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Abstract. We introduce a 2-variable polynomial invariant for a virtual link derived

from virtual magnetic graph diagrams, and using this invariant we prove the splitting of

the Jones-Kau¤man polynomial with respect to the powers module four.

1. Introduction

A virtual link diagram is a link diagram in R2 possibly with some encircled

crossings without over/under information, called virtual crossings. A virtual

link ([6]) is the equivalence class of such a link diagram by generalized

Reidemeister moves (Reidemeister moves of type I, of type II, of type III and

virtual Reidemeister moves of type I, of type II, of type III, and of type IV

illustrated in Figure 1).

In [6], Kau¤man defined a polynomial invariant fLðAÞ A Z½A2;A�2� for

a virtual link L, which we call the Jones-Kau¤man polynomial. For a

classical link L, it is the Jones polynomial VLðtÞ after substituting
ffiffi
t

p
for

A2. In particular, for a classical link L, we have fLðAÞ A Z½A4;A�4� or

fLðAÞ A Z½A4;A�4� � A2 according as the number of components of L is odd or

even, respectively. However, for a virtual link L, fLðAÞ is decomposed

nontrivially into two parts belonging to Z½A4;A�4� and to Z½A4;A�4� � A2.

For example, the Jones-Kau¤man polynomial of L in Figure 2 is A8 � A4 �
A2 þ 1 þ A�2, which is ðA8 � A4 þ 1Þ þ ð�A2 þ A�2Þ.

The purpose of this paper is to define a 2-variable polynomial invariant for

a virtual link by using magnetic graphs and to show how the splitting of the

Jones-Kau¤man polynomial in the sense above is related to this invariant.

Our invariant was introduced by the second author at the regional

conference on knot theory held in Yamagata, Japan in January of 2004.
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In Section 2, the definitions and results are given. Sections 3 and 4 are

devoted to the proofs. In Section 5, we observe the invariants for checker-

board colorable virtual link diagrams.

2. Preliminaries and results

A magnetic graph in the 3-sphere S3 is a 2-valent graph G in S3 such that

the edges of G are oriented alternately as in Figure 3. We allow G to have

components consisting of closed edges without vertices.

A magnetic graph diagram is a projection image on a plane equipped with

over/under information on each crossing. See Figure 4, for example.

Fig. 1

Fig. 2

Fig. 3
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A virtual magnetic graph diagram, which is written as VMG diagram for

short, is a magnetic graph diagram possibly with some encircled crossings

without over/under information, called virtual crossings. See Figure 5.

Crossings that are not encircled are called real crossings. If two VMG

diagrams are related by a finite sequence of generalized Reidemeister moves,

they are said to be equivalent.

Let D be a VMG diagram whose crossings are all virtual and eðDÞ the set

of edges of D. A weight map of D is a map s : eðDÞ ! fþ1;�1g such that

sðeÞ0 sðe 0Þ for magnetically adjacent edges e and e 0 of D. The image of an

edge e of D by a weight map s is called the weight of e with respect to s. See

Figure 6, for example, where each edge e is labeled its weight sðeÞ.
When a weight map s is given, for a virtual crossing v of D where edges e

and e 0 intersect, the parity of v with respect to s is defined to be the product of

two weights sðeÞ and sðe 0Þ and denoted by isðvÞ. We call v a regular crossing

or an irregular crossing with respect to s according as isðvÞ ¼ þ1 or isðvÞ ¼ �1,

respectively. The parity of D is defined to be the product of parities over all

virtual crossings. By Lemma 1 below, we denote it by iðDÞ regardless of s.

In other words, iðDÞ ¼ þ1 if the number of irregular crossings of D is even;

otherwise iðDÞ ¼ �1.

Fig. 4

Fig. 5
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For example, there are 5 irregular crossings in Figure 6 and iðDÞ ¼ �1.

Lemma 1. Let D be a VMG diagram whose crossings are all virtual.

Then, the parity of D does not depend on the choice of the weight map.

Proof. Let D be a VMG diagram whose crossings are all virtual and

eðDÞ the set of edges of D. Let s and s 0 be two weight maps of D. eðDÞ can

be split into two subsets e1ðDÞ and e2ðDÞ so that sðeÞ ¼ s 0ðeÞ if e is an element

of e1ðDÞ and sðeÞ ¼ �s 0ðeÞ if e is an element of e2ðDÞ. Note that all the edges

of a component of D belong to the same subset e1ðDÞ or e2ðDÞ, where a

component of D means a closed curve in D as a component of a link. Let Di,

i ¼ 1; 2, be the set of components of D whose edges belong to eiðDÞ. Let v be

a crossing of D. The parity of v with respect to s is di¤erent from the parity

of v with respect to s 0 if and only if v is a crossing between an edge from D1

and an edge from D2. However the number of such crossings is even because

two di¤erent components of D have even crossings. Thus, the parity of D is

well defined. r

Let D be a VMG diagram, and let p be a real crossing. By doing 0-splice

(resp. y-splice) at p, we mean the local replacement nearby p illustrated in

Figure 7.

Fig. 6

Fig. 7
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A state of D is a VMG diagram obtained from D by doing 0-splice or

y-splice at each real crossing. (Our states correspond to oriented states in

[5].) The set of states of D is denoted by sðDÞ. We denote by C0ðD;SÞ (resp.

CyðD;SÞ) the set of real crossings of D where 0-splices (resp. y-splices) are

applied to obtain a state S from D. We also denote the sign of a real crossing

p by signðpÞ.
For a VMG diagram D, we define

HDðA; hÞ ¼
X

S A sðDÞ
A\Sð�A2 � A�2ÞaS�1

hð1�iðSÞÞ=2 A Z½A;A�1; h�;

where \S is
P

p AC0ðD;SÞ
signðpÞ �

P
p ACyðD;SÞ

signðpÞ and aS is the number of

components of S.

We define RDðA; hÞ to be ð�A3Þ�oðDÞ
HDðA; hÞ, where oðDÞ, called the

writhe, is the number of positive crossings minus that of negative crossings of

D.

Theorem 2. Let D and D 0 be VMG diagrams.

(1) If D 0 is related to D by a finite sequence of generalized Reidemeister moves

but Reidemeister move of type I, then HDðA; hÞ ¼ HD 0 ðA; hÞ.
(2) If D 0 is equivalent to D, then RDðA; hÞ ¼ RD 0 ðA; hÞ.

For a VMG diagram D, we decompose RDðA; hÞ to FDðAÞ þCDðAÞh,

where FDðAÞ and CDðAÞ are elements of Z½A;A�1�. Then FDðAÞ and CDðAÞ
are invariants of the equivalence class of D.

Remark. Let D be a virtual link diagram. By the definition of the

bracket polynomial hDi and the Jones-Kau¤man polynomial fDðAÞ in [6], we

have hDi ¼ HDðA; 1Þ and fDðAÞ ¼ RDðA; 1Þ. In particular, fDðAÞ ¼ FDðAÞþ
CDðAÞ.

Theorem 3. Let D be a m-component virtual link diagram. Then

FDðAÞ A Z½A4;A�4� � A2ðm�1Þ and CDðAÞ A Z½A4;A�4� � A2m.

Theorem 3 gives the splitting of the Jones-Kau¤man polynomial fLðAÞ as

stated in Section 1.

3. Proof of Theorem 2

Let D be a VMG diagram and p a real crossing on D. We denote by

ZpD and IpD the diagrams obtained from D by doing 0-splice and y-splice

at p, respectively. For example, for di¤erent real crossings p1 and p2 on D,

Ip2
Zp1

D means the diagram obtained from D by doing y-splice at p2 after
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applying 0-splice at p1. Note that two diagrams Ip2
Zp1

D and Zp1
Ip2

D are

identical.

Lemma 4. Let D be a VMG diagram and p a real crossing on D. Then,

we have

HDðA; hÞ ¼ Asignð pÞHZpDðA; hÞ þ A�signð pÞHIpDðA; hÞ:

Proof. Let sðDÞ, sðZpDÞ and sðIpDÞ be the sets of states of D, ZpD and

IpD, respectively. Then, sðDÞ is the direct sum of sðZpDÞ and sðIpDÞ. Let S

be a state of ZpD. It can be also regarded as a state of D. Then, it is clear

that

X
q AC0ðD;SÞ

signðqÞ �
X

q ACyðD;SÞ
signðqÞ

¼ signðpÞ þ
X

q AC0ðZpD;SÞ
signðqÞ �

X
q ACyðZpD;SÞ

signðqÞ;

since C0ðD;SÞ ¼ C0ðZpD;SÞU fpg and CyðD;SÞ ¼ CyðZpD;SÞ. If S is a

state of IpD, then we see that

X
q AC0ðD;SÞ

signðqÞ �
X

q ACyðD;SÞ
signðqÞ

¼ �signðpÞ þ
X

q AC0ðIpD;SÞ
signðqÞ �

X
q ACyðIpD;SÞ

signðqÞ:

Thus, we have

HDðA; hÞ ¼
X

S A sðDÞ
A\Sð�A2 � A�2ÞaS�1

hð1�iðSÞÞ=2

¼
X

S A sðZpDÞ
A\Sþsignð pÞð�A2 � A�2ÞaS�1

hð1�iðSÞÞ=2

þ
X

S A sðIpDÞ
A\S�signð pÞð�A2 � A�2ÞaS�1

hð1�iðSÞÞ=2

¼ Asignð pÞHZpDðA; hÞ þ A�signð pÞHIpDðA; hÞ: r

Lemma 5. Let D be a VMG diagram and D 0 a disjoint union of D and a

trivial circle. Then,

HD 0 ðA; hÞ ¼ ð�A2 � A�2ÞHDðA; hÞ:

Proof. Let S be any state of D. Then, there exists a unique state S 0 of

D 0 such that S 0 is a disjoint union of S and a trivial circle U . Since there is
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no crossing on U , we have \S 0 ¼ \S and iðS 0Þ ¼ iðSÞ. Since aS 0 ¼aS þ 1,

we obtain

HD 0 ðA; hÞ ¼
X

S 0 A sðD 0Þ
A\S 0 ð�A2 � A�2ÞaS 0�1

hð1�iðS 0ÞÞ=2

¼
X

S A sðDÞ
A\Sð�A2 � A�2ÞaS

hð1�iðSÞÞ=2

¼ ð�A2 � A�2ÞHDðA; hÞ;

where sðDÞ and sðD 0Þ mean the sets of states of D and D 0, respectively. r

Let D be a VMG diagram and B a local disk in R2. We denote the

restriction of D to B by TBðDÞ. Let TBðDÞ be an arc which has neither self

crossing nor vertex. If we divide the edge of D including TBðDÞ into two or

three edges by putting two vertices v1 and v2 on TBðDÞ and reverse the

orientation of the edge on TBðDÞ, whose endpoints are v1 and v2, we obtain a

new VMG diagram D 0. We say that D 0 is obtained from D by the division of

an edge.

Lemma 6. Let D and D 0 be VMG diagrams. If D 0 is obtained from D by

the division of an edge, then

HDðA; hÞ ¼ HD 0 ðA; hÞ:

Proof. Let S be any state of D. Then, there exists a unique state S 0 of

D 0 satisfying \S 0 ¼ \S, aS 0 ¼aS and iðS 0Þ ¼ iðSÞ. This completes the proof.

r

A local move for a diagram such as a Reidemeister move is applied in a

local disk in R2. We call such a disk a stage for the move.

Lemma 7. Let D and D 0 be VMG diagrams. If D 0 is obtained from D by

applying a Reidemeister move of type I, as shown in Figure 1, which eliminates a

crossing p of D, then

HD 0 ðA; hÞ ¼ ð�A3Þsignð pÞ
HDðA; hÞ:

Proof. By Lemma 4, we have

HDðA; hÞ ¼ Asignð pÞHZpDðA; hÞ þ A�signð pÞHIpDðA; hÞ:

Since ZpD is a disjoint union of D 0 and a trivial circle, by Lemma 5, we

obtain

HZpDðA; hÞ ¼ ð�A2 � A�2ÞHD 0 ðA; hÞ:
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Lemma 6 gives the coincidence of the two polynomials HIpDðA; hÞ and

HD 0 ðA; hÞ: Since Asignð pÞð�A2 � A�2Þ þ A�signð pÞ ¼ ð�A3Þsignð pÞ, we have the

desired formula. r

Lemma 8. Let D and D 0 be VMG diagrams. If D 0 is obtained from D by

applying a Reidemeister move of type II as shown in Figure 1, then

HDðA; hÞ ¼ HD 0 ðA; hÞ:

Proof. We may assume that the number of crossings of D 0 is less than

that of crossings of D. Let B be a stage for a Reidemeister move of type

II. Since D is oriented, we need to consider two cases according to ori-

entations of the arcs of D in B. Suppose that the two arcs of D in B have

parallel orientations. Let p1 and p2 be the crossings of D in B. The sign of

p1 is di¤erent from that of p2. We may assume that p1 is a positive crossing

and p2 is a negative crossing. By Lemma 4, we have

HDðA; hÞ ¼ AHZp1
DðA; hÞ þ A�1HIp1

DðA; hÞ

¼ AfA�1HZp2
Zp1

DðA; hÞ þ AHIp2
Zp1

DðA; hÞg

þ A�1fA�1HZp2
Ip1

DðA; hÞ þ AHIp2
Ip1

DðA; hÞg

¼ HZp2
Zp1

DðA; hÞ þ A2HIp2
Zp1

DðA; hÞ

þ A�2HZp2
Ip1

DðA; hÞ þHIp2
Ip1

DðA; hÞ:

It is clear that HZp2
Zp1

DðA; hÞ ¼ HD 0 ðA; hÞ and HIp2
Zp1

DðA; hÞ ¼ HZp2
Ip1

DðA; hÞ.
Since Ip2

Ip1
D is a disjoint union of Zp2

Ip1
D and a trivial circle with two vertices,

by Lemmas 5 and 6, we obtain

HIp2
Ip1

DðA; hÞ ¼ ð�A2 � A�2ÞHZp2
Ip1

DðA; hÞ:

It follows that HDðA; hÞ ¼ HD 0 ðA; hÞ. The proof of the other case is similar to

the above. r

If a diagram is oriented, there exist some kinds of Reidemeister moves

of type III in a stage B according to signs of the three crossings in B. A

Reidemeister move of type III is called basic if all the signs of the three

crossings in B coincide.

A Reidemeister move of type III in B can be regarded as a passage of one

of the three arcs over the crossing p between the others. The arc which pass

over p is called the top arc and the remaining arcs are called the middle and

the bottom arcs, where the middle arc and the bottom arc correspond to the

overpath and the underpath at p, respectively. When a diagram D is related
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to another one by a Reidemeister move of type III in B, the three arcs of D can

be named according to the above.

Lemma 9. Let D and D 0 be VMG diagrams. If D 0 is obtained from D by

applying a basic Reidemeister move of type III, then

HDðA; hÞ ¼ HD 0 ðA; hÞ:

Proof. Let B be a stage for a Reidemeister move of type III. Let p1, p2

and p3 be crossings between the top and the middle arcs, the top and the

bottom arcs and the middle and the bottom arcs of D in B, respectively. We

denote the three crossings of D 0 in B by p 0
1, p 0

2 and p 0
3 similarly. Suppose that

all the signs of the three crossings p1, p2 and p3 are þ1. Then, all the signs of

p 0
1, p 0

2 and p 0
3 are also þ1. By Lemma 4, we have

HDðA; hÞ ¼ AHZp3
DðA; hÞ þ A�1HIp3

DðA; hÞ

and

HD 0 ðA; hÞ ¼ AHZp 0
3
D 0 ðA; hÞ þ A�1HIp 0

3
D 0 ðA; hÞ:

Since the diagrams Zp3
D and Zp 0

3
D 0 are the same, The polynomial HZp3

DðA; hÞ
coincides with the polynomial HZp 0

3
D 0 ðA; hÞ. By Lemmas 4, 5 and 6, we obtain

HIp3
DðA; hÞ ¼ A2HZp2

Zp1
Ip3

DðA; hÞ þHZp2
Ip1

Ip3
DðA; hÞ

þHIp2
Zp1

Ip3
DðA; hÞ þ A�2HIp2

Ip1
Ip3

DðA; hÞ

¼ A2HZp2
Zp1

Ip3
DðA; hÞ þ ð�A2 � A�2ÞHZp2

Zp1
Ip3

DðA; hÞ

þHIp2
Zp1

Ip3
DðA; hÞ þ A�2HIp2

Ip1
Ip3

DðA; hÞ

¼ �A�2HZp2
Zp1

Ip3
DðA; hÞ þHIp2

Zp1
Ip3

DðA; hÞ

þ A�2HIp2
Ip1

Ip3
DðA; hÞ:

Since Ip2
Ip1

Ip3
D is obtained from Zp2

Zp1
Ip3

D by applying the division of an edge

twice, by Lemma 6, we have

HZp2
Zp1

Ip3
DðA; hÞ ¼ HIp2

Ip1
Ip3

DðA; hÞ:

It follows that HIp3
DðA; hÞ ¼ HIp2

Zp1
Ip3

DðA; hÞ. It is shown that HIp 0
3
D 0 ðA; hÞ ¼

HIp 0
2
Zp 0

1
Ip 0

3
D 0 ðA; hÞ similarly. Since two diagrams Ip2

Zp1
Ip3

D and Ip 0
2
Zp 0

1
Ip 0

3
D 0

are the same, the two facts above give the coincidence of two polynomials

HIp3
DðA; hÞ and HIp 0

3
D 0 ðA; hÞ. It follows that HDðA; hÞ ¼ HD 0 ðA; hÞ. The other

case is easily verified by a similar argument. r
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Any Reidemeister move of type III can be realized by a sequence of one

basic Reidemeister move of type III and some Reidemeister moves of type II.

Using this, by Lemmas 8 and 9, we have the following.

Lemma 10. For a VMG diagram D, HDðA; hÞ is invariant under the

Reidemeister move of type III.

The following two lemmas are about virtual Reidemeister moves.

Lemma 11. Let D and D 0 be VMG diagrams. If D 0 is obtained from D by

applying any virtual Reidemeister move of type I, of type II or of type III as

shown in Figure 1, then

HDðA; hÞ ¼ HD 0 ðA; hÞ:

Proof. We may assume that the number of virtual crossings of D is

greater than or equal to that of virtual crossings of D 0 in either case. Let B be

a stage for a virtual Reidemeister move. Since D and D 0 have no real crossing

in B and the restrictions of D and D 0 to R2nB are identical, for any state S of

D, there exists a unique state S 0 of D 0 such that the restrictions of S and S 0 to

R2nB are identical. Then, it is easy to see that aS ¼aS 0 and \S ¼ \S 0. We

also see that iðSÞ ¼ iðS 0Þ by the following. As for the move of type I, the

virtual crossing of S in B is always regular. So, the parity of the crossing is

equal to 1. As for the move of type II, the product of parities of the two

virtual crossings of S in B is equal to 1 for any weight map for S. As for the

move of type III, the product of parities of the three crossings of S in B is

equal to that of S 0 in B regardless of the weight map. Hence, we have

HDðA; hÞ ¼ HD 0 ðA; hÞ. r

Lemma 12. Let D and D 0 be VMG diagrams. If D 0 is obtained from D by

applying a virtual Reidemeister move of type IV as shown in Figure 1, then

HDðA; hÞ ¼ HD 0 ðA; hÞ:

Proof. Let B be a stage for a virtual Reidemeister move of type IV. D

(resp. D 0) has exactly three crossings in B, one of which is a real crossing p1

(resp. p 0
1) and the others are virtual crossings. We have two cases according to

the sign of p1. Suppose that the sign of p1 is equal to �1. Then, the sign of

p 0
1 is equal to �1. By Lemma 4, we have

HDðA; hÞ ¼ A�1HZp1
DðA; hÞ þ AHIp1

DðA; hÞ

and

HD 0 ðA; hÞ ¼ A�1HZp 0
1
D 0 ðA; hÞ þ AHIp 0

1
D 0 ðA; hÞ:
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Since the diagrams Zp1
D and Zp 0

1
D 0 are the same, their polynomials coincide.

It is clear that Ip1
D and Ip 0

1
D 0 have no real crossing in B and the restrictions of

Ip1
D and Ip 0

1
D 0 to R2nB are identical. Hence, for any state S of Ip1

D, there

exists a unique state S 0 of Ip 0
1
D 0 such that the restrictions of S and S 0 to R2nB

are identical. For any weight map of S, the product of parities of the two

virtual crossings of S in B is �1 because adjacent edges have di¤erent weights.

The product of parities of the two crossings of S 0 in B is also �1 by the same

reason. Since S and S 0 are identical on the outside of B, we have iðSÞ ¼ iðS 0Þ.
It follows that HIp1

DðA; hÞ ¼ HIp 0
1
D 0 ðA; hÞ, completing the proof of this case.

The other case is proved in the same manner. r

Proof of Theorem 2. By Lemmas 8, 10, 11 and 12, the first assertion of

Theorem 2 is easily verified. The writhe of a diagram does not change by

generalized Reidemeister moves except Reidemeister move of type I. By a

Reidemeister move of type I which eliminate crossing p from a diagram, the

writhe changes by signðpÞ. Lemma 7 completes the proof of the second

assertion of Theorem 2. r

4. Proof of Theorem 3

For a VMG diagram D, we define the chord diagram as follows.

Forgetting vertices and the orientations of edges, we regard D as an ‘‘un-

oriented’’ virtual link diagram, say D. Let h :
‘
m

S1 ! R2 be an immersion of

the union
‘
m

S1 of m circles which covers D, where m is the number of com-

ponents of D. For each real crossing point p of D, attach a chord to
‘
m

S1

spanning the pair of points of h�1ðpÞ. The union of
‘
m

S1 and chords cor-

responding to the real crossings is called the chord diagram of D. We say that

D is connected if the chord diagram of D is connected.

Let D be a VMG diagram and S a state of D. By HDjS, we mean

A\Sð�A�2 � A2ÞaS�1
hð1�iðSÞÞ=2 and by RDjS we mean ð�A3Þ�oðDÞ

HDjS. We

denote by MxAðRDjSÞ the maximal degree on the variable A of RDjS, namely,

MxAðRDjSÞ ¼ �3oðDÞ þ \S þ 2ðaS � 1Þ. Note that any power of A in RDjS
is congruent to MxAðRDjSÞ modulo 4.

We prove Theorem 3 by using Lemmas 13, 14 and 15.

Lemma 13. Let D be a connected m-component virtual link diagram and

S0 the state of D obtained from D by doing 0-splice at each real crossing. Then

RDjS0
A Z½A4;A�4� � A2ðm�1Þ.
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Proof. Note that S0 is a VMG diagram without vertices. Considering

the weight map of S0 sending all edges to 1, we see that iðS0Þ ¼ 1 and

RDjS0
A Z½A2;A�2�. Since D is connected, there is a set of m� 1 real crossings,

say fp1; . . . ; pm�1g, of D such that the VMG diagram obtained from D by

doing 0-splices at these crossings is a 1-component VMG diagram, say D1.

If there is a pair of chords in the chord diagram of D1 such that their

attaching points appear alternately on the circle, let pm and pmþ1 be the

corresponding real crossings of D1 (and of D), do 0-splices at them. The result

is a 1-component VMG diagram, say D2. See Figure 8.

If there is a pair of chords in the chord diagram of D2 such that their

attaching points appear alternately on the circle, let pmþ2 and pmþ3 be the

corresponding real crossings of D2 (and of D), and do 0-splices at them. The

result is a 1-component VMG diagram, say D3.

Repeat this procedure until we have a 1-component VMG diagram, say

D 0, whose chord diagram is as in Figure 9 where all chords are parallel. Let n

be the number of real crossings of D 0. Then the number of real crossings of D

is congruent to m� 1 þ n modulo 2. Since the writhe oðDÞ is congruent to the

number of real crossings of D modulo 2, we have

oðDÞ1 mþ n� 1 mod 2:

Fig. 8

Fig. 9
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Note that we obtain S0 from D 0 by doing 0-splices at the n real crossings

of D 0. Thus, we have

aS0 ¼ nþ 1:

Since S0 is the state obtained from D by doing 0-splices at all real crossings of

D, \S0 ¼
P
p

signðpÞ ¼ oðDÞ.

Therefore, we have

MxAðRDjS0
Þ ¼ �3oðDÞ þ \S0 þ 2ðaS0 � 1Þ

¼ �3oðDÞ þ oðDÞ þ 2n

¼ �2ðoðDÞ � nÞ

1 2ðm� 1Þ mod 4:

Since all power of A in RDjS0
are congruent to MxAðRDjS0

Þ, we have the

conclusion. r

Let D be a virtual link diagram and S a state of D. A real crossing p of

D is said to be normal with respect to S if aS0aS 0, where S 0 is the state

obtained from S by changing the splice at p.

Lemma 14. Let D be a virtual link diagram and p a real crossing of

D. Let S be a state of D and let S 0 be the state obtained from S by changing

the splice at p.

(1) If p is normal with respect to S, then iðSÞ ¼ iðS 0Þ.
(2) If p is not normal with respect to S, then iðSÞ ¼ �iðS 0Þ.
(3) If p is normal with respect to S, then MxAðRDjSÞ1MxAðRDjS 0 Þ mod 4.

(4) If p is not normal with respect to S, then MxAðRDjSÞ1
MxAðRDjS 0 Þ þ 2 mod 4.

Proof. We suppose that S is a state of D done 0-splice at p and that S 0

is the state obtained from S by switching 0-splice to y-splice at p. Let B be

the stage where we switch the splice. There are the following three cases.

( i ) aS ¼aS 0 � 1,

( ii ) aS ¼aS 0 þ 1,

(iii) aS ¼aS 0.

The crossing p is normal with respect to S in the cases (i) and (ii), and it

is not in the case (iii). Let e1 and e2 be the two edges of S VB. The edge

ej splits to two edges e 0j and e 00j of S 0 VB for j ¼ 1; 2 as in Figure 10. Put

G ¼ SnB ¼ S 0nB, which is a union of two arc components, say C1 and C2, and

some loop components. A weight map s of S (or s 0 of S 0) induces a weight

map of G, which we denote by the same symbol s (or s 0, respectively).
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Consider the case (i). Observing the orientations of e1 and e2, we see that

there are odd numbers of vertices on C1 and C2, respectively. Fix a weight

map s of S such that sðe1Þ ¼ 1 and sðe2Þ ¼ �1. There is a weight map s 0 of

S 0 such that s 0ðe 01Þ ¼ s 0ðe 001 Þ ¼ 1, s 0ðe 02Þ ¼ s 0ðe 002 Þ ¼ �1 and sðeÞ ¼ s 0ðeÞ for

e A G. For a virtual crossing v of G, the parity isðvÞ with respect to S is equal

to the parity is 0 ðvÞ with respect to S 0. Thus iðSÞ ¼ iðS 0Þ.
Consider the case (ii). Let s be a weight map of S such that sðe1Þ ¼ 1

and sðe2Þ ¼ �1. There is a weight map s 0 of S 0 such that s 0ðe 01Þ ¼ s 0ðe 001 Þ ¼ 1,

s 0ðe 02Þ ¼ s 0ðe 002 Þ ¼ �1 and sðeÞ ¼ s 0ðeÞ for e A G. Thus iðSÞ ¼ iðS 0Þ.
Consider the case (iii). There are even numbers of vertices on C1 and C2,

respectively. Let s be a weight map of S with sðe1Þ ¼ sðe2Þ ¼ 1. There is

a weight map s 0 of S 0 such that s 0ðe 01Þ ¼ s 0ðe 002 Þ ¼ 1, s 0ðe 001 Þ ¼ s 0ðe 02Þ ¼ �1,

sðeÞ ¼ s 0ðeÞ for e A GnC1 and sðeÞ ¼ �s 0ðeÞ for e A C1. For a virtual crossing

v of G, the parity isðvÞ with respect to S is not equal to the parity is 0 ðvÞ with

respect to S 0 if and only if v is a virtual crossing where C1 and GnC1

intersect. Since the number of intersections of C1 and GnC1 is odd, we have

iðSÞ ¼ �iðS 0Þ. Therefore, we obtain the first two assertions of the Lemma.

Fig. 10
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Note that MxAðRDjSÞ ¼ �oðDÞ þ \S þ 2ðaS � 1Þ and MxAðRDjS 0 Þ ¼ �oðDÞþ
\S 0 þ 2ðaS 0 � 1Þ. Since \S � \S 0 ¼ 2 signðpÞ,

MxAðRDjSÞ � MxAðRDjS 0 Þ ¼ 2ðsignðpÞ þaS �aS 0Þ:

If p is normal, then aS �aS 0 ¼G1 and MxAðRDjSÞ � MxAðRDjS 0 Þ1 0

mod 4. If p is not normal, then aS ¼aS 0 and MxAðRDjSÞ � MxAðRDjS 0 Þ1 2

mod 4. r

Lemma 15. Let D be a virtual link diagram which is a union of two virtual

link diagrams D1 and D2 such that D1 VD2 is empty or consists of virtual

crossings. Let RDðA; hÞ ¼ FþCh and RDj
ðA; hÞ ¼ Fj þCjh for j ¼ 1; 2,

where F;C ;Fj ;Cj A Z½A;A�1�. Then F ¼ ð�A2 � A�2ÞðF1F2 þC1C2Þ and

C ¼ ð�A2 � A�2ÞðF1C2 þC1F2Þ.

Proof. If D1 VD2 consists of virtual crossings, then we can change D so

that D1 VD2 ¼ q by virtual Reidemeister moves. Since RDðA; hÞ is a virtual

link invariant (Theorem 2), we may assume that D1 VD2 ¼ q. By definition

we have

F ¼ ð�A3Þ�oðDÞ X
S A sðDÞ; iðSÞ¼1

A\Sð�A2 � A�2ÞaS�1 and

C ¼ ð�A3Þ�oðDÞ X
S A sðDÞ; iðSÞ¼�1

A\Sð�A2 � A�2ÞaS�1:

For j ¼ 1; 2, we have

Fj ¼ ð�A3Þ�oðDjÞ
X

Sj A sðDjÞ; iðSjÞ¼1

A\Sj ð�A2 � A�2ÞaSj�1 and

Cj ¼ ð�A3Þ�oðDjÞ
X

Sj A sðDjÞ; iðSjÞ¼�1

A\Sj ð�A2 � A�2ÞaSj�1:

Let S be a state of D, which is the union of a state S1 of D1 and a state S2

of D2. Then we have \S ¼ \S1 þ \S2 and aS ¼aS1 þaS2. Since D1 VD2 ¼
q, we have iðSÞ ¼ iðS1ÞiðS2Þ by the definition of parity. Hence, iðSÞ ¼ 1 if

iðS1Þ ¼ iðS2Þ, and iðSÞ ¼ �1 if iðS1Þ ¼ �iðS2Þ. Note that oðDÞ ¼ oðD1Þþ
oðD2Þ. Therefore we have

F ¼ ð�A3Þ�oðDÞ X
S1 A sðD1Þ;S2 A sðD2Þ;

iðS1Þ¼iðS2Þ¼1

A\S1þ\S2ð�A2 � A�2ÞaS1þaS2�1

þ ð�A3Þ�oðDÞ X
S1 A sðD1Þ;S2 A sðD2Þ;

iðS1Þ¼iðS2Þ¼�1

A\S1þ\S2ð�A2 � A�2ÞaS1þaS2�1:
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Since

F1F2 ¼ ð�A3Þ�oðD1Þ
X

S1 A sðD1Þ; iðS1Þ¼1

A\S1ð�A2 � A�2ÞaS1�1

8<
:

9=
;

� ð�A3Þ�oðD2Þ
X

S2 A sðD2Þ; iðS2Þ¼1

A\S2ð�A2 � A�2ÞaS2�1

8<
:

9=
;

¼ ð�A3Þ�ðoðD1ÞþoðD2ÞÞ
X

S1 A sðD1Þ;S2 A sðD2Þ;
iðS1Þ¼iðS2Þ¼1

A\S1þ\S2ð�A2 � A�2ÞaS1þaS2�2 and

C1C2 ¼ ð�A3Þ�oðD1Þ
X

S1 A sðD1Þ; iðS1Þ¼�1

A\S1ð�A2 � A�2ÞaS1�1

8<
:

9=
;

� ð�A3Þ�oðD2Þ
X

S2 A sðD2Þ; iðS2Þ¼�1

A\S2ð�A2 � A�2ÞaS2�1

8<
:

9=
;

¼ ð�A3Þ�ðoðD1ÞþoðD2ÞÞ
X

S1 A sðD1Þ;S2 A sðD2Þ;
iðS1Þ¼iðS2Þ¼�1

A\S1þ\S2ð�A2 � A�2ÞaS1þaS2�2;

we conclude F ¼ ð�A2 � A�2ÞðF1F2 þC1C2Þ. Similarly we have

C ¼ ð�A3Þ�oðDÞ X
S1 A sðD1Þ;S2 A sðD2Þ;
iðS1Þ¼1; iðS2Þ¼�1

A\S1þ\S2ð�A2 � A�2ÞaS1þaS2�1

þ ð�A3Þ�oðDÞ X
S1 A sðD1Þ;S2 A sðD2Þ;
iðS1Þ¼�1; iðS2Þ¼1

A\S1þ\S2ð�A2 � A�2ÞaS1þaS2�1:

Since

F1C2 ¼ ð�A3Þ�oðD1Þ
X

S1 A sðD1Þ; iðS1Þ¼1

A\S1ð�A2 � A�2ÞaS1�1

8<
:

9=
;

� ð�A3Þ�oðD2Þ
X

S2 A sðD2Þ; iðS2Þ¼�1

A\S2ð�A2 � A�2ÞaS2�1

8<
:

9=
;

¼ ð�A3Þ�ðoðD1ÞþoðD2ÞÞ
X

S1 A sðD1Þ;S2 A sðD2Þ;
iðS1Þ¼1; iðS2Þ¼�1

A\S1þ\S2ð�A2 � A�2ÞaS1þaS2�2 and
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C1F2 ¼ ð�A3Þ�oðD1Þ
X

S1 A sðD1Þ; iðS1Þ¼�1

A\S1ð�A2 � A�2ÞaS1�1

8<
:

9=
;

� ð�A3Þ�oðD2Þ
X

S2 A sðD2Þ; iðS2Þ¼1

A\S2ð�A2 � A�2ÞaS2�1

8<
:

9=
;

¼ ð�A3Þ�ðoðD1ÞþoðD2ÞÞ
X

S1 A sðD1Þ;S2 A sðD2Þ;
iðS1Þ¼�1; iðS2Þ¼1

A\S1þ\S2ð�A2 � A�2ÞaS1þaS2�2;

we conclude F ¼ ð�A2 � A�2ÞðF1C2 þC1F2Þ. r

Proof of Theorem 3. Let D ¼ D 0
1 UD 0

2 U � � �UD 0
m, where D 0

j ð j ¼
1; . . . ;mÞ is a connected virtual link diagram. We prove the theorem by

induction on m.

If m ¼ 1, then D is connected. By Lemma 13, we have RDjS0
A

Z½A4;A�4� � A2ðm�1Þ. Let S be a state of D obtained from S0 by changing

0-splice to y-splice at a real crossing p of D. By Lemma 14, we see that

RDjS A Z½A4;A�4� � A2ðm�1Þ if p is normal with respect to S0 and RDjS A
Z½A4;A�4� � A2m � h if p is not normal. Since any state of D is obtained from

S0 by changing splices at some real crossings in D, applying Lemma 14

inductively, we have the conclusion.

If m > 1, then put D1 ¼ D 0
1 UD 0

2 U � � � UD 0
m�1 and D2 ¼ D 0

m. Then, as the

induction hypothesis, we assume that

FDj
ðAÞ A Z½A4;A�4� � A2ðmj�1Þ and

CDj
ðAÞ A Z½A4;A�4� � A2mj ;

where mj is the number of components of Dj for j ¼ 1; 2. Since m ¼ m1 þ m2,

by Lemma 15, we have

FDðAÞ A Z½A4;A�4� � A2ðm�1Þ and

CDðAÞ A Z½A4;A�4� � A2m: r

5. An observation on checkerboard colorable diagrams

In [3] the notion of checkerboard coloring for a virtual link diagram was

defined by using the corresponding abstract link diagram [1].

Theorem 16. Let D be a m-component virtual knot diagram. If D admits

a checkerboard coloring, then RDðA; hÞ A Z½A4;A�4� � A2ðm�1Þ.
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As a consequence of Theorem 16, we see that if a m-component virtual link

daigram D admits a checkerboard coloring, then fDðAÞ A Z½A4;A�4� � A2ðm�1Þ.

This result was first proved in [3]. In [2] checkerboard colorable virtual link

diagrams are investigated in terms of link diagrams on closed oriented sur-

faces. We need the following fact from [2] to prove Theorem 16.

Lemma 17 ([2]). Let D be a virtual link diagram. Any real crossing is

normal with respect to all states of D, if and only if D admits a checkerboard

coloring.

Proof of Theorem 16. Let S0 be the state of D obtained from D by

doing 0-splice at each real crossing of D. By Lemma 13, RDjS0
A Z½A4;A�4� �

A2ðm�1Þ. Any state of D is obtained from S0 by switching splices at some

crossings. Since D admits a checkerboard coloring, any real crossing is normal

with respect to all states of D by Lemma 17. Hence we have the conclusion

by applying Lemma 14 inductively. r
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