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Abstract. In this paper, we prove that the tangent bundle tðLnð3ÞÞ of the ð2nþ 1Þ-
dimensional mod 3 standard lens space Lnð3Þ is stably extendible to Lmð3Þ for every

mb n if and only if 0a na 3. Combining this fact with the results obtained in [6],

we see that tðL2ð3ÞÞ is stably extendible to L3ð3Þ, but is not extendible to L3ð3Þ.
Furthermore, we prove that the t-fold power of tðLnð3ÞÞ and its complexification are

extendible to Lmð3Þ for every mb n if tb 2, and have a necessary and su‰cient

condition that the square n2 of the normal bundle n associated to an immersion of Lnð3Þ
in the Euclidean ð4nþ 3Þ-space is extendible to Lmð3Þ for every mb n.

1. Definitions and results

The extension problem is one of the fundamental problems in topology.

We study the problem for F -vector bundles over standard lens spaces mod 3,

where F is either the real number field R or the complex number field C.

First, we recall the definitions of extendibility and stable extendibility

according to [12] and [2]. Let X be a space and A be its subspace. A

k-dimensional F -vector bundle z over A is said to be extendible (respectively

stably extendible) to X , if there is a k-dimensional F -vector bundle over X

whose restriction to A is equivalent (respectively stably equivalent) to z as

F -vector bundles, that is, if z is equivalent (respectively stably equivalent) to

the induced bundle i�a of a k-dimensional F -vector bundle a over X under the

inclusion map i : A ! X . For simplicity, we use the same letter for an

F -vector bundle and its equivalence class, and use a non-negative integer k for

the k-dimensional trivial F -vector bundle.

For a non-negative integer n and an integer q > 1, let LnðqÞ denote the

ð2nþ 1Þ-dimensional standard lens space mod q and Ln
0ðqÞ its 2n-skeleton (cf.

[3], [4] and [11]). For a positive integer n, let hn stand for the canonical C-line
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bundle over LnðqÞ. For simplicity, we use the same symbol hn for the re-

striction of hn to Ln
0ðqÞ. For a di¤erentiable manifold M, let tðMÞ denote the

tangent bundle of M.

On extendibility and stable extendibility of tangent bundles over standard

lens spaces mod 3, we have

Theorem 1. As for the tangent bundle tðLnð3ÞÞ of Lnð3Þ. The following

three conditions are equivalent:

(1) tðLnð3ÞÞ is stably extendible to Lmð3Þ for every mb n.

(2) tðLnð3ÞÞ is stably extendible to L2nþ2ð3Þ.
(3) 0a na 3:

Combining Theorem 1 with Theorem 5.1 of [6], we obtain

Corollary 2. tðL2ð3ÞÞ is stably extendible to L3ð3Þ, but is not extendible

to L3ð3Þ.

Another example of an R-vector bundle that is stably extendible but is

not extendible is given by the tangent bundle tðSnÞ of the n-sphere Sn in the

ðnþ 1Þ-sphere Snþ1 for n0 1; 3; 7 (cf. [10, Proof of Theorem 2.2]).

Let c : KRðX Þ ! KCðX Þ be the complexification. Then we have

Theorem 3. The complexification ctðLnð3ÞÞ of tðLnð3ÞÞ is stably

extendible to Lmð3Þ for every m with nama 2nþ 1, but ctðLnð3ÞÞ is not stably
extendible to L2nþ2ð3Þ if nb 6.

For a positive integer t, let tðLnðqÞÞ t ¼ tðLnðqÞÞn � � �n tðLnðqÞÞ (t-fold)

be the t-fold power of tðLnðqÞÞ, where n denotes the tensor product. Then we

prove

Theorem 4. tðLnð3ÞÞ t is extendible to Lmð3Þ for every mb n if tb 2.

Theorem 5. The complexification ctðLnð3ÞÞ t of tðLnð3ÞÞ t is extendible to

Lmð3Þ for every mb n if tb 2.

As for the normal bundle n associated to an immersion of Lnð3Þ in the

Euclidean ð4nþ 3Þ-space R4nþ3, it was proved in [9, Theorem B] that the

following three conditions are equivalent:

(1) n is extendible to Lmð3Þ for every mb n.

(2) n is stably extendible to Lmð3Þ for every mb n.

(3) 0a na 5:

For the square n2 ¼ nn n of n, we have

Theorem 6. Let n be the normal bundle associated to an immersion of

Lnð3Þ in R4nþ3 and n2 its square. Then the following three conditions are

equivalent:
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(1) n2 is extendible to Lmð3Þ for every mb n.

(2) n2 is stably extendible to Lmð3Þ for every mb n.

(3) 0a na 13 or n ¼ 15.

Theorem 2 of [5] is the result which corresponds to Theorem 6 for

extendibility of the square of the normal bundle associated to an immersion of

the real projective n-space RPn in R2nþ1.

This paper is arranged as follows. In Section 2 we recall results that are

necessary for our proofs. In Section 3 we prove Theorem 1, Corollary 2 and

Theorem 3. In Section 4 we prepare lemmas and prove Theorems 4 and

5. In Section 5 we give Whitney sum decompositions of the squares n2 of the

normal bundles n associated to immersions of Lnð3Þ in R4nþ3 for 0a na 13

and n ¼ 15 and prove Theorem 6.

2. Preliminaries

For a positive integer n, let hn denote the canonical C-line bundle over

Lnð3Þ and sn ¼ hn � 1 its stable class. Let r : KCðXÞ ! KRðXÞ be the forgetful

map and Z=q denote the cyclic group of order q, where q is an integer > 1.

For a real number x, let bxc denote the largest integer s with sa x.

The ring structure of the reduced Grothendieck ring ~KKRðLnð3ÞÞ is de-

termined in [3] as follows (cf. [4] and [11]).

Theorem 2.1 (cf. [3, Theorem 2] and [4, Proposition 2.11]).

~KKRðLnð3ÞÞG
~KKRðLn

0ð3ÞÞ þ Z=2 for n1 0 mod 4;

~KKRðLn
0ð3ÞÞ otherwise;

(

where þ denotes the direct sum. The group ~KKRðLn
0ð3ÞÞ is isomorphic to the

cyclic group Z=3bn=2c of order 3bn=2c and is generated by rsn. Moreover, the ring

structure is given by

ðrsnÞ2 ¼ �3rsn; namely ðrhnÞ
2 ¼ rhn þ 2; and ðrsnÞbn=2cþ1 ¼ 0:

The ring structure of the reduced Grothendieck ring ~KKCðLnð3ÞÞ is de-

termined in [3] as follows (cf. [4] and [11]).

Theorem 2.2 (cf. [3, Theorem 1] and [4, Lemma 2.4]).

~KKCðLnð3ÞÞG ~KKCðLn
0ð3ÞÞG

Z=3bn=2c þ Z=3bn=2c for even n;

Z=3bn=2cþ1 þ Z=3bn=2c for odd n:

�

The first summand is generated by sn and the second summand is generated

by s2
n . Moreover, the ring structure is given by

s3
n ¼ �3s2

n � 3sn; namely h3n ¼ 1; and snþ1
n ¼ 0:
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We recall two theorems on F -vector bundles over LnðpÞ which are useful

for our proofs.

Theorem 2.3 (cf. [6, Theorem 1.1] and [8, Theorem 3.1]). Let p be an

odd prime and z be a k-dimensional R-vector bundle over LnðpÞ. Assume that

there is a positive integer l such that z is stably equivalent to a sum of bk=2c þ l

non-trivial 2-dimensional R-vector bundles and bk=2c þ l < pbn=ðp�1Þc. Then n <

2bk=2c þ 2l and z is not stably extendible to LmðpÞ for every m with mb

2bk=2c þ 2l.

Theorem 2.4 (cf. [7, Theorem 1.1] and [9, Theorem 4.5]). Let p be a

prime and z be a k-dimensional C-vector bundle over LnðpÞ. Assume that there

is a positive integer l such that z is stably equivalent to a sum of k þ l non-

trivial C-line bundles and k þ l < pbn=ðp�1Þc. Then n < k þ l and z is not stably

extendible to LmðpÞ for every m with mb k þ l.

Let d ¼ 1 or 2 according as F ¼ R or C. For a real number x, let dxe
denote the smallest integer s with xa s. The following results are known.

Theorem 2.5 (cf. [1, Theorem 1.2, p. 99]). Let m ¼ dðnþ 1Þ=d � 1e.
Then each k-dimensional F-vector bundle over an n-dimensional CW-complex X

is equivalent to al ðk �mÞ for some m dimensional F-vector bundle a over X if

ma k.

Theorem 2.6 (cf. [1, Theorem 1.5, p. 100]). Let m ¼ dðnþ 2Þ=d � 1e.
Then two k-dimensional F-vector bundles over an n-dimensional CW-complex

which are stably equivalent are equivalent if ma k.

3. Proofs of Theorem 1, Corollary 2 and Theorem 3

Let q be any integer > 1. As for extendibility of tðLnðqÞÞ, the following

result is obtained.

Theorem 3.1 ([6, Theorems 5.1 and 5.3]). For any integer q > 1, the

following three conditions are equivalent:

(1) tðLnðqÞÞ is extendible to LmðqÞ for every mb n.

(2) tðLnðqÞÞ is extendible to Lnþ1
0 ðqÞ.

(3) n ¼ 0; 1 or 3.

As for stable extendibility of tðLnðqÞÞ, the following result is obtained.

Theorem 3.2 ([8, Theorem 4.3]). Let p be an odd prime. Then tðLnðpÞÞ
is not stably extendible to L2nþ2ðpÞ, if nb 2p� 2.

Proof of Theorem 1. Obviously, (1) implies (2). It follows from

Theorem 3.2 that (2) implies (3), since n < 2p� 2 for p ¼ 3 if and only if
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0a na 3. Hence it remains to prove that (3) implies (1). If n ¼ 0; 1 or 3, (1)

holds by Theorem 3.1. Let n ¼ 2. Then rh2 � 2 is of order 3 by Theorem

2.1, and so 3rh2 ¼ 6 in KRðL2ð3ÞÞ. As is well-known,

tðL2ð3ÞÞl 1 ¼ 3rh2

So we have tðL2ð3ÞÞ ¼ 3rh2 � 1 ¼ 5 in KRðL2ð3ÞÞ. Hence tðL2ð3ÞÞ is stably

trivial, and so tðL2ð3ÞÞ is stably extendible to Lmð3Þ for every mb 2, as

desired. r

Proof of Corollary 2. The former part follows from Theorem 1. By

Theorem 3.1, tðL2ð3ÞÞ is not extendible to L3
0ð3Þ, and hence is not extendible to

L3ð3Þ. So we obtain the latter part. r

Proof of Theorem 3. As is well-known,

tðLnð3ÞÞl 1 ¼ ðnþ 1Þrhn:

Applying the complexification c : KRðLnð3ÞÞ ! KCðLnð3ÞÞ to the both sides of

the equality, we have

ctðLnð3ÞÞl 1 ¼ ðnþ 1Þcrhn ¼ ðnþ 1Þðhn þ h2nÞ;

since crhn ¼ hn þ h�1
n (cf. [1, Proposition 11.3, p. 191]) and h3n ¼ 1 (cf. Theorem

2.2).

Suppose ma 2nþ 1. Then dimfðnþ 1Þðhm þ h2mÞg � dð2mþ 1þ 1Þ=2� 1e
¼ 2nþ 2�mb 1. Hence, by Theorem 2.5, there is a ð2nþ 1Þ-dimensional

C-vector bundle a over Lmð3Þ such that

ðnþ 1Þðhm þ h2mÞ ¼ al 1:

Let nam and i : Lnð3Þ ! Lmð3Þ be the standard inclusion. Then,

applying i� to the both sides of the equality above, we have

ðnþ 1Þðhn þ h2nÞ ¼ i�al 1;

since i�hm ¼ hn. Hence ctðLnð3ÞÞ is stably equivalent to i�a. Now, both

ctðLnð3ÞÞ and i�a are ð2nþ 1Þ-dimensional. So ctðLnð3ÞÞ is stably extendible

to Lmð3Þ. Thus the former part of the theorem is proved.

Put p ¼ 3, z ¼ ctðLnð3ÞÞ, k ¼ 2nþ 1 and l ¼ 1 in Theorem 2.4. Then the

latter part of the theorem follows from Theorem 2.4, since 2nþ 2 < 3bn=2c if

and only if nb 6. r

4. Proofs of Theorems 4 and 5

In Sections 4 and 5, h denotes the canonical C-line bundle hn over Lnð3Þ
and N the set of all positive integers. We prepare some lemmas for our proofs.
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Lemma 4.1. Let t be any positive integer. Then there is a function

g : N ! N such that

tðLnð3ÞÞ t ¼ gðtÞrhþ ð2nþ 1Þ t � 2gðtÞ in KRðLnð3ÞÞ;

namely tðLnð3ÞÞ t � ð2nþ 1Þ t ¼ gðtÞðrh� 2Þ in ~KKRðLnð3ÞÞ. Furthermore, the

function gðtÞ is uniquely determined modulo 3bn=2c.

Proof. We prove the first part of the lemma by induction on t. Since

tðLnð3ÞÞ ¼ ðnþ 1Þrh� 1 in KRðLnð3ÞÞ, we may define gð1Þ ¼ nþ 1. Assume

that there exists gðtÞ for every tb 1 such that tðLnð3ÞÞ t ¼ gðtÞrhþ ð2nþ 1Þ t �
2gðtÞ and gð1Þ ¼ nþ 1. Then, by Theorem 2.1,

tðLnð3ÞÞ tþ1 ¼ fgðtÞrhþ ð2nþ 1Þ t � 2gðtÞgfðnþ 1Þrh� 1g

¼ gðtÞðnþ 1ÞðrhÞ2 þ fð2nþ 1Þ tðnþ 1Þ � 2gðtÞðnþ 1Þ � gðtÞgrh

� ð2nþ 1Þ t þ 2gðtÞ

¼ fð2nþ 1Þ tðnþ 1Þ � gðtÞðnþ 2Þgrh� ð2nþ 1Þ t þ 2gðtÞðnþ 2Þ:
Now set

gðtþ 1Þ ¼ ð2nþ 1Þ tðnþ 1Þ � gðtÞðnþ 2Þ.

Then we have �ð2nþ 1Þ t þ 2gðtÞðnþ 2Þ ¼ ð2nþ 1Þ tþ1 � 2gðtþ 1Þ, as desired.

Suppose there are two functions f ; g : N ! N such that

f ðtÞrhþ ð2nþ 1Þ t � 2f ðtÞ ¼ gðtÞrhþ ð2nþ 1Þ t � 2gðtÞ:

Then ð f ðtÞ � gðtÞÞðrh� 2Þ ¼ 0, and so f ðtÞ � gðtÞ1 0 mod 3bn=2c by Theorem

2.1. So we have the latter part. r

Lemma 4.2. There is a function g : N ! N defined in Lemma 4.1 which

satisfies the inequalities:

ð2nþ 1Þ t�1 < gðtÞ < 2�1ð2nþ 1Þ t for nb 3 and tb 2:

Proof. We prove the lemma by induction on t. Define gð1Þ ¼ nþ 1.

Next, by Theorem 2.1,

tðLnð3ÞÞ2 ¼ fðnþ 1Þrh� 1g2 ¼ ðn2 � 1Þrhþ 2n2 þ 4nþ 3:

Define gð2Þ ¼ n2 � 1. Then clearly 2nþ 1 < gð2Þ < 2�1ð2nþ 1Þ2 for nb 3.

Assume that there exists gðtÞ for tb 2 which satisfies the inequalities:

ð2nþ 1Þ t�1 < gðtÞ < 2�1ð2nþ 1Þ t for nb 3. As in the proof of Lemma 4.1, set

gðtþ 1Þ ¼ ð2nþ 1Þ tðnþ 1Þ � gðtÞðnþ 2Þ. Then, by the inductive assumption,

gðtþ 1Þ > ð2nþ 1Þ tðnþ 1Þ � 2�1ð2nþ 1Þ tðnþ 2Þ

¼ 2�1ð2nþ 1Þ tn > ð2nþ 1Þ t
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and

gðtþ 1Þ < ð2nþ 1Þ tðnþ 1Þ � ð2nþ 1Þ t�1ðnþ 2Þ

¼ ð2nþ 1Þ t�1ð2n2 þ 2n� 1Þ

< ð2nþ 1Þ t�1ð2n2 þ 2nþ 1=2Þ ¼ 2�1ð2nþ 1Þ tþ1:

Thus the inequalities: ð2nþ 1Þ t < gðtþ 1Þ < 2�1ð2nþ 1Þ tþ1 hold. r

Proof of Theorem 4. If n ¼ 0; 1 or 3, tðLnð3ÞÞ is extendible to Lmð3Þ for
every mb n by Theorem 3.1. Hence tðLnð3ÞÞ t is extendible to Lmð3Þ for

every mb n, where tb 1. If n ¼ 2, we see in the proof of Theorem 1 that

tðL2ð3ÞÞ is stably trivial. So tðL2ð3ÞÞ t is stably trivial, where tb 1. If, in

addition, tb 2, tðL2ð3ÞÞ t is trivial by Theorem 2.6, since dðdim L2ð3Þ þ 2Þ � 1e
¼ 6a 5 t ¼ dim tðL2ð3ÞÞ t. Hence tðL2ð3ÞÞ t is extendible to Lmð3Þ for every

mb n, if tb 2. We may therefore devote our attention to the case where

nb 4.

According to Lemmas 4.1 and 4.2, there is a positive integer gðtÞ such

that tðLnð3ÞÞ t ¼ gðtÞrhþ ð2nþ 1Þ t � 2gðtÞ in KRðLnð3ÞÞ and ð2nþ 1Þ t � 2gðtÞ
> 0 for nb 3 and tb 2. Since dðdim Lnð3Þ þ 2Þ � 1e ¼ 2nþ 2a ð2nþ 1Þ t ¼
dim tðLnð3ÞÞ t for nb 1 and tb 2, we have the equality

tðLnð3ÞÞ t ¼ gðtÞrhl fð2nþ 1Þ t � 2gðtÞg

of R-vector bundles by Theorem 2.6. Since rh and the trivial R-vector bundle

over Lnð3Þ are extendible to Lmð3Þ for every mb n, tðLnð3ÞÞ t is extendible to

Lmð3Þ for every mb n, as desired. r

Complexifying the equality in Lemma 4.1, we have

Lemma 4.3. For the function g : N ! N in Lemmas 4.1 and 4.2,

ctðLnð3ÞÞ t ¼ gðtÞðhþ h2Þ þ ð2nþ 1Þ t � 2gðtÞ in KCðLnð3ÞÞ:

Proof. Since crh ¼ hþ h2, the result follows from the equality in Lemma

4.1. r

Proof of Theorem 5. As is well-known, tðL1ð3ÞÞ is trivial. In the proof

of Theorem 1, we see that tðL2ð3ÞÞ is stably trivial. So ctðL1ð3ÞÞ t and

ctðL2ð3ÞÞ t are stably trivial for any tb 1. Furthermore, ctðL1ð3ÞÞ t and

ctðL2ð3ÞÞ t are trivial for any tb 1 by Theorem 2.6, since dðdim L1ð3Þ þ 2Þ=
2� 1e ¼ 2a 3 t ¼ dim ctðL1ð3ÞÞ t and dðdim L2ð3Þ þ 2Þ=2� 1e ¼ 3a 5 t ¼
dim ctðL2ð3ÞÞ t hold for any tb 1. Hence we have the results for n ¼ 1 and

n ¼ 2, since the trivial C-bundle over Lnð3Þ is extendible to Lmð3Þ for every

mb n.
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Suppose nb 3. Then, by Lemma 4.2, ð2nþ 1Þ t � 2gðtÞ > 0 for tb 2.

Since dðdim Lnð3Þ þ 2Þ=2� 1e ¼ nþ 1a ð2nþ 1Þ t ¼ dim ctðLnð3ÞÞ t holds for

any tb 1, it follows from Lemma 4.3 that the equality

ctðLnð3ÞÞ t ¼ gðtÞðhl h2Þl fð2nþ 1Þ t � 2gðtÞg

of C-vector bundles holds by Theorem 2.6. Since h, h2 and the trivial C-

vector bundle over Lnð3Þ are extendible to Lmð3Þ for every mb n, ctðLnð3ÞÞ t is
extendible to Lmð3Þ for every mb n, as desired. r

5. Proof of Theorem 6

First, we study the square of the normal bundle associated to an im-

mersion of Lnð3Þ in R4nþ3.

Theorem 5.1. Let n ¼ nð fnÞ be the normal bundle associated to an im-

mersion fn : L
nð3Þ ! R4nþ3 and n2 ¼ nð fnÞ2 its square. Then we have the

Whitney sum decompositions:

nð f0Þ2 ¼ 4; nð f1Þ2 ¼ 16; nð f2Þ2 ¼ 36;

nð f3Þ2 ¼ 2rh3 l 60; nð f4Þ2 ¼ 5rh4 l 90; nð f5Þ2 ¼ 144;

nð f6Þ2 ¼ 8rh6 l 180; nð f7Þ2 ¼ 11rh7 l 234; nð f8Þ2 ¼ 324;

nð f9Þ2 ¼ 29rh9 l 342; nð f10Þ2 ¼ 125rh10 l 234;

nð f11Þ2 ¼ 207rh11 l 162; nð f12Þ2 ¼ 275rh12 l 126;

nð f13Þ2 ¼ 86rh13 l 612; nð f15Þ2 ¼ 395rh15 l 234:

Proof. If n ¼ 0, the result is clear. Hence we assume that n > 0. Let

t ¼ tðLnð3ÞÞ denote the tangent bundle of Lnð3Þ. Then tl 1 ¼ ðnþ 1Þrh and

tl n ¼ 4nþ 3. Hence n ¼ �ðnþ 1Þrhþ 4nþ 4. By Theorem 2.1, we have

n2 ¼ ðnþ 1Þ2ðrhÞ2 � 2ðnþ 1Þð4nþ 4Þrhþ ð4nþ 4Þ2

¼ ðnþ 1Þ2ðrhþ 2Þ � 8ðnþ 1Þ2rhþ 16ðnþ 1Þ2

¼ fa3bn=2c � 7ðnþ 1Þ2grhþ 18ðnþ 1Þ2 � 2a3bn=2c

in KRðLnð3ÞÞ, where a is any integer. If a3bn=2c � 7ðnþ 1Þ2 b 0 and

18ðnþ 1Þ2 � 2a3bn=2c b 0, then we have the equality

n2 ¼ fa3bn=2c � 7ðnþ 1Þ2grhl f18ðnþ 1Þ2 � 2a3bn=2cg

of R-vector bundles, since dðdim Lnð3Þ þ 2Þ � 1e ¼ 2nþ 2a ð2nþ 2Þ2 ¼ dim n2

by Theorem 2.6.
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Put a ¼ 28 for n ¼ 1, a ¼ 21 for n ¼ 2, a ¼ 38 for n ¼ 3, a ¼ 20 for n ¼ 4,

a ¼ 28 for n ¼ 5, a ¼ 13 for n ¼ 6, a ¼ 17 for n ¼ 7, a ¼ 7 for n ¼ 8, a ¼ 9 for

n ¼ 9, a ¼ 4 for n ¼ 10, a ¼ 5 for n ¼ 11, a ¼ 2 for n ¼ 12, a ¼ 2 for n ¼ 13

and a ¼ 1 for n ¼ 15. Then we can check easily that the two inequalities

a3bn=2c � 7ðnþ 1Þ2 b 0 and 18ðnþ 1Þ2 � 2a3bn=2c b 0 hold, if 1a na 13 or

n ¼ 15. r

Theorem 3.1 of [5] is the result corresponding to Theorem 5.1 for the

square of the normal bundle associated to an immersion of RPn in R2nþ1.

Theorem 5.2. Under the assumption of Theorem 5.1, the following two

equalities hold in KRðL14ð3ÞÞ and KRðL16ð3ÞÞ, respectively.

nð f14Þ2 ¼ 612rh14 � 324; nð f16Þ2 ¼ 4538rh16 � 7920:

Proof. Putting a ¼ 1 for n ¼ 14 and 16 in the proof of Theorem 5.1, we

have the desired equalities. r

Using Theorem 2.3, we prove

Theorem 5.3. Let n be the normal bundle associated to an immersion of

Lnð3Þ in R4nþ3. Then the square n2 of n is not stably extendible to Lmð3Þ for

m ¼ 2f3bn=2c � 7ðnþ 1Þ2g, if n ¼ 14 or nb 16.

Proof. We see in the proof of Theorem 5.1 that n2 is stably equivalent

to f3bn=2c � 7ðnþ 1Þ2grh. Note that 3bn=2c � 9ðnþ 1Þ2 > 0 if n ¼ 14 or nb 16.

Then, putting p ¼ 3, z ¼ n2, k ¼ 4ðnþ 1Þ2 and l ¼ 3bn=2c � 9ðnþ 1Þ2 in The-

orem 2.3, we see that n2 is not stably extendible to Lmð3Þ for m ¼ 2f3bn=2c �
7ðnþ 1Þ2g, if n ¼ 14 or nb 16, by Theorem 2.3. r

Corollary 5.4. Under the assumption of Theorem 5.1, nð f14Þ2 and nð f16Þ2
are not stably extendible to L1224ð3Þ and L9076ð3Þ, respectively.

Proof. The results follow from Theorems 5.2 and 5.3. r

Proof of Theorem 6. Clearly (1) implies (2). It follows from Theorem

5.3 that (2) implies (3). It follows from Theorem 5.1 that (3) implies (1), since

rh and trivial R-vector bundles over Lnð3Þ are extendible to Lmð3Þ for every

mb n. r
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