a y-isotopy of M. Thus F becomes a Aj-surface in P;. By (3.6.1) and
Proposition 1.5, there is a bijection &(Pi,41) — &(P1s,41,5). By the as-
sumption that S; is a unique incompressible spanning surface for L;, we have
JIS(L,S)) =, and hence &(Pyp,41,8) = by Proposition 2.1. Thus
&(Py,21) = &, and F is parallel to a surface in R(4;). Moreover, since S and
S’ are connected, so are R, (4;) and R_(4;). Hence F is parallel to R, (/)
or R_(4). From this together with the assumption that [F] # [S], we have
F] = [8].
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CASE 20 ei(F2) = Ry(y5). Let W =0V, x[0,1] be a thin collar of 07>
in V>, with 0V, =0V, x {O}, and put Wiy =1 uUw and W, = Cl(Vz - W)
Then we have S° = Wy U W, and W\ N W, = 0W| = 0W, = 0V, x {1}. In this
case, moving F by a p-isotopy of M keeping M, fixed whose restriction to F»
is e|(Fa,0F,) x [0,1 —r] for a small positive number r, we may assume that
D*=FNW is a parallel copy of D such that D*NJV,=FNX and
D*Now, (= FNJw)) is a parallel copy of R, (y) NdW,, and hence D*N W,
is a union of two arcs, say K and K'. Let (M* y*) denote the sutured
manifold (MU W,,Cl(0W, — M)U(yNW;)). Then (M*,y*) is homeomor-
phic to (Mj,y;). Let F* denote the y*-surface in M* which is obtained by
adding two thin rectangles to F N W) along K and K’ respectively (see Figure
3.8). Since F is incompressible in M, so is F* in M*. Hence by the as-
sumption that S; is a unique incompressible spanning surface for L;, F* is
parallel to a surface in R(y*). From this together with the connectedness of
Si, there is an embedding e* : (F*,0F*) x [0,1] — (M*,y*) so that ej = id and
ef(F) =Ry (y") or R_(y").

SuBCASE 2.1: ef(F*) = Ry(y*). In this case the embeddings e: F> x
[0,1] = M} and e*:F* x[0,1] = M* can be taken so that e((FN W>) x
0,1) c MNW,, e*(FNW;) x[0,1])c MNW; and e|(FNaW;) x [0,1] =
e*|(FNowWy) x [0,1]. By connecting these two embeddings, we get an
embedding é: (F,0F) x [0,1] — (M,y) so that ¢ =id and & (F) = R.(y).
This contradicts the assumption that [F] e #S(L,S).

SUBCASE 2.2: e (F*) = R_(y*). Recall that FN X is a union of two arcs
where X = M NJV,, and let A denote one of them. The arc A4 cuts off a
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rectangle 4, from X such that A, is disjoint from another component of
FNX, A, =4, NR(y) is the opposite edge of 4 and 4, = R.(y). We can
regard 4, as an disk in M* and 4, = R (y*) as a mark on (M*,y*). By the
definition of (M*,y*), there is a homeomorphism /: (M*,y*) — (My,y,) so
that #(A4,) = 4;. We will construct a product disk 4 in M* with 4, as an
edge. Note that A4 is a properly embedded arc in F*. For the embedding
e F*x[0,1] - M*, 4_ = e*(A4 x [0,1]) is a rectangle such that 4_ N4, = 4,
A_ =e*(A x {1}) is the opposite edge of 4 and 4_NR(y*) = A_ < R_(y").
Thus 4=4_UA4, is a product disk in M* with 4, as an edge. This
contradicts the assumption on the marked sutured manifold (M;,y,,A4:).

THE PROOF OF PROPOSITION 3.4 is completed. []

Now we will consider the case that one of the marked sutured manifolds
(M;,p;,A4;) (i=1,2) has a product disk with the mark as an edge. Suppose
that (M, y;,A41) has a product disk 4 with 4; as an edge, and let B; denote an
opposite mark of A; relative to 4. Let1:S; x [-1,1] — S* be a bicollar map
with N; = Image tNE(L;). We may assume that V> = (D x [0,1]). We take
a regular neighborhood N(4) of 4 in M; so that N(4) N R(y,) is a union of
two rectangles D, and E_ which have A; and B; as cores respectively. We
regard A; and B; as marks on (Nj,0;), and D, E_ as disks in R(d;) where
(N1,01) is the product sutured manifold associated with S;. Then D, cor-
responds to the plumbing disk D = SN S, by projecting D, onto S;. Let E
denote the disk on S; obtained by projecting E_ onto S;. Let D x [0,1] = N}
and E x[-1,0] « Ny be embeddings with D =D x {0}, D, =D x {1},
E=Ex {0} and E_ = E x {—1} respectively. Consider the set N'(4) =
N(A)UD x [0,1]UE x [-1,0]. Then Int N'(4) is still an open 3-ball. Since
the 3-ball 7, is contained in N'(4), we have S, NIN’(4) = D. Hence there is
a 3-ball O, =« N'(4) so that O, NIN'(4)=E and T> = (S, — D)UE < Q.
Thus two 3-balls Q; and Q; = S3 — Int Q, satisfy the following properties:

(3.7) 01UQ, =S 01N Qy, =001 =00s, S1<01, The Oy and
E=SNT, is a 4-gon.

This means that S has another decomposition which consists of a plumbing
of S and T, with the plumbing disk £. We set T'= S| Ug T, for convenience,
and T’ denotes its dual relative to E; hence [T] = [S] € #S(L). We also note
that the link 07, is equivalent to L,, and that 7, is equivalent to S, as
spanning surfaces for L,. Thus the conditions (3.1) and (3.2) hold if we
replace S and S, by 7 and T, respectively.

ProrosITION 3.8. Let L be a non-split link and S its spanning surface.
Suppose that (3.1) and (3.2) hold, and let (M;,y;, A;) (i=1,2) be the marked
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sutured manifolds associated with the plumbing S = Sy Up Sy.  Suppose further
that (My,y,, A1) has a product disk A with Ay as an edge, and let T = S} Ug T
denote the plumbing corresponding to an opposite mark By. Let S’ and T’
denote duals of S and T respectively. Then S’ can not be disjoint from T’ by
any ambient isotopy of E(L). In particular, S’ is not equivalent to T'.

Proor. Let (M,y), (M,,y,) and (M>,y,) be the complementary sutured
manifolds for S, S| and S, respectively. Let ¥} and V>, be as in the beginning
of the proof of Proposition 3.4, and assume (3.5). We further assume the
notation N(4), D., E_ etc. and the condition (3.7). Note that D, < R, (y)
and E_ = R_(y) by (3.5). We identify N(4) with 4 x [-1,1] and suppose
that s(y) NON(4) = (s(y) N d4) x [-1,1]. Consider the product decomposition
(My,7,) 4 (My,7,). We may identify M; with Cl(M; — N(4)) and suppose
that s(7,) N (4 x {£1}) = a x {1}, where a = 4 is a properly embedded arc
connecting the two points of s(y)Ndd. We also get a sutured manifold
(M>,7,) such that M, = MNN'(4) and s(5,) = (s(y) NN(4))U (a x {—1,1}).
Note that (M>,7,) is ambient isotopic to (Ma,7,).

Since S’ and T’ are disjoint from S, we regard S’ and T’ as y-surfaces
in M. Now suppose that S’ can be disjoint from 7’ by an isotopy of E(L).
We can take this isotopy to be keeping S fixed by Lemma 1.7; hence as a y-
surface S’ can be disjoint from 7’ by a y-isotopy of M. By the construction
of S’ and T’, we can assume that

08" =0T" = s(y),
S'NUAx{+1})=T'N(4x {+1}) =ax {1},
S'NT =s(y)U(ax {~1,1})

(Figure 3.9).

Set S;=S'NM,; and T; = T'NM; for i =1 and 2. Then S; and T; become i
surfaces in M;. Moreover we claim that

(3.9) (1) S; and Ty are parallel to R, () and R_($,) in M, respectively,
and
(2) S, and T, are parallel to R_(5,) and R, (j,) in M, respectively.

We now consider two cases.

CASE 1. M; is connected. By the assumption that S’ can be disjoint from
T’ by a y-isotopy, using Waldhausen [16, Prop. 5.4], we see that S; is parallel
to T; in M; for i =1 or 2. On the other hand, since (M, y,) is not a product
sutured manifold by (3.2), neither is (M;,7;). It follows from this together
with (3.9)(1) that S; can not be parallel to T} in M;. Also (M>,7,) is not a
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R.(7)

(M, y) ox{-1}]

Fig. 3.9

product sutured manifold by (3.2). Hence (3.9)(2) implies that S, can not be
parallel to T, in M,. This is a contradiction.

Cast 2. M, is disconnected. Let (Mj,yy) and (M;,y/) be the two
components of (M;,j;) with 4 x {+1} =M. Since (M;,j;) is not a
product sutured manifold, neither is one of (M;",7{). If both of (M[*,y{)
are not product sutured manifolds, then the same argument as in the case 1
implies a contradiction. Hence we suppose that (M, ;) is a product sutured
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manifold. In this case we can move S’ by a y-isotopy to eliminate the in-
tersection arc a x {—1}; hence we suppose that S'NT’ =s(y)U(a x {1}).
Consider the product decomposition (M, y)AX—{l}> (M~,y")U(M],y]); the
resulting manifold has two components, and set S"=S'NM~ and T~ =
T'NM~. Then S~ and T~ become y -surfaces, and they are parallel to
R_(y7) and R, (y") in M~ respectively. Also by considering the product
decomposition (M, y7) Ay, (M3, 7,)U(M;,y;y) and by the assumption that
(M>,7,) is not a product sutured manifold, we see that (M~,y) is not a
product sutured manifold. It follows that S~ is not parallel to 7~ in M~.
Hence by the same argument as in the case 1, we get a contradiction.
Thus S’ can not be disjoint from 7’ by any ambient isotopy of E(L), and

ProposITION 3.8 is proved. []
From Propositions 3.4 and 3.8 we have

COROLLARY 3.10. Let L be a non-split link and S a spanning surface for
L. Suppose that (3.1) and (3.2) hold. Let (M;,y;,A;) (i =1,2) be the marked
complementary sutured manifolds associated with the plumbing S = S;US,.
Then JS(L,S) = {[S"]} (where S’ is a dual of S), if and only if there is no
product disk in M; with A; as an edge for i =1 and 2.

Now let (M;,y;, A;) (resp. (N;,0i,A4;)) (i=1,2) be the marked comple-
mentary sutured manifolds (resp. the marked product sutured manifolds)
associated with the plumbing S=S,UpS,. Let S’ =S/Up S} be a dual of
S.  We consider the marked sutured manifolds associated with this plumbing.
Let I'; be a product disk in N; with 4; as an edge and A4/ an opposite mark on
(N;,0;) relative to I'; (i=1,2). It is easy to see that

(3.11) (a) the marked product sutured manifolds associated with S’ =
S| Up/ S) are homeomorphic to (N;,d;,4!) (i=1,2), and
(b) the marked complementary sutured manifolds associated with
S’ = S{Up: S5 are homeomorphic to (M;,y;, A]) (i=1,2).

Thus Corollaries 0.3 and 3.10 imply the following

THEOREM 3.12. Let L be a non-split link and S its spanning surface.
Suppose that (3.1) and (3.2) hold. Let (M;,y;, A;) and (M;,y;, A}) (i=1,2) the
marked complementary sutured manifolds associated with S and its dual S’
respectively.  Then JS(L) = {[S],[S"]} if and only if the following conditions
(x1)—(%2) hold:

(x1)  There is no product disk in M, with A, or A] as an edge.
(¥2)  There is no product disk in M, with Ay or A} as an edge.
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Now we return to the case that (M, y,,4;) has a product disk with 4; as
an edge.

ProprosITION 3.13.  Under the same assumptions as in Proposition 3.8, we
have JS(L,S) = {[S'],[T']}.

Proor. Let F be an incompressible spanning surface for L such that
[F]e #S(L,S). We use the same notation (M,y), (M;,y;) etc. in the proof
of Proposition 3.4 and assume (3.5). We may assume that F intersects the
disk X = M NJV, transversely in two arcs and that the case (1) in Figure 3.6
holds. The arguments in the proof of Proposition 3.4 remain valid in the
subcase 2.1. Thus we will start with the same situation as in the subcase 2.2:
For the embeddings e : (Fa,0F>) x [0,1] — (M3, y5) and e*: (F*,F*) x [0, 1]
— (M*,y*), we assume that e;(F2) = Ry(y5) and ef(F*) = R_(y*).

Note that D*=FNW =F,NF* is a disk, and consider two 3-balls
Z,. =e¢(D*x[0,1]) and Z_ =e*(D* x [0,1]). By the constructions of e and
e*, we may assume that Z,NZ_=D* and Z, c W,. Put Z=2Z_UZ_.
Then D, =e(D* x {1}) €« R4 (y*) and E_ =e*(D* x {1}) = R_(y*) are rec-
tangles such that (Z,E_,D;) is homeomorphic to D* x ([-1,1],—-1,1). A
core arc Ay of Dy = R, (y*) is a mark on (M* y*) and (M* y*,4.) is
homeomorphic to (M7, y,,A4;). Hence a core arc A_ of E_ = R_(y*) is a dual
mark of A;, and (M*,y*,4_) is homeomorphic to (Mj,y;,B;) by Lemma
3.3. Thus we identify (M* y*,A,) and (M*, y*, A_) with (M;,y,,4,) and
(My,y;,B1) respectively, and (Z,E_,D;) with (N(4),E_,D;) (which is
indicated just before Proposition 3.8). By the assumption that e;(F) =
R (), F, is regarded as a parallel copy of R.(y}) in (M;,y;) (Figure
3.10). Take a parallel copy F> of R_(y5) in (Mj,y5) which is a y}-surface.
Then replacing F, with F>, we get a y-surface F from F; F = (F — F,)UF,.
Since e} (F*) = R_(y*), F is a parallel copy of R_(y), and then we can regard
Fas T=S8SUgT (see Figure 3.10). Hence F is a dual of T relative to E,
and [F]=[T']. Proposition 3.13 is proved. []

We proceed with our study under the assumptions in Proposition 3.8. As
noted previously the link 075 is equivalent to L,, and T3 is equivalent to S, as
spanning surfaces for L,. Hence the complementary sutured manifold for
T, is homeomorphic to (My,y,). Let (M;y;,A4;) (i=1,2) be the marked
complementary sutured manifolds associated with the plumbing S = S; Up S>,
and let (M;,p;,B;) (i=1,2) be those ones associated with the plumbing
T=T\UgT, (T =8,,T=S). By the definition of 7, and the plumbing
T=T\UgT, (cf. (3.7)), we see that (M3, y,,B>) is homeomorphic to
(M3, y,,A4%). Let 8" =S{Up/ S5 and T' = T{Ug: T, denote duals of S and T
respectively. Then
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Fig. 3.10

(3.14) (i) the marked complementary sutured manifolds associated with
S’ = S{Up: S5 are homeomorphic to (M;,y;,A]) (i=1,2), and
(i) the marked complementary sutured manifolds associated with
T'=T|Ug T; are homeomorphic to (M,,y;,B]) and (Mo, y,, A2),

where (M;,y;,A]) (i =1,2) are the marked sutured manifolds given in (3.9)(b),

and (M,y,,B]) is obtained by the same way from (M,y,,B;). Thus Cor-
ollary 3.10 and Proposition 3.13 together with Theorem 0.1 imply the following

THEOREM 3.15. Let L be a non-split link and S its spanning surface.
Suppose that (3.1) and (3.2) hold, and let (M;,y;, A;) (i=1,2) be the marked
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sutured manifolds associated with the plumbing S = Sy Up Sy.  Suppose further
that (My,y,, A1) has a product disk A with Ay as an edge, and let T = S} Ug T
denote the plumbing corresponding to an opposite mark By. Let S’ and T’
denote duals of S and T respectively. Then

IS(L) = {[S], [S'], [T"]}
and

if and only if the following conditions (xx1)—(xx2) hold:
(xx1) There is no product disk in M, with A] or B] as an edge.
(#x2)  There is no product disk in M, with Ay or A as an edge.

4. Decompositions of a marked sutured manifold

In this section we deal with a method deciding whether a given marked
sutured manifold has a product disk with the mark as an edge.

Let (M,y,A) be a marked sutured manifold, i.e. 4 is a properly embedded
arc in R(y). Suppose that there is a product disk 4 = M with AN A = ¢, and
let (M,y) 4 (M';y") be the corresponding product decomposition. Then we
can regard 4 as a mark on (M’ y’), and hence we have a product decom-

position of a marked sutured manifold:
(M,y,4) 5 (M',7', 4).

We now assume that there is a product disk I = M with 4 as an edge in
addition. In the case that I'NA = (&, I' is also a product disk in M’ with 4
as an edge. If I'N4 # &, then by using the standard cut and paste argument,
we can get another product disk I/ < M’ with A as an edge. Also the
converse is easily verified. Thus we have the following

Lemma 4.1. Let (M,y, A) LN (M',y',A) be a product decomposition of a
marked sutured manifold. Then M has a product disk with A as an edge, if and
only if so does M'.

Next we consider an octagon Q = M (see §1) satisfying QNA = . We
assume that 4 = R_(y). Then we associate the following three kind of
decompositions of (M,y,A) with Q as shown in Figure 4.1:

a(Q) «(Q)
(MaanA) A— (M,V,A) - (McvymA)

b(Q)l

(Mba Vbs A)
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(M, y) (My. 7o)

Fig. 4.1

Note that M,, M, and M, are homeomorphic to the manifold obtained
by cutting M along Q. In the case of 4 = R;(y), by replacing the situa-
tions of R_(y) and R, (y), we define the three decompositions in the same
way.

PropoSITION 4.2. Let (M,y,A) be a marked sutured manifold with
A< R_(y) (resp. A= Ry(y)), and let Q = M be an octagon with QNA = .
Suppose that there is a product disk I' = M with A as an edge. Then one of the
following assertions (1)—(3) holds:

(1) There is a product disk T'y = M, with A as an edge.

(2) Some component of R.(y,) (resp. R_(y,)) is compressible in M.

(3) Some component of Ry(y,) (resp. R_(y,)) is compressible in M,.
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A

[\/

D’

Fig. 4.2

PrOOE. We prove the proposition in the case of 4 < R_(y). We take I'
transversely relative to 2. Then "N is a union of a finite number of circles
and arcs, each arc is properly embedded in I" and 2, and dI'NJQ2 < R, (y).
By applying the cut and paste operations to I” in outer most ordering of circles
of I'NQ in I', we can replace I" by a product disk I"" = M with 4 as an edge
so that I'"NQ has no circle component.

Now note that there are the following two types I and IT of arc x = ' N Q2
(see Figure 4.2):

Type 1. 0o is contained in one component of 02N R (y).

Type II. « connects two components of QN R, (y) in Q.

We show that type I arcs can be eliminate by replacing I'’. Let o = I'"NQ be
a type I arc. Then « cut off a unique disk D from Q so that DNR_(y) = &.
We assume that DN T = a. Also « cut off a unique disk D’ from I’ so that
D'NA = (Figure 4.2). Consider the disk (I"" — D’)U D and push out its D
part from . Then the resulting disk I"” is also a product disk with 4 as an
edge, and the arc o (and some other arcs of "N Q) is eliminated from the
intersection I N Q2. By repeating this process we get a product disk I'* = M
with 4 as an edge so that each component of I'*NQ is a type II arc (if
I NQ + Q).

In the case that I'*NQ = ¢, the assertion (1) holds by setting I', = I'".
Now we assume that I'*NQ # ¢¢. Then there is an arc component f <
I'*NQ which cut off a unique disk D* from I'* so that D*NQ = p. Since
D*NQ =p, we can consider that D* is contained in the manifold obtained
by cutting M along 2. Hence dD* = R, (y,) or 0D* = R (y,). Suppose that
0D* = R (y;). Then by the assumption that f < dD* is of type II, ¢D*
cannot bound a disk in R,(y,). Hence (2) holds. Similarly if 6D* = R (y,),
then (3) holds. Thus Proposition 4.2 is proved. []
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Fig. 5.1

ExampLE 4.3. Let (M,y,A) be a marked sutured manifold shown in
Figure 4.3. Then there is no product disk with 4 as an edge.

5. Some iterated plumbings

In this section we treat two typical cases of iterated plumbings. As
applications of the results in §§3 and 4 we determine the simplicial complexes
IS(L) in these cases (Theorems 5.4 and 5.10). Let L be a non-split link and S
its spanning surfaces. We first consider the case that

(5.1) S is connected and is an iterated plumbing S;Up, HUp, S, of three
surfaces S, H and S, as shown in Figure 5.1, where H is a Hopf band
of + or — type.

We further suppose that

(5.2) S; is a unique incompressible spanning surface for L; and L; is not
fibred for i =1 and 2.



Classification of the spanning surfaces 75

In this case L bounds obvious four surfaces given by performing each
plumbing in different ways. Each surface is obtained by replacing one of
the plumbing disks D; with its dual disk D! (i=1,2), or replacing both D,
and D, with D] and D) respectively. We denote these surfaces by S(k,k2),
where k; — 1 or 0 according to the choice of D; or D] as the plumbing disk
(i=1,2). For example, S(1,1) =S and S(0,1) is a dual of S relative to D;.
Also §(0,0) = S{Up H'Up; S; where S} = (S;—D;)UD; (i=1,2) and H' =
(H— (Di1UDy))U(DjUDj). Since H is a Hopf band, as in the case of 2-
bridge knots [8], we have

Lemma 5.3. S(0,0) is equivalent to S(1,1).
Moreover we prove the following

THEOREM 5.4. Let L be a non-split link and S its spanning surface.
Suppose that (5.1) and (5.2) hold. Let (M;,y;) be the complementary sutured
manifold for S; (i=1,2), and let A; and A] be the markes on (M;,y;) cor-
responding to the plumbing S;Up, H and its dual S! Up H " respectively. Put
gk = [S(J, k). Then

go1 011 0o
]S(L) — o o
if and only if the following conditions (x1")—(x2") hold:
(#1")  There is no product disk in M, with A or A] as an edge.
(¥2")  There is no product disk in M, with Ay or A as an edge.

Proor. We give the proof in the case that H is the Hopf band shown
in Figure 5.1. Putting R = S;Up, H, we have S = RUp, S». We will prove
the theorem by applying Theorem 3.15 to this plumbing. First we check the
conditions (3.1) and (3.2). By the assumption (5.2) and Corollary 2.6, R is
unique spanning surface for J = dR, and J is not fibred. Hence (3.1) and (3.2)
hold taking R for S; and J for L.

Let (P,A,B) be the marked complementary sutured manifold for R
corresponding to the plumbing S = RUp, S». Then there is a product disk I
in P with B as an edge; C denotes its opposite edge (see Figure 5.2). Let S =
RUg R, denote the plumbing corresponding to the opposite mark C.

We note that S(1,0) is a dual of S = RUp, $; write S(1,0) = R"Up, S;
and B’ denote the corresponding mark on (P,4). Let S” = R"”Ug R} denote
a dual of S = RUg R, and C’ the corresponding mark on (P, 4). If we verify
the following conditions (5.5)(1)—(2), then we have

I
s - SIS )

by THEOREM 3.15:
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Fig. 5.3

(5.5) (1) There is no product disk in P with B’ or C’ as an edge.
(2) There is no product disk in M, with 4, or A} as an edge.

Note that the condition (5.5)(2) is just the condition (%2’). To see (5.5)(1) we
consider the product decomposition (P, 4, B’) EX (P', ', B') as shown in Figure
5.3. Then we have (P',A',B') = (M,,y,,A;) as shown. Hence, by the as-
sumption (x1') together with Lemma 4.1, there is no product disk in P with B’
as an edge. Similarly, by considering the product decomposition (P, 1, C’) Y
(P",2",C") as shown in Figure 5.4, we see that there is no product disk in P
with C’ as an edge. Thus (5.5)(1) follows.

Now to complete the proof of the theorem we must show the following
assertion

(5.6) S” is equivalent to S(0,1).
The plumbing S = S} Up, H Ug R, is shown as in Figure 5.5. By moving

a tiny isotopy we may assume that S”NS(0,1) = J as shown in Figure 5.6
(a). We can further assume that
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Fig. 54

5.5

Fig.

(D)-U(H-Dy)-

(E") U(H-E),

(b)

Fig. 5.6
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Fig. 5.7

S(0,1) = (S; — D1)_U(D})_U(H—Dy)_U(R, — E)_,
S"=(S1 - D), U(E"),U(H—E), U(R,— E),

where S; x [—1,1] is a thin product neighborhood of S; and (S; — D), =
(Sy — Dy) x {+1}, and so on. Hence if we see that there is a product region
Ax[-1,1] in E(L) — (S1URy) x (—1,1) with 4 x {-1} = (D})_U(H — Dy)_
and 4 x {1} = (E'), U(H — E), where 4 is an annulus, then S” and S(0,1)
bound a product region in E(L). In fact (Dj)_U(H —D;)_ and (£'), U
(H — E), bound a product region which is shown as the exterior of the solid
torus in Figure 5.6 (b). Hence (5.6) follows. Thus Theorem 5.4 is proved.

O

Now we consider another type of iterated plumbings. Let L be a non-
split link and S its spanning surface which satisfies the condition that

(5.7) S is connected, and is an iterated plumbing S = S Up, H; Up H> Up, S»
of four surfaces S;, H,, H, and S, as shown in Figure 5.7, where H; is a
Hopf band of + or — type (i =1,2).

We further assume that

(5.8) S; is a unique incompressible spanning surface for L; and L; is not
fibred for i =1,2.

In this case L bounds eight obvious surfaces which are obtained by
performing each plumbing in different ways. Let D{, D’ and D) denote dual
plumbing disks of D;, D and D, respectively. Each of eight surfaces is
denoted by S(ky,k,k;) where k; (resp. k) = 1 or 0 according to the choice of D;
or D! (resp. D or D') as the plumbing disk. For example, S(1,1,1) =S and
S(1,0,1) is a dual of S relative to D. By the assumption that H; and H, are
Hopf bands, we have

Lemma 59. (1) S(1,1,1), S(1,0,0) and S(0,0,1) are equivalent.
(2) S(0,0,0), S(1,1,0) and S(0,1,1) are equivalent.
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Moreover we prove the following

THEOREM 5.10. Let L be a non-split link and S its spanning surface.
Suppose that (5.7) and (5.8) hold. Let (M;,y;) be the complementary sutured
manifold for S; (i=1,2), and let A; and A] be the marks on M; corresponding
to the plumbing S;Up, H; and its dual. Put oy = [S(i, j, k)|. Then

g101 0111 G000 0010
IS(L) —_ e Py Py °

if and only if the following conditions (x1")—(x2") hold:
(x1")  There is no product disk in M, with Ay or A| as an edge.
(#2")  There is no product disk in M, with Ay or A as an edge.

Proor. We will show the theorem only in the case that A, and H, are
the Hopf bands shown in Figure 5.7; the same argument holds in other cases.
Put R; = S;Up, H; (i=1,2). Then S= R UpR, and by (5.8) and Corollary
2.6, we see that

(5.11) R; is a unique incompressible spanning surface for J; = dR;, and J; is
not fibred (i =1,2).

Let (P;,/;) be the complementary sutured manifold for R; (i =1,2) and
B; the mark on (P; 4;) corresponding to the plumbing S = S(1,1,1)=
Ry UpRy. Also let B} be the mark on (P;,4;) corresponding to S(1,0,1) =
R{Up/ R} which is a dual of S relative to D. Consider the marked sutured
manifold (P, 41, B;1). As in the case of (P, 4, B) in the proof of Theorem 5.4,
(P1,41) has a product disk with By as an edge (cf. Figure 5.2); C denotes its
opposite mark. Let S = R;Ug T, denote the plumbing corresponding to the
mark C, and let S denote a dual of S relative to the plumbing disk E. By the
same argument as in the proof of (5.5), we claim that, for i = 1 and 2, there is
no product disk in P; with B/ as an edge if and only if there is no product disk
in M; with A; as an edge. By using this together with Corollary 3.10 and
Propositions 3.8 and 3.13, we can show the following assertions:

(5.12) (a) S(1,0,1), §=5(1,1,1) and S are mutually non-equivalent.

(b) #S(L,S) ={IS(1,0,1), S]}.

() AS(L,S(1,0,1)) = {[S]} if and only if there is no product disk in
M; wiEh A; as an edge for i =1 and 2.

(d) [S]=[5(0,0,0)].

Now let Q; denote the dual of R; = S;Up, H; relative to D; (i —1,2).
Then S(0,1,0) = 01Up @, S(0,0,0) is its dual relative to D, and we set
S(0,0,0) = Q1 Up: 05. Note that Q; is equivalent to R; as a spanning surface
for J;, since H; is a Hopf band. From this together with (5.11) we have
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Fig. 5.8

(5.13) Q; is a unique incompressible spanning surface for J; = 0Q;, and J; is
not fibred (i =1,2).

Let (U;,n,;) be the complementary sutured manifold for Q; (i =1,2) and [; the
mark on (U;,#;) corresponding to the plumbing (0,1,0) = Q; Up Q>. Consider
the mark I’ on (U,,#,) corresponding to the plumbing S(0,0,0) = Q; Up Q}
(see Figure 5.8). Then (U,,7,) has a product disk with I’ as an edge, and K’
denotes its opposite mark. Let S(0,0,0) = 7/ Up Q) denote the plumbing
corresponding to the mark K’, and let S(0,0,0) denote a dual of S(0,0,0)
relative to F. We will show the following assertions:
(5.14) (a) S(0,1,0), S(0,0,0) and S(0,0,0) are mutually non-equivalent.

(b) #S(L,S(0,0,0)) = {[S(0,1,0)],[S(0,0,0)]}.

(c) #S(L,S(0,1,0)) = {[S(0,0,0)]} if and only if there is no product

disk in M; with 4] as an edge for i=1 and 2.

(d) [S(0,0,0)] =[S].

The assertions (a) and (b) follow from (5.13) and Proposition 3.8

directly. To show (c) we first note that #S(L,S(0,1,0)) = {[S(0,0,0)]} is
equivalent to the following condition (c.i) for i =1 and 2 by Corollary 3.10:

(ci) There is no product disk in (U;,#%,) with I; as an edge.

We consider the product decomposition (Ui,#y,1) EX (U{,n1,I1) as shown
in Figure 5.9. Then we see that (Uj,n{,Ii) = (Mi,y,,A4;). Hence (c.1) is
equivalent to the condition that there is no product disk in M; with A{ as
an edge by Lemma 4.1. Similar argument holds for i =2. Thus (5.14)(c)
is proved. To show (d) we note that Q)= H;Up S; where Hj;=
(Hy — (DUDy))U(D'UD}) and Sy =(Sy—Dy)UD). Then S(0,0,0) =
T{Ur Q; = T{Ur H;Up; S;. This plumbing is shown as in Figure 5.10.
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Fig. 5.9

Fig. 5.10

Hence by the same method as in the proof of (5.6), we can verify that S(0,0,0)
is equivalent to S.

Now if the complex IS(L) is in the form indicated in the statement of
the theorem, then (5.12)(c) and (5.14)(c), the conditions (x1”)—(x2") hold.
Conversely we assume the conditions (x1”)—(x2”). Then, we note that the
four vertices ay91, o111, goo0 and ogjp are mutually distinct. In fact it suffices
to verify that aj9; # 0919. This follows from the fact that there is an edge
connecting 191 to oyj;, however there is no edge connecting oo;p to oii;.
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Furthermore (5.12) and (5.14) imply that IS(L) is in the desired form. The
proof of Theorem 5.10 is now completed. []

6. Proof of Theorems A and C

We are now in a position of proving Theorems A and C stated in the
introduction.

ProoF oF THEOREM A (I). Let K be a prime knot of 10 or less crossings.
Then it is easy to find a spanning surface S for K whose genus is equal to one
half of the degree of the Alexander polynomial of K; hence S is of minimal
genus. Let (M,y) denote the complementary sutured manifold for S. By
Corollary 0.2 and Proposition 2.1, if we show that (M,y) has no essential y-
surface, then S is a unique incompressible spanning surface for K. In [13]
Kobayashi proved that the knots in (B) is the list of prime knots of 10 or less
crossings whose minimal genus spanning surfaces are not unique. In the
process of proving this assertion he essentially showed the following

ProposITION 6.1 (Kobayashi). Under the above assumption, if K is out of
the list (B), then (M,y) has no essential y-surface.

Thus the assertion (I) follows from this. We note that Kobayashi [13]
used the notion “(M,y) is an almost product sutured manifold” instead of
“(M,y) has no essential y-surface”. These two notions are equivalent for the
complementary sutured manifold for a connected surface in S, and this is the
case in our situation.

We will give two typical examoles which explain a method of proving
Proposition 6.1.

ExaMPLE 6.2: 8i5. This knot is the first non-fibred and non-2-bridge
prime knot in the table of Rolfsen [15, Appendix C]. The knot spans a
minimal genus spanning surface S shown in Figure 6.1, and the complementary
sutured manifold (M,y) for S is shown in the figure. Note that M is the
exterior of the handlebody of genus four. We apply product decompositions
to (M,y) associated with two disks A; and 45, and then apply octagonal
decompositions associated with 2 as shown. Clearly the resulting two sutured
manifolds (M,,y,) and (Mjy, ;) have no essential y,- or y-surface respectively.
Hence (M,y) has also no essential y-surface by Propositions 1.4 and 1.6. []

EXaMPLE 6.3: 949. This knot is also non-fibred and non-2-bridge. It
spans a minimal genus spanning surface S shown in Figure 6.2. Note that S is
a plumbing of two surfaces S| and S,, and S, is a Hopf band. Since L, = 05>
is a fibred link with fibre S, (see Lemma 6.4 below), we can use Corollary 2.6.
Since S is of minimal genus, S is also a minimal genus spanning surface for
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(M, y) is the exterior of this handlebody

(Mo, Vo)

(Mg, 73)

Fig. 6.1. 85

L, = S} by ProposiTION 2.3 (i). Hence S is a unique incompressible spanning
surface for 949, if and only if S} is a unique incompressible spanning surface for
L; by Corollary 2.6. Consider the complementary sutured manifold (M, ;)
for S;. By applying decomposition operations to (M,y;) as in Example 6.2,
we see that (Mj,y;) has no essential p,-surface. Thus S is a unique in-
compressible spanning surface for 94. []
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Fig. 6.2. 949

n-full twists

We note the following well known fact which is also useful to the proof of

the assertion (I).

LemMMA 6.4. Let G, be an (n-full twisted) annulus in S* shown in Figure
63 (neZ). Then

(1) G, is a unique incompressible spanning surface for H, = 0G, if n # 0.

(2) H, is a fibred link with fibre G, if and only if n= +1.

Proor oF THEOREM C (1), (3). It follows from [1, Appendix C], each knot
in the table (B) is a 2-bridge knot except for the last four knots 10s3, 1067, 10ss,
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Fig. 6.5

1074. We consider the appropriate continued fraction expansion of the rational
number corresponding to each 2-bridge knot. Then the assertion (II) in
Theorem A for these 2-bridge knots follows from Hatcher and Thurston [8§].
The assertions (1) and (3) in Theorem C are proved by applying Theorems 5.4
and 5.10 to the knots respectively. In fact, for K = 95,1055, 1024, 1031, we see
that K bounds a surface S which is an iterated plumbing of three surfaces S}, H
and S, in the form of Figure 5.1. Moreover it satisfies the condition (5.2). In
this case K bounds surfaces S(i, j) defined in the beginning of §5. For ex-
ample, Figure 6.4 indicates the case of K = 9;5. Hence the assertion (1) follws
from Theorem 5.4. Similarly, for K = 9;9, 1016, 1033, K bounds a surface S
which is an iterated plumbing of four surfaces S, H;, H, and S, in the form of
Figure 5.7. Moreover it satisfies the condition (5.8), and K bounds surfaces
S(i, j,k) which are defined just before Lemma 5.9. Figure 6.5 indicates the
case of K =9jy. Hence the assertion (3) follows from Lemma 5.9 and
Theorem 5.10. [

ProOF OF THEOREM A (II) for non-2-bridge knots 10s3, 1047 and 19¢5. The
proof will be given by using Theorem 3.12.

10s3. This knot spans a minimal genus spanning surface S shown in
Figure 6.6, and S is a plumbing of two surfaces S; and S, in Figure 6.7. We
will show that

J8(1053) = {[S],[S"]}  (Figure 6.6)

where S’ is a dual of S.
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Fig. 6.6. 1053

Fig. 6.7

Firstly we show that S = S;US, satisfies the conditions (3.1) and (3.2).
Since S is of minimal genus, so are S; and S, by Proposition 2.3 (i). By
Lemma 5.4, S, is a unique incompressible spanning surfaces for L, = 05, and
L, is not fibred. Note that S} is equal to the mirror image of the surface S; in
Example 6.3 (Figure 6.2). Hence S; is a unique incompressible spanning
surface for L; = 0S5 and L; is not fibred. Thus S satisfies the conditions (3.1)
and (3.2).

We next verify the conditions (1) and (%2) in Theorem 3.12. Consider
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Fig. 6.8

(M, 71, A) My, 71, A

Fig. 6.9

the marked complementary sutured manifolds associated with S =S;US,
and its dual S’ =S{US}. As shown in Figure 6.8, both (M3,7,,4,) and
(M, y,,A%) are homeomorphic to the marked sutured manifold (M,y,4) in
Example 4.3 (note that M, is the exterior of the solid torus N, in Figure
6.8). Hence the condition (x1) holds.

On the other hand (Mi,y,,4;) and (M),y,,A]) are shown in Figure
6.9. To see that (My,y,) has no product disk with A; as an edge, we apply
decomposition operations defined in §4 to (My,y,,4;) as shown in Figure
6.10. Clearly the resulting sutured manifold (M,,y,) has no product disk with
Ay as an edge, and for both (Mj,y,) and (M.,y,.), each component of R(y;)
and R(y,) are incompressible in M), and M, respectively. Hence, by Prop-
ositions 4.1 and 4.2, (Mj,y,) has no product disk with 4; as an edge. In
the same way we can verify that (M,y;) has no product disk with 4] as
an edge. Hence the condition (x2) follows. Thus we have #S(10s53) =
{[S],[S"]} by Theorem 3.12. []
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74

(Xas Vo)
(M, 71, A)

(M, ¥»)

(M., 7.}

Fig. 6.10

10g;. In the same way as the case of 10s3, we have
IS(10¢7) = {[S], [S]} (Figure 6.11)

where S is a minimal genus spanning surface for 10¢; and S’ is its dual relative
to the plumbing disk D. []



Classification of the spanning surfaces 89

Fig. 6.11. 1047

10¢s. Similarly we have
I8(1068) = {[S],[S']} (Figure 6.12)

where S is a minimal genus spanning surface for 1043 and S’ is its dual relative
to the plumbing disk D. [J

ProoF oF THEOREM C (2). The proof is given by using Theorem 3.15.
The knot 1074 spans a minimal genus spanning surface S shown in Figure
6.13: S is a plumbing of two surfaces S; and S, with the plumbing disk D as
shown. It is easy to see (as in the case of 10s3) that S = S; Up S, satisfies the
conditions (3.1) and (3.2). Let (M,,y,,41) and (M>,y,,4;) be the marked
complementary sutured manifolds for S = S, Up S,. In this case (M), y,) has a
product disk I" with A; as an edge as shown in Figure 6.14. Let B; denote the
opposite mark on (M;,y,). Then S can be regarded as a plumbing with the
plumbing disk E corresponding to the mark B;; we denote this plumbing by



90 Osamu KAKIMIZU

1044

Fig. 6.13. 1074,—(1)

My, 71, A)

Fig. 6.14

T = S1Ug T, (see Figure 6.15). Note that [S] =[T] e #S(1074). Let S’ and
T’ denote duals of S and T respectively. Then we show the following as-
sertion by checking the conditions (#x1) and (x%2) in Theorem 3.15.

(6.5) I8(1074) = {[S],[S'], [T']} (Figure 6.15),
and
IS(1074) = [w/]

First we consider the marked sutured manifolds (M>,y,,4,) and
(M>,y,,A%). These are the same ones shown in Figure 5.6. Thus there is no
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Fig. 6.15. 104—(2)

product disk in M, with 4, or 4 as an edge, and the condition (*%2) holds.
On the other hand, by applying the decomposition operations defined in §4 to
the marked sutured manifolds (M,,y;,4]) and (Mi,y,,B]) (as used in the
argument on 10s3) and using Propositions 4.1 and 4.2, we can verify the
condition (xx1). Thus we get the assertion (6.5). [

The proof of Theorems A and C is now completed. []
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