Parametrizations of infinite biconvex sets in affine root systems

Ken Ito

(Received June 22, 2004)
(Revised January 31, 2005)

ABSTRACT. We investigate relationships between the set \mathcal{B} of all infinite “biconvex” sets in the positive root system A_+ of an arbitrary untwisted affine Lie algebra \mathfrak{g} and the set \mathcal{R} of all infinite “reduced word” of the Weyl group of \mathfrak{g}. The study is applied to the classification of “convex orders” on A_+ ([5]), which is indispensable to construct “convex bases” of Poincaré-Birkhoff-Witt type of the strictly upper triangular subalgebra U^+_q of the quantized universal enveloping algebra $U_q(\mathfrak{g})$. We construct a set \mathcal{P} by using data of the underlying finite-dimensional simple Lie algebra, and bijective mappings $\mathcal{P} \to \mathcal{B}$ and $\mathcal{P} \to \mathcal{R}$ such that $\mathcal{P} = \phi \circ \chi$, where \mathcal{R} is a quotient set of \mathcal{P} and $\phi : \mathcal{P} \to \mathcal{B}$ is a natural injective mapping.

1. Introduction

Let Δ be the root system of a Kac-Moody Lie algebra \mathfrak{g}, Δ_+ (resp. Δ_-) the set of all positive (resp. negative) roots relative to the root basis $\Pi = \{\alpha_i | i \in I\}$, and $W = \langle s_i | i \in I \rangle$ the Weyl group of \mathfrak{g}, where s_i is the reflection associated with α_i. Then (W, S) is a Coxeter system with $S = \{s_i | i \in I\}$ ([6]). We call an infinite sequence $s = (s(p))_{p \in \mathbb{N}} \in S^\mathbb{N}$ an infinite reduced word of (W, S) if the length of the element $[s_p] := s(1) \cdots s(p) \in W$ is p for each $p \in \mathbb{N}$, and call a subset $B \subset \Delta_+$ a biconvex set if it satisfies the following conditions:

C(i) $\beta, \gamma \in B, \beta + \gamma \in \Delta_+ \Rightarrow \beta + \gamma \in B$;
C(ii) $\beta, \gamma \in \Delta_+ \setminus B, \beta + \gamma \in \Delta_+ \Rightarrow \beta + \gamma \in \Delta_+ \setminus B$.

If, in addition, B is a subset of the set $\Delta^\mathbb{R}_+$ of all positive real roots, then B is called a real biconvex set. The purpose of this article is to investigate in detail relationships between infinite reduced words and infinite real biconvex sets in the case where \mathfrak{g} is an arbitrary untwisted affine Lie algebra.

Before explaining the detail of our work, we will explain the background of the theory of infinite reduced words and infinite real biconvex sets. The motive of this study is related to the construction of convex bases of the strictly upper triangular subalgebra U^+_q of the quantized universal enveloping algebra $U_q(\mathfrak{g})$. Convex bases are Poincaré-Birkhoff-Witt type bases with a convex
property concerning the “q-commutator” of two “q-root vectors” of U_q^+. The convex property is useful for calculating values of the standard Hopf pairing between U_q^+ and the strictly lower triangular subalgebra U_q^-, and is applied to explicit calculations of the universal R-matrix of $U_q(g)$ ([7], [8]). By the way, each convex basis of U_q^+ is formed by monomials in certain q-root vectors of U_q^+ multiplied in a predetermined total order with a convex property on Δ_+. Such a total order on Δ_+ is called a *convex order*.

In the case where g is an arbitrary finite-dimensional simple Lie algebra, it is known that there exists a natural bijective mapping from the set of all convex orders on Δ_+ to the set of all reduced expressions of the longest element of W ([10]), and G. Lusztig constructed convex bases of U_q^+ associated with all reduced expressions of the longest element of W by using a braid group action on $U_q(g)$ ([9]). Therefore all convex bases of U_q^+ was constructed in the finite case.

In the case where g is an arbitrary untwisted affine Lie algebra, convex orders on Δ_+ are closely related to infinite reduced words of (W,S). More precisely, each infinite reduced word naturally corresponds to a “1-row type” convex order on an infinite real biconvex set. In [5], we showed that each convex order on Δ_+ is made from each couple of “maximal” (infinite) real biconvex sets with convex orders which divides Δ_+^{re} into two parts. To analyze convex orders on maximal real biconvex sets, it is important to consider the following two problems: (1) classify all infinite real biconvex sets; (2) describe in detail relationships between the set of all infinite reduced words and the set of all infinite real biconvex sets. In this article, we concentrate on the two problems above for the untwisted affine case. Applying results in this article to [5], we classified all convex orders on Δ_+, and then gave a general method of constructing convex orders on Δ_+ for the untwisted affine case. On the other hand, in [1], J. Beck constructed convex bases of U_q^+ associated with convex orders on Δ_+ arisen from a certain couple of maximal real biconvex sets with 1-row type convex orders which divides Δ_+^{re} into two parts. However, we seem that it is possible to generalize Beck’s construction, since we find in [5] that there exist several types of convex orders called “n-row types” on each maximal real biconvex set which are not used in Beck’s construction. We are preparing an article concerning to construct all convex bases of U_q^+ associated with all convex order on Δ_+ by generalizing Beck’s construction for the untwisted affine Lie algebra.

This paper is organized as follows. In Section 2, we first give the definition of biconvex sets for a class of root systems with Coxeter group actions, and then state several fundamental results. We next define infinite reduced words for each Coxeter system (W,S) and an equivalence relation \sim on the set \mathcal{W}^{∞} of all infinite reduced words, and then define W^{∞} to be the quotient set of
We next define an injective mapping $\Phi^\infty : W^\infty \to B^\infty$, where B^∞ is the set of all infinite real biconvex sets. At the end of Section 2, we define a left action of W on W^∞ which plays an important role in the proof of the main theorem. In Section 3, we introduce some notation for the untwisted affine cases. In Section 4, we give preliminary results for classical root systems. From Section 5 to Section 7, we treat only the untwisted affine case. In Section 5, we give several methods of constructing biconvex sets. In Section 6, we give a parametrization of real biconvex sets. In Section 7, we give the following main results.

Main Theorem. If \mathfrak{g} is an arbitrary untwisted affine Lie algebra, there exist parametrizations (bijective mappings) $\psi : \mathcal{P} \to B^\infty$ and $\chi : \mathcal{P} \to W^\infty$ such that the following diagram is commutative:

$$
\begin{array}{ccc}
B^\infty & \xymatrix{\ar[rr]^\Phi^\infty} & \ar[l]_\chi & W^\infty \\
\ar[rr]|\psi & \ar[u] \end{array}
$$

where the set \mathcal{P} is defined by using data of the underlying finite-dimensional simple Lie algebra \mathfrak{g} (see Definition 6.5). In particular, Φ^∞ is bijective. Moreover, W^∞ decomposes into the direct finite sum of orbits relative to a left action of W.

Note that P. Cellini and P. Papi showed in [11] that if B is an infinite real biconvex set, then there exist $v,t \in W$ such that t is a translation, $\ell(vt) = \ell(v) + \ell(t)$, and $B = \bigcup_{k \geq 0} \Phi(vt^k)$, where $\Phi(z) = \{z^{-1}(\beta) \in \Delta_-\}$.

2. Definitions and several results

Let R, Q, Z, and N be the set of the real numbers, the rational numbers, the integers, and the positive integers, respectively. We denote by N_n the set $\{m \in N \mid m \leq n\}$ for each $n \in N$, and set $N_\infty := N$ and $N_* := N \cup \{\infty\}$, where ∞ is a symbol. We extend the usual order \leq on N to a total order on N_* by setting $n < \infty$ for each $n \in N$. We also set $\infty + n = n + \infty = \infty n = n \infty = \infty$ for each $n \in N_\infty$. We denote by $\#U$ the cardinality of a set U, and write $\#U = \infty$ if U is an infinite set. When A and B are subsets of U, we write $A \subset B$ or $B \supset A$ if $\#(A \setminus B) < \infty$, and write $A \equiv B$ if both $A \subset B$ and $A \supset B$. Then \equiv is an equivalence relation on the power set of U. For each $F \subset R$ and $a \in R$, we set $F_{\geq a} := \{b \in F \mid b \geq a\}$ and $F_{> a} := \{b \in F \mid b > a\}$.

Let F be a subfield of R, W a group generated by a set S of involutive generators (i.e., $s \neq 1$, $s^2 = 1$, $\forall s \in S$), and (V, Δ, Π) a triplet satisfying the following conditions $f R(i) \rightarrow f R(iv)$.

\(fR(i) \) It consists of a representation space \(V \) of \(W \) over \(F \), a \(W \)-invariant subset \(\Delta \subset V \setminus \{0\} \) which is symmetric (i.e., \(\Delta = -\Delta \)), and a subset \(\Pi = \{ s \mid s \in S \} \subset \Delta \).

\(fR(ii) \) Each element of \(\Delta \) can be written as \(\sum_{s \in S} a_s s \) with either \(a_s \in F_{\geq 0} \) for all \(s \in S \) or \(a_s \in F_{\leq 0} \) for all \(s \in S \), but not in both ways. Accordingly, we write \(a > 0 \) or \(a < 0 \), and set \(\Delta_+ := \{ s \in \Delta \mid a > 0 \} \) and \(\Delta_- := \{ s \in \Delta \mid a < 0 \} \).

\(fR(iii) \) For each \(s \in S \), \(s^2 \Delta = -s \Delta \) and \(s(\Delta_+ \setminus \{ s \}) = \Delta_+ \setminus \{ s \} \).

\(fR(iv) \) If \(w \in W \) and \(s, s' \in S \) satisfy \(w(s_i) = s_{i} \), then \(ws'w^{-1} = s \).

Definition 2.1. Define subsets \(\Delta^e, \Delta^m, \Delta^e_+, \) and \(\Delta^m_+ \) of \(\Delta \) by setting

\[
\Delta^e := \{ w(s_i) \mid w \in W, s \in S \}, \quad \Delta^m := \Delta \setminus \Delta^e,
\]

\[
\Delta^e_+ := \Delta^e \cap \Delta_+, \quad \Delta^m_+ := \Delta^m \cap \Delta_+.
\]

Note that \(W \) stabilizes \(\Delta^e \) and \(\Delta^m_+ \). For each \(y \in W \), we set

\[
\Phi(y) := \{ \beta \in \Delta_+ \mid y^{-1}(\beta) < 0 \}.
\]

Note that \(\Phi(y) \subset \Delta^e_+ \).

Theorem 2.2 ([4]). The pair \((W, S) \) is a Coxeter system, i.e., it satisfies the exchange condition. Moreover, if \(y = s_1s_2 \cdots s_n \) with \(n \in \mathbb{N} \) and \(s_1, s_2, \ldots, s_n \in S \) is a reduced expression of an element \(y \in W \setminus \{1\} \), then

\[
\Phi(y) = \{ s_{i_1}(s_{i_2}) \cdots (s_{i_{n-1}}(x_{s_n})) \}
\]

and the elements of \(\Phi(y) \) displayed above are distinct from each other. In particular, \#\(\Phi(y) = \ell(y) \), where \(\ell : W \to \mathbb{Z}_{\geq 0} \) is the length function of \((W, S) \).

Remarks. (1) The action of \(W \) on \(V \) is faithful. Indeed, if \(y = id_V \) for \(y \in W \), then \(\Phi(y) = \emptyset \), and hence \(y = 1 \). Therefore we may regards \(W \) as a subgroup of \(GL(V) \).

(2) For each Coxeter system \((W, S) \), a triplet \((V, \Delta, \Pi) \) is called a root system of \((W, S) \) over \(F \) if it satisfies the conditions \(fR(i) \)–\(fR(iv) \).

(3) Let \(\sigma : W \to GL(V) \) be the geometric representation of a Coxeter system \((W, S) \) (cf. [2]), where \(V \) is a real vector space with a basis \(\Pi = \{ x_i \mid s \in S \} \). Then \((V, \Delta, \Pi) \) is a root system of \((W, S) \) over \(R \) (cf. [4]), where \(\Delta = \{ \sigma(w)(x_i) \mid w \in W, s \in S \} \). We call it the root system associated with the geometric representation.

(4) Let \(g \) be a Kac-Moody Lie algebra over \(Q \) with \(h \) the Cartan subalgebra, \(A \subset h^\ast \setminus \{0\} \) the root system of \(g \), \(\Pi = \{ x_i \mid i \in I \} \) a root basis of \(A \), and \(W = \langle s_i \mid i \in I \rangle \subset GL(h^\ast) \) the Weyl group of \(g \), where \(h^\ast \) is the dual vector space of \(h \) and \(s_i \) is the simple reflection associated with \(x_i \) (cf. [6]). Set \(h^\ast := \text{span}_Q \Pi \subset h^\ast \) and \(S := \{ s_i \mid i \in I \} \). Then \((W, S) \) is a Coxeter system and \((h^\ast, A, \Pi) \) is a root system of \((W, S) \) over \(Q \).
Lemma 2.3. Let \(y_1 \) and \(y_2 \) be elements of \(W \).

1. We have \(\Phi(y_1y_2) \backslash \Phi(y_1) \subset y_1\Phi(y_2) \).
2. If \(y_1\Phi(y_2) \subset A_+ \), then \(\Phi(y_1) \Pi y_1\Phi(y_2) = \Phi(y_1y_2) \).
3. If \(\Phi(y_1) \subset \Phi(y_2) \), then \(\Phi(y_2) = \Phi(y_1) \Pi y_1\Phi(y_1^{-1}y_2) \).

The following two conditions are equivalent:

(i) \(\ell(y_2) - \ell(y_1) = \ell(y_1^{-1}y_2) \);
(ii) \(\Phi(y_1) \subset \Phi(y_2) \).

Proof. (1) Suppose that \(\beta \in \Phi(y_1y_2) \backslash \Phi(y_1) \). Then we have \(y_1^{-1}(\beta) > 0 \) and \(y_2^{-1}(y_1^{-1}(\beta)) < 0 \). Thus we get \(y_1^{-1}(\beta) \in \Phi(y_2) \) or \(\beta \in y_1\Phi(y_2) \).

(2) If \(\beta \in y_1\Phi(y_2) \) then \(y_1^{-1}(\beta) > 0 \), and hence \(\beta \notin \Phi(y_1) \). Thus we get \(\Phi(y_1) \cap y_1\Phi(y_2) = \emptyset \). Hence, by (1) we have \(\Phi(y_1y_2) \subset \Phi(y_1) \Pi y_1\Phi(y_2) \).

We next prove that \(\Phi(y_1) \subset \Phi(y_1y_2) \). Suppose that \(\beta \in \Phi(y_1) \) satisfies \(\beta \notin \Phi(y_1y_2) \). Then we have \(y_1^{-1}(\beta) < 0 \) and \(y_2^{-1}(y_1^{-1}(\beta)) > 0 \), which imply \(-y_1^{-1}(\beta) \in \Phi(y_2) \). This contradicts the assumption. Thus we get \(\Phi(y_1) \subset \Phi(y_1y_2) \).

We next prove that \(y_1\Phi(y_2) \subset \Phi(y_1y_2) \). If \(\beta \in y_1\Phi(y_2) \) then \(y_1^{-1}(\beta) \in \Phi(y_2) \), and hence \(y_2^{-1}(y_1^{-1}(\beta)) < 0 \). Thus we get \(\beta \in \Phi(y_1y_2) \).

Therefore \(\Phi(y_1) \Pi y_1\Phi(y_2) = \Phi(y_1y_2) \).

(3) We first prove that \(y_1\Phi(y_1^{-1}y_2) \subset A_+ \). Suppose that \(\beta \in \Phi(y_1^{-1}y_2) \) satisfies \(y_1(\beta) < 0 \). Then we have \(-y_1(\beta) \in \Phi(y_1) \subset \Phi(y_2) \), which implies \(y_2^{-1}y_1(\beta) > 0 \). This contradicts \(\beta \in \Phi(y_1^{-1}y_2) \). Thus we get \(y_1\Phi(y_1^{-1}y_2) \subset A_+ \), and hence \(\Phi(y_2) = \Phi(y_1) \Pi y_1\Phi(y_1^{-1}y_2) \) by (2).

(4)(i) \(\Rightarrow \) (ii) By Theorem 2.2, we have

\[
\ell(y_2) - \ell(y_1) \leq \#y_1^{-1}\{\Phi(y_2) \backslash \Phi(y_1)\}
\leq \#\Phi(y_1^{-1}y_2) = \ell(y_1^{-1}y_2) = \ell(y_2) - \ell(y_1),
\]

where the second inequality follows from (1). Thus we get \(\#y_1^{-1}\{\Phi(y_2) \backslash \Phi(y_1)\} = \ell(y_2) - \ell(y_1) \), and hence \(\Phi(y_1) \subset \Phi(y_2) \).

(ii) \(\Rightarrow \) (i) By (3) and Theorem 2.2, we get \(\ell(y_2) = \ell(y_1) + \ell(y_1^{-1}y_2) \).

\[\square\]

Definition 2.4. For subsets \(A, B \subset A_+ \) satisfying \(B \subset A \), we call \(B \) a convex set in \(A \) if it satisfies the following condition:

\[\text{C(i)}_{A} \quad \beta, \gamma \in B, \beta + \gamma \in A \Rightarrow \beta + \gamma \in B.\]

We also call \(B \) a coconvex set in \(A \) if it satisfies the following condition:

\[\text{C(ii)}_{A} \quad \beta, \gamma \in A \backslash B, \beta + \gamma \in A \Rightarrow \beta + \gamma \in A \backslash B.\]

Note that \(B \) is a coconvex set in \(A \) if and only if \(A \backslash B \) is a convex set in \(A \). Furthermore, we call \(B \) a biconvex set in \(A \) if \(B \) is both a convex set in \(A \) and a coconvex set in \(A \). If, in addition, \(B \subset A_{++}^{c} \), then \(B \) is said to be a real convex set in \(A \), a real coconvex set in \(A \), or a real biconvex set in \(A \) if \(B \) is a convex set in \(A \), a coconvex set in \(A \), or a biconvex set in \(A \), respectively.
We will say simply that B is a \textit{convex set}, a \textit{real convex set}, a \textit{coconvex set}, a \textit{real coconvex set}, a \textit{biconvex set}, or a \textit{real biconvex set} if B is a convex set in A_+, a real convex set in A_+, a coconvex set in A_+, a real coconvex set in A_+, a biconvex set in A_+, or a real biconvex set in A_+, respectively. We denote $C(i)_{A_+}$ and $C(ii)_{A_+}$ simply by $C(i)$ and $C(ii)$, respectively. Let \mathcal{B} be the set of all finite biconvex sets and \mathcal{B}^∞ the set of all infinite real biconvex sets. We set $\mathcal{B}^* := \mathcal{B} \cup \mathcal{B}^\infty$.

\textbf{Remark.} The condition $C(ii)_{A_+}$ is equivalent to the following condition:
\[\beta, \gamma \in A, \beta + \gamma \in B \Rightarrow \beta \in B \text{ or } \gamma \in B. \]

For each couple of subsets $A, B \subset A$, we set
\[A + B := \{ \alpha + \beta | \alpha \in A, \beta \in B \} \cap A. \]

\textbf{Lemma 2.5.} Let A, B, and C be subsets of A_+ satisfying $B, C \subset A$, and \{B_\lambda\}_{\lambda \in A}$ a family of subsets of A.

1. If B is a biconvex set in A, then $A \setminus B$ is biconvex in A.
2. If B is a biconvex set in A, then $B \cap C$ is a biconvex set in C.
3. Suppose that $B \subset C$ and C is a convex set in A. Then B is a convex set in C if and only if B is a convex set in A.
4. If $(B_\lambda + B_\lambda') \cap A \subset \bigcup_{\lambda \in A} B_\lambda$ for each pair $\lambda, \lambda' \in A$, then $\bigcup_{\lambda \in A} B_\lambda$ is a convex set in A.
5. If B_λ is a convex set in A for each $\lambda \in A$, then $\bigcap_{\lambda \in A} B_\lambda$ is a convex set in A.
6. If B_λ is a biconvex set in A for each λ and \preceq is a total order on A such that $B_\lambda \subseteq B_{\lambda'}$ for each $\lambda \preceq \lambda'$, then both $\bigcup_{\lambda \in A} B_\lambda$ and $\bigcap_{\lambda \in A} B_\lambda$ are biconvex sets in A.

\textbf{Proof.} (1)–(5) They are obvious.

6. Set $B_1 := \bigcup_{\lambda \in A} B_\lambda$. By the assumption on the total order \preceq, the family $\{B_\lambda\}_{\lambda \in A}$ satisfies the sufficient condition in (4). Hence, B_1 is a convex set in A. On the other hand, since $A \setminus B_1 = \bigcap_{\lambda \in A} (A \setminus B_\lambda)$, $A \setminus B_1$ is a convex set in A by (1) and (5). Thus B_1 is a biconvex set in A. Set $B_2 := \bigcap_{\lambda \in A} B_\lambda$. Let \preceq^{op} be the opposite order of \preceq. Then $A \setminus B_2 \subseteq A \setminus B_\lambda$ if $\lambda \preceq^{op} \lambda'$. Hence, $B_3 := \bigcup_{\lambda \in A} (A \setminus B_\lambda)$ is a convex set in A. Thus B_2 is a biconvex set in A since $B_2 = A \setminus B_3$.

\textbf{Theorem 2.6 ([10])}. The assignment $y \mapsto \Phi(y)$ defines an injective mapping from W to \mathcal{B}. Moreover, if the root system (V, A, Π) over \mathcal{F} satisfies the following two conditions, then Φ is surjective:

- $R(v)$ each $\alpha \in A_+ \setminus \Pi$ can be written as $\alpha = \beta + \gamma$ with $\beta, \gamma \in A_+$;
- $R(\text{vi})$ there exists a mapping $ht : A_+ \rightarrow \mathbb{F}_{>0}$ such that $ht(\beta + \gamma) = ht(\beta) + ht(\gamma)$ for all $\beta, \gamma \in A_+$ satisfying $\beta + \gamma \in A_+$.
REMARKS. (1) The surjectivity of the mapping follows from the fact that if C is a non-empty finite coconvex set then $C \cap \Pi \neq \emptyset$. The conditions $\mathbf{fR}(v)$ and $\mathbf{fR}(vi)$ are used to prove the fact.

Suppose that the root system (V, A, Π) over \mathbf{F} satisfies the following two conditions instead of $\mathbf{fR}(v)$ and $\mathbf{fR}(vi)$:

- $\mathbf{fR}(v)'$ each $z \in A_+ \setminus \Pi$ can be written as $z = b\beta + c\gamma$ with $b, c \in \mathbf{F}_{\geq 1}$ and $\beta, \gamma \in A_+$;
- $\mathbf{fR}(vi)'$ there exists a mapping $h_t : A_+ \to \mathbf{F}_{>0}$ such that $h_t(b\beta + c\gamma) = b h_t(\beta) + c h_t(\gamma)$ for all $b, c \in \mathbf{F}_{>0}$ and $\beta, \gamma \in A_+$ satisfying $b\beta + c\gamma \in A_+$.

Then Φ is still surjective if \mathcal{B} is replaced by the set of all finite subsets $B \subset A_+$ satisfying the following two conditions:

- $\mathbf{fC(i)}'$ $\beta, \gamma \in B$, $b, c \in \mathbf{F}_{>0}$, $b\beta + c\gamma \in A_+ \Rightarrow b\beta + c\gamma \in B$;
- $\mathbf{fC(ii)}'$ $\beta, \gamma \in A_+ \setminus \Pi$, $b, c \in \mathbf{F}_{>0}$, $b\beta + c\gamma \in A_+ \Rightarrow b\beta + c\gamma \in A_+ \setminus B$.

(3) Let (W, S) be a Coxeter system, and (V, A, Π) the root system of (W, S) over \mathbf{R} associated with the geometric representation. Then (V, A, Π) satisfies $\mathbf{rR}(v)'$ and $\mathbf{rR}(vi)'$. The condition $\mathbf{rR}(v)'$ is easily checked by reforming the proof of Proposition 2.1 in [3]. Since Π is linearly independent, we can define a mapping $h_t : A_+ \to \mathbf{R}_{>0}$ by setting $h_t(z) := \sum_{s \in S} a_s z_s$ for each $z \in A_+$, where a_s's are non-negative real numbers such that $z = \sum_{s \in S} a_s z_s$. Then the mapping h_t satisfies the required property in $\mathbf{rR}(vi)'$.

DEFINITION 2.7. For each $n \in \mathbf{N}_*$, we denote by $s = (s(p))_{p \in \mathbf{N}_n}$ a sequence consisting of elements $s(p) \in S$ for $p \in \mathbf{N}_n$, and denote by $S^{\mathbf{N}_n}$ the set of such sequences. We also denote by $(s(1), s(2), \ldots, s(n))$ a sequence $s \in S^{\mathbf{N}_n}$ with $n < \infty$. For each $s \in S^{\mathbf{N}_n}$ and $m \in \mathbf{N}_n$, we define a sequence $s|_m \in S^{\mathbf{N}_m}$ by setting $s|_m(p) := s(p)$ for each $p \in \mathbf{N}_m$, and call the sequence $s|_m$ the initial m-section of s. Let $\{s_p\}_{p \in \mathbf{N}}$ be a family of finite sequences of elements of S such that s_p is the initial m_p-section of s_{p+1} with $m_p < m_{p+1}$ for each $p \in \mathbf{N}$. Then we see that there exists a unique infinite sequence s_∞ of elements of S such that s_p is the initial m_p-section of s_∞ for each $p \in \mathbf{N}$, and denote by $\lim_{p \to \infty} s_p$ the infinite sequence s_∞. For each $s \in S^{\mathbf{N}_n}$ and $s' \in S^{\mathbf{N}_{n'}}$ with $n < \infty$ and $n' \in \mathbf{N}_*$, we define a sequence $ss' = (ss'(p))_{p \in \mathbf{N}_{n+c}} \in S^{\mathbf{N}_{n+c}}$ by setting

$$ss'(p) := \begin{cases} s(p) & \text{for } p \leq n, \\ s'(p-n) & \text{for } n+1 \leq p. \end{cases}$$

The product ss' satisfies the associative law: $(ss')s'' = s(s's'')$ for $s \in S^{\mathbf{N}_n}$, $s' \in S^{\mathbf{N}_{n'}}$, $s'' \in S^{\mathbf{N}_{n''}}$ with $n, n' < \infty$. Therefore, the product $s_1 \cdots s_{m-1} s_p$ is defined naturally for each family $\{s_1, \ldots, s_{m-1}, s_p\}$ of sequences of elements of S such that s_i for $i \in \mathbf{N}_{m-1}$ are finite sequences. For each finite sequence $s \in S^{\mathbf{N}_n}$ and $p \in \mathbf{N}_*$, we define $s^p \in S^{\mathbf{N}_{n'}}$ by setting
\[s^p := s \cdots s \text{ for } p < \infty, \quad s^\infty := \lim_{p \to \infty} s^p. \]

For each \(s \in S^N \) with \(n < \infty \), we define an element \([s] \in W\) by setting
\[[s] := s(1)s(2) \cdots s(n). \]

For each \(s \in S^N \) with \(n \in \mathbb{N}_+ \), we define a mapping \(\phi_s : \mathbb{N} \to \mathcal{A}^r \) by setting
\[\phi_s(p) := [s_{|p-1}](\alpha_{s(p)}) \]
for each \(p \in \mathbb{N}_+ \), where \([s_0] := 1\). For each \(s \in S^N \), we define a mapping \(\Phi^\infty \) from \(S^N \) to the power set of \(\mathcal{A}^r_+ \) by setting
\[\Phi^\infty(s) := \bigcup_{p \in \mathbb{N}} \Phi([s_p]). \]

We call an element \(s \in S^N \) an infinite reduced word of \((W, S)\) if \(\ell([s_p]) = p \) for all \(p \in \mathbb{N} \), and denote by \(\mathcal{W}^\infty \) the subset of \(S^N \) of all infinite reduced words of \((W, S)\).

Lemma 2.8. For a pair \((s, s')\) of elements of \(\mathcal{W}^\infty \), we write \(s \sim s' \) if for each \((p, q) \in \mathbb{N}^2\) there exists \((p_0, q_0) \in \mathbb{Z}_{\geq p} \times \mathbb{Z}_{\geq q}\) such that
\[\ell([s_p]^{-1}[s'_p]) = p_0 - p, \quad \ell([s'_q]^{-1}[s_p]) = q_0 - q. \]

Then \(\sim \) is an equivalence relation on \(\mathcal{W}^\infty \).

Proof. The reflexive law and the symmetric law are obvious. To prove the transitive law, suppose that \(s \sim s', \ s' \sim s'' \) for some \(s, s', s'' \in \mathcal{W}^\infty \). For each \(p \in \mathbb{N} \), choose \(p_0 \geq p \) and \(p_1 \geq p_0 \) satisfying \(\ell([s_p]^{-1}[s'_p]) = p_0 - p \) and \(\ell([s'_p]^{-1}[s''_p]) = p_1 - p_0 \). Then we have
\[p_1 - p = |\ell([s_p]^{-1}) - \ell([s''_p]^{-1})| \leq \ell([s_p]^{-1}[s'_p]) \leq \ell([s_p]^{-1}[s'_p]) + \ell([s'_p]^{-1}[s''_p]) \]
\[= (p_0 - p) + (p_1 - p_0) = p_1 - p. \]
Thus we get \(\ell([s_p]^{-1}[s''_p]) = p_1 - p. \) Similarly, we see that for each \(q \in \mathbb{N} \) there exists \(q_1 \in \mathbb{Z}_{\geq q} \) such that \(\ell([s''_q]^{-1}[s_q]) = q_1 - q. \) Therefore we get \(s \sim s''. \)

Definition 2.9. We denote by \(W^\infty \) the quotient set of \(\mathcal{W}^\infty \) relative to the equivalence relation \(\sim \), and by \([s]\) the coset containing \(s \in \mathcal{W}^\infty \).

Proposition 2.10. Let \(s \) and \(s' \) be elements of \(S^N \).
(1) We have \(s \in W^\infty \) if and only if \(\phi_j(p) > 0 \) for all \(p \in \mathbb{N} \).

(2) If \(s \in W^\infty \), then \(\Phi^\infty(s) = \{ \phi_j(p) \mid p \in \mathbb{N} \} \) and all the elements \(\phi_j(p) \) of \(\Phi^\infty(s) \) are distinct from each other.

(3) If \(s \in W^\infty \), then \(\Phi^\infty(s) \in \mathcal{B}^\infty \).

(4) Suppose that \(s, s' \in W^\infty \). Then \(s \sim s' \) if and only if \(\Phi^\infty(s) = \Phi^\infty(s') \).

Proof. (1) We see that \(s \in W^\infty \) if and only if \(\ell([s]_{p+1}) \) for all \(p \in \mathbb{N} \). Hence the assertion follows from the fact that \(z(x_s) > 0 \) for each \(x \in W \) and \(s \in S \).

(2) This follows from Theorem 2.2.

(3) We see that \(\Phi^\infty(s) \) is an infinite set by (2). For each \(p \leq q \), we have \(\Phi([s]_p) \subseteq \Phi([s]_q) \). Thus we get \(\Phi^\infty(s) \in \mathcal{B}^\infty \) by Lemma 2.5(6) and Theorem 2.6.

(4) By Lemma 2.3(4), we see that the condition \(s \sim s' \) is equivalent to the condition that for each \((p, q) \in \mathbb{N}^2 \) there exists \((p_0, q_0) \in \mathbb{Z}_{\geq p} \times \mathbb{Z}_{\geq q} \) such that \(\Phi([s]_p) \subseteq \Phi([s']_q) \) and \(\Phi([s]_{p_0}) \subseteq \Phi([s']_{q_0}) \). Thus \(s \sim s' \) if and only if \(\Phi^\infty(s) = \Phi^\infty(s') \).

Definition 2.11. Thanks to Proposition 2.10(3)(4), we have an injective mapping

\[
\Phi^\infty : W^\infty \to \mathcal{B}^\infty, \quad [s] \mapsto \Phi^\infty([s]) := \tilde{\Phi}^\infty(s).
\]

We define a left action of \(W \) on \(W^\infty \).

Definition 2.12. For each \(x \in W \) and \(s \in S^N \), we set

\[
\tilde{\Phi}^\infty(x, s) := \{ \beta \in \Lambda^\infty_+ \mid \exists p_0 \in \mathbb{N}; \forall p \geq p_0, (x[s]_p)^{-1}(\beta) < 0 \}.
\]

Lemma 2.13. (1) If \(s \in W^\infty \), then \(\tilde{\Phi}^\infty(1, s) = \Phi^\infty(s) \).

(2) If \(x \in W \) and \(s \in W^\infty \), then there exists an element \(s' \in W^\infty \) such that \(\tilde{\Phi}^\infty(s') = \Phi^\infty(x, s) \). More precisely, a required \(s' \) can be constructed by applying the following procedure Steps 1–5.

Step 1. Choose a non-negative integer \(p_0 \) such that

\[
\Phi(x^{-1}) \cap \tilde{\Phi}^\infty(s) \subset \Phi([s]_p).
\]

Step 2. In the case where \(x[s]_{p_0} = 1 \), set \(s'(p) := s(p_0 + p) \) for each \(p \in \mathbb{N} \). In the case where \(x[s]_{p_0} \neq 1 \), choose a reduced expression \(x[s]_{p_0} = s'(1) \cdots s'(l_0) \) with \(l_0 \in \mathbb{N} \), and set \(s'(l_0 + p) := s(p_0 + p) \) for each \(p \in \mathbb{N} \).

Step 3. Set \(s' := (s'(p))_{p \in \mathbb{N}} \).

Step 4. If \(x \in W \) and \(s \in W^\infty \), then

\[
\tilde{\Phi}^\infty(x, s) = \{ \Phi(x)\setminus\neg A \} \amalg \{ x\Phi^\infty(s)\setminus A \},
\]

where \(A := x\Phi^\infty(s) \cap \Lambda^\infty_+ \). In particular, if \(x\Phi^\infty(s) \subset \Lambda^\infty_+ \) then
\[\Phi^\infty(x, s) = \Phi(x) \Pi x^{\Phi^\infty}(s). \]

(4) Suppose that \(s, s' \in \mathcal{W}^\infty \) and \(x, y \in W \).

(i) If \(\Phi^\infty(s) = \Phi^\infty(s') \), then \(\Phi^\infty(x, s) = \Phi^\infty(x, s') \).

(ii) If \(\Phi^\infty(y, s) = \Phi^\infty(s') \), then \(\Phi^\infty(xy, s) = \Phi^\infty(x, s') \).

Proof. (1) Suppose that \(\beta \in \Phi^\infty(1, s) \). Since \([s]_{p_0}^{-1}(\beta) < 0 \) for some \(p_0 \in \mathbb{N} \), we have \(\beta \in \Phi^\infty([s]_{p_0}) \subset \Phi^\infty(s) \). Thus we get \(\Phi^\infty(1, s) \subset \Phi^\infty(s) \). On the other hand, for each \(p < q \), we have

\[[s]_q^{-1}(\phi_{s}(p)) = -s(q) \cdots s(p + 1)(z_{s(p)}) < 0, \]

and hence \(\phi_{s}(p) \in \Phi^\infty(1, s) \) for each \(p \in \mathbb{N} \). Thus we get \(\Phi^\infty(s) \subset \Phi^\infty(1, s) \) by Proposition 2.10(2).

(2) Let \(s' \) be an element of \(S^N \) constructed as in (Step 1)–(Step 3). By the construction, we have \(x[s]_{p_0} = [s']_{l_0} \) for some unique \(l_0 \in \mathbb{Z}_{\geq 0} \). Since \(s(p_0 + p) = s'(l_0 + p) \) for each \(p \in \mathbb{N} \), we have

\[x[s]_{p_0 + p} = [s']_{l_0 + p}, \quad (2.2) \]

\[x\phi_{s}(p_0 + p) = \phi_{s'}(l_0 + p). \quad (2.3) \]

By the condition (2.1) and the equality (2.3), we have \(\phi_{s'}(l_0 + p) > 0 \) for each \(p \in \mathbb{N} \) since \(\phi_{s}(p_0 + p) \notin \Phi([s]_{p_0}) \). In addition, by Theorem 2.2 we have \(\phi_{s'}(p) > 0 \) for each \(1 \leq p \leq l_0 \). Thus we get \(s' \in \mathcal{W}^\infty \) by Proposition 2.10(1). Moreover, by (1) and the equality (2.2), we get \(\Phi^\infty(x, s) = \Phi^\infty(s') \).

(3) Since \(-A = \Phi(x) \cap (-x^{\Phi^\infty}(s)) \), we have

\[\Phi(x) \setminus (-A) = \{ \beta \in A^\infty_+ | \beta \in \Phi(x), x^{-1}(\beta) \in A^\infty_+ \setminus \Phi^\infty(s) \}. \]

On the other hand, since \(x\Phi^\infty(s) \setminus A = x\Phi^\infty(s) \cap A^\infty_+ \), we have

\[x\Phi^\infty(s) \setminus A = \{ \beta \in A^\infty_+ | \beta \notin \Phi(x), x^{-1}(\beta) \in \Phi^\infty(s) \}. \]

Therefore, by (1) we get \(\Phi^\infty(x, s) = \{ \Phi(x) \setminus (-A) \} \Pi \{ x\Phi^\infty(s) \setminus A \} \).

(4)(i) This is straightforward from (3).

(4)(ii) By the argument in the proof of (2), there exist an element \(\tilde{s} \in \mathcal{W}^\infty \) and \((p_0, l_0) \in (\mathbb{Z}_{\geq 0})^2 \) satisfying \(y[s]_{p_0 + p} = [\tilde{s}]_{l_0 + p} \) for all \(p \in \mathbb{N} \). Then we have \(\Phi^\infty(\tilde{s}) = \Phi^\infty(y, s) = \Phi^\infty(s') \). Hence, by (4)(i) we have \(\Phi^\infty(x, \tilde{s}) = \Phi^\infty(x, s') \). Moreover, since \(xy[s]_{p_0 + p} = x[\tilde{s}]_{l_0 + p} \) for all \(p \in \mathbb{N} \), we have \(\Phi^\infty(xy, s) = \Phi^\infty(x, s') \). Thus we get \(\Phi^\infty(xy, s) = \Phi^\infty(x, s') \).

Definition 2.14. Thanks to Proposition 2.10(4) and Lemma 2.13(1)(2)(4), we have a left action of \(W \) on \(W^\infty \) such that \(x[s] = [s'] \) if \(x \in W \) and \(s, s' \in \mathcal{W}^\infty \) satisfy \(\Phi^\infty(x, s) = \Phi^\infty(s') \).
Proposition 2.15. If \(x \in W \) and \(s \in \mathcal{U} \), then
\[
\Phi^\infty(x, [s]) = \{ \Phi(x) \backslash (-A) \} \cap A^r
\]
where \(A := x \Phi^\infty([s]) \cap A^r \). In particular, if \(x \Phi^\infty([s]) = A^r \) then
\[
\Phi^\infty(x, [s]) = \Phi(x) \cap x \Phi^\infty([s]).
\]

Proof. This follows from Lemma 2.13(3). \(\square \)

3. Notation for the untwisted affine cases

In this section, we prepare some notation for the untwisted affine cases referring to the book [6]. Let \(A = [a_{ij}]_{i,j \in I} \) be a generalized Cartan matrix of the affine type \(\mathcal{X}^{(1)} \) with \(I = \{0, 1, \ldots, r\} \), where \(\mathcal{X} = A, B, C, D, E, F, G \). We set \(\hat{I} = \{1, \ldots, r\} \). Then we may assume that \([a_{ij}]_{i,j \in I} \) is the Cartan matrix of the finite type \(\mathcal{X} \). Let \((h, \Pi, \Pi^\vee) \) be a minimal realization of \(A \) over \(Q \), that is, a triplet consisting of a \((r+2)\)-dimensional vector space \(h \) over \(Q \) and linearly independent subsets \(\Pi = \{z_i \mid i \in I\} \subseteq h^* \) and \(\Pi^\vee = \{z_i^\vee \mid i \in I\} \subseteq h \) satisfying \(\langle z^\vee_i, z_j \rangle = a_{ij} \) for each \(i, j \in I \), where \(h^* \) is the dual vector space of \(h \) and \(\langle \cdot, \cdot \rangle : h \times h^* \rightarrow Q \) is the canonical pairing. Let \(g \) be the affine Kac-Moody Lie algebra over \(Q \) associated with \((h, \Pi, \Pi^\vee) \), \(A \subset h^* \{0\} \) the root system of \(g \), \(A^r \) (resp. \(A^m \)) the set of all real (resp. imaginary) roots, and \(W = \langle s_i \mid i \in I \rangle \subset GL(h^*) \) the Weyl group of \(g \), where \(s_i = s_{z_i} \) is the reflection associated with \(z_i \). Let \(A_+ \) (resp. \(A_- \)) be the set of all positive (resp. negative) roots relative to \(\Pi \), \(A^r_+ \) (resp. \(A^r_- \)) the set of all positive (resp. negative) real roots, \(A^m_+ \) (resp. \(A^m_- \)) the set of all positive (resp. negative) imaginary roots, and \(h^\vee_+ \rightarrow N \) the height function on \(A_+ \). Set
\[
\hat{\Pi} := \{z_i \mid i \in \hat{I}\}, \quad \hat{h}^* := \text{span}_Q \hat{\Pi}, \quad \hat{W} := \langle s_i \mid i \in \hat{I}\rangle, \quad \hat{A} := \hat{W}(\hat{\Pi}).
\]
Note that \(\hat{A} \) is a root system in \(\hat{h}^* \) of the finite type \(\mathcal{X} \), with \(\hat{\Pi} \) a root basis and \(\hat{W} \) the Weyl group. Let \(A_+ \) (resp. \(A_- \)) be the set of all positive (resp. negative) roots relative to \(\hat{\Pi} \). Denote by \(\theta \) the highest root of \(\hat{A} \) and set \(\delta := z_0 + \theta \). Then
\[
A^r_+ = \{m\delta + e \mid m \in Z, e \in \hat{A}\}, \quad A^m_+ = \{m\delta \mid m \in Z \backslash \{0\}\},
\]
\[
A^r_- = A_+ \cap \{n\delta + e \mid n \in N, e \in \hat{A}\}, \quad A^m_- = \{n\delta \mid n \in N\}.
\]

Let \((d_i)_{i \in I} \) be relatively prime positive integers such that \([d_ia_{ij}]_{i,j \in I} \) is a symmetric matrix, and \(\lambda_0 \) a non-zero element of \(h^* \) such that \(h^* = h^* \ominus Q\lambda_0 \) and \(\langle z^\vee_i, \lambda_0 \rangle = \delta_0 \), where \(h^* := \text{span}_Q \Pi \). Define a non-degenerate symmetric bilinear form \(\langle \cdot, \cdot \rangle : h^* \times h^* \rightarrow Q \) by setting
\[(x_i | \lambda) := d_i \langle x_i^\gamma, \lambda \rangle \quad (i \in I, \lambda \in h^*), \quad (\lambda_0 | \lambda_0) := 0.\]

In particular, \((x_i | x_j) = d_i d_j\). Note that \((\delta | \delta) = 0\) and the following direct sum decomposition is an orthogonal decomposition:

\[h^* = h^* \oplus (Q\delta + Q\lambda_0).\]

For each \(\lambda \in h^*\), we denote by \(\overline{\lambda}\) the image of \(\lambda\) by the orthogonal projection onto \(h^*\). Each \(\beta \in \Delta\) can be uniquely written as \(m\delta + \overline{\beta}\) with \(m \in \mathbb{Z}\) and \(\overline{\beta} \in \tilde{A} \setminus \{0\}\).

For each \(\alpha \in \Delta^\vee\), we denote by \(s_\alpha\) the reflection with respect to \(\alpha\). For each \(\lambda \in h^*\), we define an element \(t_\lambda \in \text{GL}(h^*)\) called a translation by setting

\[t_\lambda(\mu) := \mu + (\mu | \delta)\lambda - \{(\mu | \lambda) + \frac{1}{2}(\lambda | \lambda)(\mu | \delta)\} \delta\]

for each \(\mu \in h^*\). In particular, \(t_\lambda(\mu) = \mu - (\mu | \lambda)\delta\) for each \(\mu \in h^*\).

Lemma 3.1 ([6]). Set \(\tilde{x}_i := \frac{2\alpha_i}{(\alpha_i | \alpha_i)}\) for each \(i \in \tilde{I}\), and set \(\tilde{\alpha}^\vee := \bigoplus_{i \in \tilde{I}} \mathbb{Z}\tilde{x}_i\) and \(T := \{t_\lambda | \lambda \in \tilde{\alpha}^\vee\}\). Then \(T\) is a normal subgroup of \(W\) such that \(W = \tilde{W} \rtimes T\).

Each element \(x \in W\) can be uniquely written as \(x = \tilde{x}t_x\) with \(\tilde{x} \in \tilde{W}\) and \(t_x \in T\). The mapping \(\overline{\cdot} : W \to \tilde{W}\), \(x \mapsto \tilde{x}\), is a group homomorphism, which satisfies that \(\overline{x(\lambda)} = \overline{\tilde{x}(\lambda)}\) and \(\overline{\tilde{x} = s_\alpha}\) for each \(x \in W\), \(\lambda \in h^*\), and \(\alpha \in \Delta^\vee\).

4. Preliminary results for classical root systems

In this section, we give preliminary results for classical root systems. We use the notation introduced in Section 3. For each subset \(J \subset I\), we set

\[
\tilde{J}_J := \{x_j | j \in J\}, \quad \hat{h}_J^* := \text{span}_Q\tilde{J}_J, \\
\tilde{W}_J := \langle s_j | j \in J \rangle \subset \tilde{W}, \quad \tilde{\Delta}_J := \tilde{W}_J(\tilde{J}_J) \subset \tilde{\Delta}.
\]

Note that \(\tilde{\Delta}_J\) is a root system in \(\hat{h}_J^*\) with \(\tilde{J}_J\) a root basis and \(\tilde{W}_J\) the Weyl group if \(J \neq \emptyset\). Let \(\tilde{\Delta}_J^+\) (resp. \(\tilde{\Delta}_J^-\)) be the set of all positive (resp. negative) roots relative to \(\tilde{J}_J\). For each \(K \subset J\), we denote by \(\tilde{W}_J^K\) the minimal coset representatives of the set \(\tilde{W}_J/\tilde{W}_K\) of all right cosets. If \(J = I\) we denote it simply by \(\tilde{W}_I^K\). Note that each element \(w \in \tilde{W}_J\) can be uniquely written as \(w^Kw_K\) with \(w^K \in \tilde{W}_J^K\) and \(w_K \in \tilde{W}_K\), where \(w^K\) is a unique element of the smallest length in the right coset \(w \tilde{W}_K\). Moreover, we have

\[
\tilde{W}_J^K = \{w \in \tilde{W}_J | w(x_j) > 0 \text{ for all } j \in K\},
\]

and \(\tilde{W}_J^K\tilde{W}_K^L = \tilde{W}_J^{L^c}\) if \(L \subset K \subset J\). In addition, we set

\[
\tilde{\Delta}_J^K := \tilde{\Delta}_J \setminus \tilde{\Delta}_K, \quad \tilde{J}_J^K := \tilde{J}_J \cap \tilde{J}_K.
\]

In the case where \(J = \tilde{I}\), we remove \(J\) from the symbols above.
LEMMA 4.1. (1) The following equality holds:

\[A_{j_+} = \left\{ \varepsilon = \sum_{j \in J} m_j z_j \in A_{j_+} \mid m_j \in \mathbb{Z}_{\geq 0} \text{ for some } j \in J \setminus K \right\}. \]

(2) We have \(A_{j_+} + A_{j_+} \subset A_{j_+} \) and \(A_{j_+} + A = A_{j_+} \).

(3) For each \(v \in \hat{W}_J \), we have \(v A_{j_+} = A_{j_+} \).

(4) Let \(K_1 \) and \(K_2 \) be subsets of \(J \), and let \(w_1 \) and \(w_2 \) be elements of \(\hat{W}_J \).

Then the following two conditions are equivalent:

(i) \(w_1 A_{j_+} \subset w_2 A_{j_+} \);
(ii) \(K_1 \supset K_2 \), \(w_1 \in w_2 \hat{W}_K \).

Proof. (1) This is straightforward from the definition.

(2) This follows immediately from (1).

(3) Let \(\varepsilon \) be an element of \(A_{j_+} \), and write \(\varepsilon = \sum_{j \in J} m_j z_j \) with \(m_j \in \mathbb{Z}_{\geq 0} \) for all \(j \in J \) and \(m_j > 0 \) for some \(j \in J \setminus K \). Since \(v(z_j) \in z_j + \sum_{k \in K} z_k \) for each \(j \in J \setminus K \), we have \(v(\varepsilon) = \sum_{j \in J \setminus K} m_j z_j + \sum_{k \in K} m_k z_k \in A \) with \(m_k \in \mathbb{Z} \), which implies that \(v(\varepsilon) \in A_{j_+} \) since \(m_k > 0 \). Thus \(v A_{j_+} \subset A_{j_+} \) for each \(v \in \hat{W}_K \), and hence \(v A_{j_+} = A_{j_+} \).

(4) Suppose that \(K_1 \supset K_2 \) and \(w_1 = w_2 v \) with \(v \in \hat{W}_K \). Then, by (3) we have \(w_1 A_{j_+} \subset w_2 A_{j_+} \). Conversely, suppose that \(w A_{j_+} \subset A_{j_+} \) with \(w = w_2^{-1} w_1 \). Then we have \(w K_1 A_{j_+} \subset A_{j_+} \) by (3), and hence \(w K_1 (z_j) > 0 \) for all \(j \in J \setminus K_1 \) since \(\hat{W}_J \) is closed. Moreover, \(w K_1 (z_k) > 0 \) for all \(k \in K_1 \) since \(w_1 \) is an element of \(\hat{W}_K \). Thus \(w K_1 (z_j) > 0 \) for all \(j \in J \), and hence \(w K_1 = 1 \) and \(w = w_1 \in \hat{W}_K \). Therefore \(A_{j_+} = w A_{j_+} \subset A_{j_+} \), which implies that \(K_1 \supset K_2 \).

Definition 4.2. Let \(J \) be a non-empty subset of \(\hat{1} \).

(1) A subset \(P \subset A \) is called a closed set if it satisfies the condition that if \(\varepsilon, \eta \in P \), \(\varepsilon + \eta \in P \) (cf. [2, §1.7]). We call a subset \(P \subset A \) a coclosed set in \(A \) if \(A \setminus P \) is a closed set, and call a subset \(P \subset A \) a biclosed set in \(A \) if both \(P \) and \(A \setminus P \) are closed sets.

(2) We call a subset \(P \subset A \) a parabolic set in \(A \) if \(P \) is a closed set such that \(P \cup (-P) = A \) (cf. [2]).

(3) A subset \(P \subset A \) is called a symmetric set if \(P = -P \) (cf. [2]).

(4) We call a subset \(P \subset A \) a pointed set if \(P \cap (-P) = \emptyset \).

Proposition 4.3 ([2]). The following three conditions are equivalent:

(i) \(P \) is a parabolic set in \(A \);

(ii) \(P \) is a closed subset of \(A \) such that \(P \supset w A_{j_+} \) for some \(w \in \hat{W}_J \);

(iii) \(P = w A_{j_+} \cap A_{K_+} \) for some \(K \subset J \) and \(w \in \hat{W}_J \).

Proposition 4.4 ([2]). If \(P \) is a pointed closed subset of \(A \), then there exists an element \(w \in \hat{W}_J \) such that \(w P \subset A \).
Proposition 4.5. Let P be a subset of \hat{A}. Then there exist a unique symmetric subset $P_s \subset P$ and a unique pointed subset $P_p \subset P$ such that $P = P_p \amalg P_s$. Moreover, if P is closed then both P_s and P_p are closed sets satisfying

$$P_p + P_s \subset P_p.$$ \hspace{1cm} (4.1)

Proof. Suppose that there exist a symmetric subset $P_s \subset P$ and a pointed subset $P_p \subset P$ such that $P = P_p \amalg P_s$. Then we have

$$P_s = \{e \in P \mid -e \in P\},$$ \hspace{1cm} (4.2)

$$P_p = \{e \in P \mid e \not\in \hat{A}\ \partial P\}.$$ \hspace{1cm} (4.3)

This proves the uniqueness of the decomposition. On the other hand, it is easy to see that the above subsets give the desired decomposition of P.

In addition, we suppose that P is closed. Let e and η be elements of P_s such that $e + \eta \in \hat{A}$. Then we have $e + \eta \in P$ and $-e, -\eta \in P$. Thus we get $-(e + \eta) \in P$, and hence $e + \eta \in P_s$. Therefore P_s is closed.

We next prove (4.1). Suppose that $e + \eta \in P_s$ for some $e \in P_p$ and $\eta \in P_s$. Then $e = (e + \eta) + (\eta - e) \in P_s$, since P_s is closed and $-\eta \in P_s$. This is a contradiction. Hence, (4.1) is valid.

Suppose that $e + \eta \in P_s$ for some $e, \eta \in P_p$. Then, since $-e - \eta \in P_s$, we have $-e = \eta + (-e - \eta) \in P_p$ by (4.1). This contradicts $P_p \cap (-P_p) = \emptyset$. Thus we get $e + \eta \in P_p$ for each $e, \eta \in P_p$ satisfying $e + \eta \in \hat{A}$. Therefore P_p is closed.

\[\square \]

Proposition 4.6. The following four conditions are equivalent:

(i) P is a pointed biclosed set in \hat{A};
(ii) P is a pointed coclosed set in \hat{A};
(iii) P is a subset of \hat{A} such that $\hat{A} \ \partial P$ is a parabolic set in \hat{A};
(iv) $P = u_{\hat{A} \ \partial P}$ for some unique $K \subset J$ and unique $u \in \hat{W}_J^K$.

Proof. (i) \Rightarrow (ii) It is Clear.

(ii) \Rightarrow (iii) It is clear that $P \subset \hat{A}$. By Proposition 4.5, we have

$$\hat{A} = P_p \amalg P_s \amalg (\hat{A} \ \partial P)_p \amalg (\hat{A} \ \partial P)_s,$$ \hspace{1cm} (4.4)

where P_s (resp. $(\hat{A} \ \partial P)_s$) is the symmetric part of P (resp. $\hat{A} \ \partial P$) and P_p (resp. $(\hat{A} \ \partial P)_p$) is the pointed part of P (resp. $\hat{A} \ \partial P$). Then we have

$$-P_p = (\hat{A} \ \partial P)_p.$$ \hspace{1cm} (4.5)

Indeed, if $e \in P_p$ then we have $-e \in \hat{A} \ \partial P$ and $-(e) \in P$ by (4.2), and hence $-e \in (\hat{A} \ \partial P)_p$ by (4.3). Thus $-P_p \subset (\hat{A} \ \partial P)_p$. Similarly we have $-(\hat{A} \ \partial P)_p \subset P_p$.

\[\square \]
By (4.5), we have $-(\mathcal{A}_J \setminus P) = P \cup (\mathcal{A}_J \setminus P)$. Moreover, we have $P_i = \emptyset$ since P is pointed. Thus we get $\mathcal{A}_J = -(\mathcal{A}_J \setminus P) \cup (\mathcal{A}_J \setminus P)$ by (4.4), and hence $\mathcal{A}_J \setminus P$ is a parabolic set in \mathcal{A}_J.

(iii) \Rightarrow (iv) By Proposition 4.3, there exist a subset $K \subset J$ and an element $w \in W_J$ such that $\mathcal{A}_J \setminus P = w(\mathcal{A}_J \setminus P)$. Then $P = w^K \mathcal{A}_J$ since $P \subset \mathcal{A}_J$, and hence $P = w^K \mathcal{A}_J$ by Lemma 4.1(3). The uniqueness follows from Lemma 4.1(4).

(iv) \Rightarrow (i) It is clear that $w\mathcal{A}_J$ is pointed. By Lemma 4.1(2), we have $w\mathcal{A}_J \subset w\mathcal{A}_J$, and hence $w\mathcal{A}_J$ is closed. Moreover, by Lemma 4.1(2) we have $u\mathcal{A}_J + w\mathcal{A}_J \subset u\mathcal{A}_J$, and $u\mathcal{A}_J \subset u\mathcal{A}_J$. In addition, $u\mathcal{A}_J$ is closed. Thus $\mathcal{A}_J \setminus u\mathcal{A}_J$ is closed, since $\mathcal{A}_J \setminus u\mathcal{A}_J = u\mathcal{A}_J \cup u\mathcal{A}_J$, \square

5. The construction of biconvex sets

In this section, we give several methods of constructing biconvex sets for the root system of an arbitrary untwisted affine Lie algebra.

Definition 5.1. For each $\varepsilon \in \hat{A}$ and $P \subset \hat{A}$, we define subsets $\langle \varepsilon \rangle, \langle P \rangle \subset \mathcal{A}^{re}_+$ by setting

$$\langle \varepsilon \rangle := \{ m\delta + \varepsilon \mid m \in \mathbb{Z}_{\geq 0}\} \cap \mathcal{A}^{re}_+, \quad \langle P \rangle := \prod_{\varepsilon \in P} \langle \varepsilon \rangle.$$

Lemma 5.2. (1) Let P be a subset of \hat{A}, and x an element of W. Then

(i) $\langle P \rangle = \{ \beta \in \mathcal{A}_+ \mid \bar{\beta} \in P \}$; (ii) $\bar{x} \langle P \rangle \subset xP$; (iii) $x\langle P \rangle = \langle xP \rangle$.

(2) For subsets $P, P' \subset \hat{A}$, the following three conditions are equivalent:

(i) $P \subset P'$; (ii) $\langle P \rangle \subset \langle P' \rangle$; (iii) $\langle P \rangle \subset \langle P' \rangle$.

Proof. (1) The (i) is straightforward from the definition. To prove (ii), suppose that $\beta \in \langle P \rangle$. Then $\bar{\beta} \in P$ by (i), hence $\bar{x} \langle \beta \rangle = \bar{x} (\bar{\beta}) \in \bar{x} P$. Thus (ii) is valid. We prove (iii). Write $x = t_\lambda \bar{x}$ with $\lambda \in \hat{Q}^\vee$. Then we have $x(m\delta + \varepsilon) = (m - (\bar{x} \varepsilon | \lambda))\delta + \bar{x} \varepsilon$ for all $m \in \mathbb{Z}_{\geq 0}$ and $\varepsilon \in P$. Thus we get $x(m\delta + \varepsilon) \in \langle x\varepsilon \rangle$ for all $m > (\bar{x} \varepsilon | \lambda)$, and hence $x\langle \varepsilon \rangle = x\langle \bar{x} \varepsilon \rangle$. Thus (iii) is valid.

(2) It is obvious. \square

Definition 5.3. For each subset $J \subset \hat{I}$, we set

$$\mathcal{A}_J^{re} := \langle \mathcal{A}_J \rangle, \quad \mathcal{A}_J := \mathcal{A}_J^{re} \cup \mathcal{A}_J^{im},$$

$$\mathcal{A}_J^{re} := \mathcal{A}_J^{re} \cap \mathcal{A}_+ \cap \mathcal{A}_-,$$

$$\mathcal{A}_J := \mathcal{A}_J \cap \mathcal{A}_\pm.$$
We define W_J to be the subgroup of W generated by the set $\{ s_x | x \in A_J^{\sigma} \}$. Let \mathfrak{B}_J be the set of all finite biconvex sets in A_{J+} and \mathfrak{B}_J^{∞} the set of all infinite real biconvex sets in A_{J+}. We set $\mathfrak{B}_J^{+} := \mathfrak{B}_J \cup \mathfrak{B}_J^{\infty}$.

For each non-empty subset $J \subset \mathfrak{I}$, let
\[\hat{A}_J = \prod_{c=1}^{C(J)} \hat{A}_{J_c} \]
be the irreducible decomposition of \hat{A}_J with $C(J)$ the number of the irreducible components. For each $c = 1, \ldots, C(J)$, we denote by θ_{J_c} the highest root of \hat{A}_{J_c} relative to the root basis \hat{H}_{J_c}, and set
\[\Pi_{J_c} := \hat{H}_{J_c} \Pi \{ \delta - \theta_{J_c} \}, \quad \Pi_J := \prod_{c=1}^{C(J)} \Pi_{J_c}, \]
\[b_{J_c}^\sigma := \text{span}_Q \Pi_{J_c}, \quad S_J := \{ s_x | x \in \Pi_J \}. \]

For each $s \in S_J$, we denote by x_s a unique element of Π_J such that $s = s_{x_s}$. Note that
\[A_J^{\sigma} = \prod_{c=1}^{C(J)} A_{J_c}^{\sigma}, \quad W_J = \prod_{c=1}^{C(J)} W_{J_c}, \quad b_{J_c}^\sigma = b_{J_c}^* \oplus Q\delta. \]

We set $Q_J := \bigoplus_{J \subset \mathfrak{I}} \mathbb{Z} \hat{a}_J$ and $T_J := \{ t_x | x \in Q_J \}$. Then $W_J = \hat{W}_J \times T_J$ (see Lemma 3.1). For the sake of notational convenience, we also set $\Pi_{\emptyset} := \emptyset$, $S_{\emptyset} := \emptyset$, $W_{\emptyset} := \{ 1 \} \subset W$, and $b_{\emptyset}^\sigma := \{ 0 \} \subset b^\sigma$.

Proposition 5.4. For each non-empty subset $J \subset \mathfrak{I}$, the pair (W_J, S_J) is a Coxeter system and the triplet (b_J^σ, A_J, Π_J) is a root system of (W_J, S_J) over Q with the properties $Q\text{R}(v)$ and $Q\text{R}(vi)$.

Proof. Thanks to Theorem 2.2, it suffices to show that the triplet (b_J^σ, A_J, Π_J) satisfies the six conditions $Q\text{R}(i) - Q\text{R}(vi)$. The conditions $Q\text{R}(i)$, $Q\text{R}(iv)$, and the first equality in $Q\text{R}(iii)$ are obvious. By definition, we have
\[A_J = A_{J-} \Pi A_{J+}, \quad A_{J-} = -A_{J+}, \quad A_{J+} = \bigcup_{c=1}^{C(J)} A_{J_c}. \]
Hence, to check the condition $Q\text{R}(ii)$, it suffices to show that each element of A_{J+} can be written as $\sum_{x \in \Pi_J} x_x \alpha$ with $x_x \in \mathbb{Z}_{\geq 0}$ for all $\alpha \in \Pi_J$. We have
\[m\delta - \theta_{J_c} = (\delta - \theta_{J_c}) + (m-1)\delta \] (5.1)
for each $m \in \mathbb{Z}_{\geq 2}$, and
\[m\delta - \epsilon = \{ m\delta - (\epsilon + x_j) \} + x_j \] (5.2)
for each $m \in \mathbb{Z}_{\geq 1}$ and $\epsilon \in \hat{A}_{J_c} \setminus \{ \theta_{J_c} \}$, where $j \in J_c$ such that $\epsilon + x_j \in \hat{A}_{J_c}$. If $\beta \in A_{J+c} \setminus \Pi_{J_c}$ satisfies $\bar{\beta} \in A_{J+c}$, then we have either
\[\beta = m\delta + \bar{\beta} \text{ with } m \geq 1 \quad \text{or} \quad \beta = \bar{\beta} = \varepsilon + \eta \text{ with } \varepsilon, \eta \in A_{1+}. \quad (5.3) \]

In addition, we have

\[\delta = (\delta - \theta_{J+}) + \theta_{J} \quad \text{and} \quad m\delta = (m - 1)\delta + \delta \quad (5.4) \]

for each \(m \in Z_{\geq 2} \). By (5.1)-(5.4), we see that each element of \(A_{1+} \setminus \Pi_{J} \) can be written as \(\beta + \gamma \) with \(\beta, \gamma \in A_{1+} \). Hence, by induction on values of elements of \(A_{1+} \) by the height function \(h : A_{+} \rightarrow N \), we see that each element of \(A_{1+} \) can be written as a \(Z_{\geq 0} \)-linear combination of \(\Pi_{J} \). Thus \(Q_{R}(ii) \) and \(Q_{R}(v) \) are satisfied, and \(Q_{R}(vi) \) is clear since \(h|_{A_{1+}} \) satisfies the required property in \(Q_{R}(vi) \). Finally, we check the second equality in \(Q_{R}(iii) \). Suppose that \(x_{s_{0}} \in \Pi_{J_{s}} \) with \(s_{0} \in S_{J} \). Since \(N x_{s_{0}} \cap A_{1+} = \{ x_{s_{0}} \} \), each element of \(A_{1+} \setminus \{ x_{s_{0}} \} \) can be written as \(\sum_{s \in S_{J}} x_{s} x_{s} \) with \(x_{s} \in Z_{\geq 0} \) for all \(s \in S_{J} \) and \(x_{s_{0}} > 0 \) for some \(s_{1} \neq s_{0} \). This fact implies that \(s_{0}(A_{1+} \setminus \{ x_{s_{0}} \}) = A_{1+} \setminus \{ x_{s_{0}} \} \). Thus the second equality in \(Q_{R}(iii) \) is valid, since \(s_{0} \) fixes pointwise \(A_{1+} \setminus A_{1+} \).

Corollary 5.5. Let \(J \) be an arbitrary non-empty subset of \(\mathbb{I} \).

1. The assignment \(y \mapsto \Phi_{J}(y) := \Phi(y) \cap A_{1+} \) defines a bijective mapping from \(W_{J} \) to \(B_{J} \).

2. Suppose that \(y = s_{1}s_{2}\cdots s_{n} \) with \(n \in N \) and \(s_{1}, s_{2}, \ldots, s_{n} \in S_{J} \) is a reduced expression of an element \(y \in W_{J} \setminus \{1\} \). Then the following equality holds:

\[\Phi_{J}(y) = \{ x_{s_{1}}, s_{1}(x_{s_{2}}), \ldots, s_{1}\cdots s_{n-1}(x_{s_{n}}) \}, \]

where the elements of \(\Phi_{J}(y) \) displayed above are distinct from each other. In particular, \(\#\Phi_{J}(y) = \ell_{J}(y) \), where \(\ell_{J} : W_{J} \rightarrow Z_{\geq 0} \) is the length function of \((W_{J}, S_{J}) \).

Proof. Since \(\Phi_{J}(y) = \{ \beta \in A_{1+} \mid \nu^{-1}(\beta) < 0 \} \), the part (1) follows from Theorem 2.6 and Proposition 5.4. The part (2) follows from Theorem 2.2 and Proposition 5.4.

Remarks. (1) An assertion similar to the part (1) of Corollary 5.5 was stated by P. Cellini and P. Papi in the proof of Theorem 3.12 in [11] with an outline of the proof. However, it seems that the detailed proof was not given in the paper.

(2) By Corollary 5.5(2) and the remark (1) below Theorem 2.2, the action of \(W_{J} \) on \(b_{J}^{\nu} \) is faithful, and hence we may regard \(W_{J} \) as a subgroup of \(GL(b_{J}^{\nu}) \).

Definition 5.6. For each \(w \in W_{J} \) and \(K \subseteq J \), we set

\[A_{J}^{K}(w, \pm) := \langle wA_{J}^{K} \rangle. \]
We denote it simply by $A_J(w, \pm)$ if $K = \emptyset$, by $A^K_J(w, \pm)$ if $J = \hat{I}$, and by $A(w, \pm)$ if $K = \emptyset$ and $J = I$.

Lemma 5.7. (1) The set $A^K_J(w, \pm)$ is an infinite set if and only if $K \subsetneq J$.

(2) For each $u \in \hat{W}^K_J$ and $v \in \hat{W}_K$, we have

\[
A^K_J(uv, \pm) = A^K_J(u, \pm), \tag{5.5}
\]

\[
A^K_J(u, -) = \Phi(u) \Pi uA^K_J(1, -), \tag{5.6}
\]

\[
A^{*c}J^c = A^K_J(u, -) \Pi uA_J^c(1, -) \Pi A^K_J(u, +). \tag{5.7}
\]

Proof. (1) This follows from the fact that A^K_J is not empty if and only if $K \subsetneq J$.

(2) By Lemma 4.1(3), we have $uvA^K_J = uA^K_J$, which implies (5.5). By definition, we have

\[
A^K_J(u, -) = (A^K_J \cap uA^K_J) \Pi \{m \delta + \varepsilon \mid m \in \mathbb{N}, \varepsilon \in uA^K_J\}
\]

\[= (A^K_J \cap uA^K_J) \Pi uA^K_J(1, -).\]

Moreover, since $u \in \hat{W}^K_J$ we have $uA^K_J \subset A_-$, and hence $\Phi(u) = A^K_J \cap uA^K_J$. Thus (5.6) is valid. By definition, we have

\[A^{*c}J^c = \langle A_J \rangle, \quad A^K_J(u, \pm) = \langle uA^K_J \rangle, \quad uA_J^c = \langle uA_K \rangle.
\]

Thus (5.7) is valid, since $A_J = uA^K_J \Pi uA^K_J \Pi uA_J^c$.

Note that A_J is a convex set if and only if $B \subset A_J$ is a convex set in A_J if and only if B is a convex set (see Lemma 2.5(3)).

Proposition 5.8. Let P be a subset of A, and J a non-empty subset of I.

(1) If P is a closed set, then $\langle P \rangle \Pi A_{+}^{im}$ is a convex set.

(2) If P is a pointed closed set, then $\langle P \rangle$ is a real convex set.

(3) If P is a pointed biclosed set in A_J, then $\langle P \rangle$ is a real biconvex set in A_{+}^{im}.

Proof. (1) Suppose that $\beta + \gamma \in A_{+}$ with $\beta, \gamma \in \langle P \rangle \Pi A_{+}^{im}$. Then $\tilde{\beta}, \tilde{\gamma} \in P \Pi \{0\}$ and $\tilde{\beta} + \tilde{\gamma} \in A \Pi \{0\}$. Since P is closed, we have $\tilde{\beta} + \tilde{\gamma} \in P \Pi \{0\}$, and hence $\beta + \gamma \in \langle P \rangle \Pi A_{+}^{im}$ by (1) of Lemma 5.2(1). Thus $\langle P \rangle \Pi A_{+}^{im}$ is a convex set.

(2) It is clear that $\langle P \rangle \subset A_{+}^{im}$. Suppose that $\beta + \gamma \in A_{+}$ with $\beta, \gamma \in \langle P \rangle$. Then $\tilde{\beta}, \tilde{\gamma} \in P$ and $\tilde{\beta} + \tilde{\gamma} \in A \Pi \{0\}$. If $\tilde{\beta} + \tilde{\gamma} = 0$ then $\tilde{\beta} = -\tilde{\gamma} \in P \cap (-P)$. This contradicts $P \cap (-P) = \emptyset$. Thus we get $\tilde{\beta} + \tilde{\gamma} \in A$. Since P is closed, we have $\tilde{\beta} + \tilde{\gamma} \in P$, and hence $\beta + \gamma \in \langle P \rangle$ by (1) of Lemma 5.2(1). Therefore $\langle P \rangle$ is a real convex set.
(3) Since P is a pointed closed set, it follows from (2) that $\langle P \rangle$ is a real convex set. Since P is a biclosed set in A_J, the set $A_J \setminus P$ is a closed set. Thus, by (1), we see that $A_J^+ \setminus \langle P \rangle$ is a convex set, since $A_J^+ \setminus \langle P \rangle = \langle A_J \setminus P \rangle \cap A_J^{in}$.

Corollary 5.9. Let K be a subset of J, and u an element of W_J^K. Then

(i) uA_{K^+} is a convex set; (ii) $A_{J^+}^K(u, \pm)$ is a real biconvex set in A_{J^+}.

Proof. We have $uA_{K^+} = \langle uA_K \rangle \cap A_J^{in}$. Since uA_K is a closed set, (i) follows from Proposition 5.8(1). It follows from Proposition 4.6 that $uA_{K^+}^K$ is a pointed biclosed set in A_J, hence (ii) follows from Proposition 5.8(3). □

Lemma 5.10. For $K \subset J$ and $u \in W_J^K$, we have $A_{J^+}^K(u, \pm) + uA_{K^+} \subset A_J^K(u, \pm)$.

Proof. Suppose that $\beta + \gamma \in A_J^+$ with $\beta \in A_{J^+}^K(u, \pm)$ and $\gamma \in uA_{K^+}$. Then we have $\beta \in uA_{J^+}^K$, $\gamma \in uA_{J^+}^K \cap \{0\}$, and $\beta + \gamma \in A_J^+ \cap \{0\}$. Thus we get $\beta + \gamma \in uA_{J^+}^K$ by Lemma 4.1(2), and hence $\beta + \gamma \in A_{J^+}^K(u, \pm)$ by (i) of Lemma 5.2(1). □

Proposition 5.11. Let K be a subset of J, and u an element of W_J^K.

(1) If C is a convex set in uA_{K^+}, then $C \cap A_J^K(u, \pm)$ is a convex set in A_{J^+}.

(2) If C is a biconvex set in uA_{K^+}, then $C \cap A_J^K(u, \pm)$ is a biconvex set in A_{J^+}.

Proof. (1) It follows from (ii) of Corollary 5.9 that $A_J^K(u, \pm)$ is a convex set in A_{J^+}. Thus the assertion follows from Lemma 2.5(4) and Lemma 5.10.

(2) By the equality (5.7), we have

$$A_J^+ \setminus \{C \cap A_J^K(u, -)\} = (uA_{K^+} \setminus C) \cap A_J^K(u, +).$$

Since both C and $uA_{K^+} \setminus C$ are convex sets in uA_{K^+}, we see that both $C \cap A_J^K(u, -)$ and $(uA_{K^+} \setminus C) \cap A_J^K(u, +)$ are convex sets in A_J by (1), hence $C \cap A_J^K(u, -)$ is a biconvex set in A_{J^+}. To prove of the assertion for $C \cap A_J^K(u, +)$, it suffices to exchange the sign $A_J^J(u, -)$ for $A_J^J(u, +)$.

□

6. A parametrization of infinite real biconvex sets

In this section, we give a parametrization of the set B_J^{∞} of all infinite real biconvex sets in A_{J^+} for each non-empty subset $J \subset I$.

Lemma 6.1. (1) If B is a real coconvex set in A_{J^+}, then for each $\epsilon \in \hat{A}_J$ we have either $\langle \epsilon \rangle \subset B$ or $\langle \epsilon \rangle \subset (\hat{A}_J^\epsilon)^\infty \setminus B$.

(2) If B is a real biconvex set in A_{J^+} and a subset $P \subset A_{J^+}$ satisfies $\langle P \rangle \subset B$, then we have $\langle P \rangle \subset B$ and $\langle -P \rangle \cap B = \emptyset$.

PROOF. (1) Suppose that there exists \(m \in \mathbb{Z}_{\geq 0} \) such that \(m\delta + \varepsilon \in \Delta_{\mathbb{R}^+} \setminus B \). Since \(B \subset \Delta_{\mathbb{R}^+} \) we have \(\Delta_{\mathbb{R}^+} \subset \Delta_{\mathbb{R}^+} \setminus B \). Thus we get \((m + l)\delta + \varepsilon \in \Delta_{\mathbb{R}^+} \setminus B \) for all \(l \in \mathbb{N} \) by the convexity of \(\Delta_{\mathbb{R}^+} \setminus B \), and hence \(\langle \varepsilon \rangle \in \Delta_{\mathbb{R}^+} \setminus B \).

(2) By (1), we have \(\langle P \rangle \subset B \). Suppose that \(\langle -P \rangle \cap B \neq \emptyset \). Then there exists an element \(\varepsilon \in P \) such that \(m\delta - \varepsilon \in B \) for some \(m \in \mathbb{Z}_{\geq 0} \). Moreover, we have \(\delta + \varepsilon \in B \) since \(\langle \varepsilon \rangle \subset B \). By the convexity of \(B \), we have \((m + 1)\delta = (m\delta - \varepsilon) + (\delta + \varepsilon) \in B \). This contradicts \(B \subset \Delta_{\mathbb{R}^+} \). Hence we have \(\langle -P \rangle \cap B = \emptyset \). \(\Box

Proposition 6.2. Let \(B \) be a real convex set in \(\hat{\Delta}_{\mathbb{R}} \), and set

\[
\bar{B} := \{ \bar{\beta} \mid \beta \in B \}, \quad P_B := \{ \varepsilon \in \hat{\Delta}_{\mathbb{R}} \mid \langle \varepsilon \rangle \subset \bar{B} \}.
\]

Then both \(\bar{B} \) and \(P_B \) are pointed closed subsets of \(\hat{\Delta}_{\mathbb{R}} \) such that \(P_B \subset B \). Moreover, if \(B \) is a real biconvex set in \(\hat{\Delta}_{\mathbb{R}} \), then \(P_B \) is a pointed biclosed set in \(\hat{\Delta}_{\mathbb{R}} \).

PROOF. It is clear that \(\bar{B}, P_B \subset \hat{\Delta}_{\mathbb{R}} \). Suppose that \(\varepsilon + \eta \in \hat{\Delta}_{\mathbb{R}} \) with \(\varepsilon, \eta \in \bar{B} \). By definition, there exist \(\beta, \gamma \in B \) such that \(\bar{\beta} = \bar{\varepsilon}, \bar{\gamma} = \bar{\eta} \). By the convexity of \(B \), we have \(\beta + \gamma \in B \), and hence \(\varepsilon + \eta = \bar{\beta} + \bar{\gamma} \in \bar{B} \). Thus \(\bar{B} \) is a closed set. Suppose that \(\varepsilon + \eta \in \hat{\Delta}_{\mathbb{R}} \) with \(\varepsilon, \eta \in P_B \). By definition, we have \(\langle \varepsilon \rangle, \langle \eta \rangle \subset B \), and hence there exist \(m, n \in \mathbb{Z}_{\geq 0} \) such that \((m + k)\delta + \varepsilon \in B \) and \((n + k)\delta + \eta \in B \) for all \(k \in \mathbb{Z}_{\geq 0} \). By the convexity of \(B \), we have \((m + n + k)\delta + \varepsilon + \eta \in B \) for all \(k \in \mathbb{Z}_{\geq 0} \). Thus we get \(\langle \varepsilon + \eta \rangle \subset B \), and hence \(\varepsilon + \eta \in P_B \). Therefore \(P_B \) is a closed set. Suppose that \(\varepsilon \in \bar{B} \cap (-\bar{B}) \). Then we have \(\varepsilon, -\varepsilon \in \bar{B} \). Hence we may assume that \(\varepsilon \in \bar{B} \cap \hat{\Delta}_{\mathbb{R}} \). Then there exist \(m \in \mathbb{Z}_{\geq 0} \) and \(n \in \mathbb{N} \) such that \(m\delta + \varepsilon, n\delta - \varepsilon \in B \). By the convexity of \(B \), we have \((m + n)\delta = (m\delta + \varepsilon) + (n\delta - \varepsilon) \in B \). This contradicts \(B \subset \Delta_{\mathbb{R}^+} \). Thus we get \(\bar{B} \cap (-\bar{B}) = \emptyset \). Moreover, by definition, we have \(P_B \subset \bar{B} \), and hence \(P_B \cap (-P_B) = \emptyset \).

Next we prove the second assertion. It suffices to show that \(P_B \) is a coclosed set in \(\hat{\Delta}_{\mathbb{R}} \). By the definition of \(P_B \) and Lemma 6.1(1), we see that

\[
P_B = \{ \varepsilon \in \hat{\Delta}_{\mathbb{R}} \mid \langle \varepsilon \rangle \subset B \}, \quad \hat{\Delta}_{\mathbb{R}} \setminus P_B = \{ \varepsilon \in \hat{\Delta}_{\mathbb{R}} \mid \langle \varepsilon \rangle \subset \Delta_{\mathbb{R}^+} \setminus B \}.
\]

(6.1)

Suppose that \(\varepsilon + \eta \in \hat{\Delta}_{\mathbb{R}} \) with \(\varepsilon, \eta \in \hat{\Delta}_{\mathbb{R}} \setminus P_B \). Then \(\langle \varepsilon \rangle, \langle \eta \rangle \subset \Delta_{\mathbb{R}^+} \setminus B \) by (6.1). By the convexity of \(\hat{\Delta}_{\mathbb{R}} \setminus B \), we have \(\langle \varepsilon + \eta \rangle \subset \Delta_{\mathbb{R}^+} \setminus B \), and hence \(\varepsilon + \eta \in \hat{\Delta}_{\mathbb{R}} \setminus P_B \). Thus \(P_B \) is a coclosed set in \(\hat{\Delta}_{\mathbb{R}} \). \(\Box

Proposition 6.3. Let \(\mathcal{J} \) be an arbitrary non-empty subset of \(\hat{\mathcal{I}} \).

(1) If \(B \) is a real convex set in \(\hat{\Delta}_{\mathbb{R}} \), then there exists an element \(w \in \hat{W}_{\mathcal{J}} \) such that \(B \subset \hat{\Delta}_{\mathbb{R}}(w, -) \).

(2) The assignment \(w \mapsto \hat{\Delta}_{\mathbb{R}}(w, -) \) defines a bijective mapping from \(\hat{W}_{\mathcal{J}} \) to the set \(\mathfrak{M} \) of all maximal real convex sets in \(\hat{\Delta}_{\mathbb{R}} \) (relative to the inclusion relation). Moreover, \(\mathfrak{M} \) coincides with the set of all maximal real biconvex sets in \(\hat{\Delta}_{\mathbb{R}} \).
PROOF. (1) It follows from Proposition 6.2 that B is a pointed closed subset of A_J. Hence, by Proposition 4.4, there exists an element $w \in W_J$ such that $B \subset wA_{J-}$. Then the following inclusion relation holds:

$$B \subset \langle B \rangle \subset \langle wA_{J-} \rangle = A_{J(w,-)}.$$

(2) It follows from Corollary 5.9 that $A_{J(w,-)}$ is a real biconvex set in A_{J+} for each $w \in W_J$. In particular, $A_{J(w,-)}$ is a real convex set in A_{J+}. To prove the maximality of $A_{J(w,-)}$, suppose that $A_{J(w,-)} \subset B$ for some real convex set B in A_{J+}. By (1), there exists an element $w' \in W_J$ such that $B \subset A_{J(w',-)}$. Since $A_{J(w,-)} \subset A_{J(w',-)}$, we see that $wA_{J-} \subset w'A_{J-}$, which implies that $w = w'$, and hence $A_{J(w,-)} = B$. Therefore $A_{J(w,-)}$ is a maximal real convex set in A_{J+}. Moreover, by the argument above, the injectivity of the mapping is obvious. Finally, we prove the surjectivity of the mapping. Let B be a maximal real convex set in A_{J+}. By (1), there exists an element $w \in W_J$ such that $B \subset A_{J(w,-)}$. The maximality of B implies that $B = A_{J(w,-)}$. \hfill \Box

PROPOSITION 6.4. Let J be an arbitrary non-empty subset of \bar{I}, and B a real biconvex set in A_{J+}. Then there exist a unique subset $K \subset J$ and a unique element $u \in W_J^K$ such that $A_J^K(u,-) \subset B$ and $B \supseteq A_J^K(u,-)$. Moreover, B is an infinite set if and only if $K \subseteq J$.

PROOF. It follows from Proposition 6.2 that P_B is a pointed biclosed subset of A_J. Hence, by Proposition 4.6, there exist a unique subset $K \subset J$ and a unique element $u \in W_J^K$ such that $P_B = uA_J^K$. By (6.1), we see that $\langle u \rangle \subset B$ for each $u \in uA_J^K$ and that $\langle u \rangle \subset A_J^K \setminus B$ for each $u \in A_J \setminus uA_J^K$. Thus we get $A_J^K(u,-) \subset B$ and $B \supseteq A_J^K(u,-)$. The second assertion follows from Lemma 5.7(1). \hfill \Box

DEFINITION 6.5. For each non-empty subset $J \subset \bar{I}$, we set

$$\mathcal{P}_J := \left\{ (k, u, y) \mid K \subset J, u \in W_J^K, y \in W_K \right\},$$

$$\mathcal{P}_J := \left\{ (k, u, y) \in \mathcal{P}_J \mid K \subseteq J \right\},$$

where W_K is the subgroup of W defined in Definition 5.3. For each $(k, u, y) \in \mathcal{P}_J$, we define a subset $V_J(k, u, y) \subset A_J^+$ by setting

$$V_J(k, u, y) := A_J^K(u,-) \sqcup u\Phi_k(y).$$

Note that $V_J(k, u, y) = \Phi_J(y)$ if $K = J$ and that $V_J(k, u, y) = A_J(u,-)$ if $K = \emptyset$. In the case where $J = \bar{I}$, we remove J from the symbols above.

LEMMA 6.6. (1) For each $(k, u, y) \in \mathcal{P}_J$, the following equality holds:

$$V_J(k, u, y) = \Phi(u) \sqcup uV_J(k, 1, y).$$

Moreover, $V_J(k, u, y)$ is an infinite set if and only if $(k, u, y) \in \mathcal{P}_J$. \hfill (6.2)
(2) Let \((k_1, u_1, y_1)\) and \((k_2, u_2, y_2)\) be elements of \(\bar{\mathcal{P}}_J\). Then the following two conditions are equivalent:

(i) \(V_J(k_1, u_1, y_1) \subset V_J(k_2, u_2, y_2)\);
(ii) \(K_1 \supset K_2\), \(u_1 \in u_2\) \(\bar{W}_{K_1}\).

Proof. (1) By the equality (5.6), we have

\[
\Phi(u) \Pi uV_J(k, 1, y) = \Phi(u) \Pi uA_J(k, -) \Pi u\Phi(k(y)) = A_J(k, -) \Pi u\Phi(k(y)) = V_J(k, u, y).
\]

The second assertion follows from Lemma 5.7(1).

(2) The assertion follows from Lemma 4.1(4) and Lemma 5.2(2), since (i) is equivalent to the condition: \(A_J^{k_1}(u_1, -) \subset A_J^{k_2}(u_2, -)\).

Theorem 6.7. The assignment \((k, u, y) \mapsto V_J(k, u, y)\) defines a bijective mapping from \(\bar{\mathcal{P}}_J\) to \(\mathfrak{B}_J^*\), which maps \(\mathcal{P}_J\) onto \(\mathfrak{B}_J^c\).

Proof. For each \((k, u, y) \in \bar{\mathcal{P}}_J\), we see that \(u\Phi(k(y))\) is a biconvex set in \(uA_{K_1}\), and hence \(V_J(k, u, y)\) is a real biconvex set in \(A_{K_1}\) by Proposition 5.11(2). Thus the mapping \(V_J\) is well-defined. Moreover, we have \(V_J(\mathcal{P}_J) \subset \mathfrak{B}_J^c\) and \(V_J(\mathcal{P}_J \setminus \mathcal{P}_J) \subset \mathfrak{B}_J\) by the second assertion in Lemma 6.6(1). To prove the injectivity, suppose that \(V_J(k_1, u_1, y_1) = V_J(k_2, u_2, y_2)\). By Lemma 6.6(2), we have \(k_1 = k_2\) and \(u_1 \in u_2\) \(\bar{W}_{K_1}\), and hence \(u_1 = u_2\) since \(u_1, u_2 \in \bar{W}_{K_1}\). Thus we get \(A_J^{k_1}(u_1, -) = A_J^{k_2}(u_2, -)\) and \(\Phi(k_1(y_1)) = \Phi(k_2(y_2))\). By Corollary 5.5(1), we get \(y_1 = y_2\) and \((k_1, u_1, y_1) = (k_2, u_2, y_2)\). Finally, we prove the surjectivity. Suppose that \(B \in \mathfrak{B}_J\) \(\Pi \mathfrak{B}_J^c\). Then \(B \subset A_J^{\infty}\). By Proposition 6.4, there exist a subset \(K \subset J\) and an element \(u \in \bar{W}_K\) such that \(A_J^{K}(u, -) \subset B\) and \(B \subset A_J^{K}(u, -)\). Then \(B \cap uA_{K_1}^{\infty}\) is a finite biconvex set in \(uA_{K_1}\), since \(B \cap uA_{K_1}^{\infty} = B \cap uA_{K_1}\). By Corollary 5.5(1), there exists an element \(y \in W_K\) such that \(B \cap uA_{K_1}^{\infty} = u\Phi(K)(y)\). Moreover, we have \(B \cap A_{J}^{K}(u, +) = \emptyset\) by Lemma 6.1(2). Thus we get \((k, u, y) \in \bar{\mathcal{P}}_J\) and \(B = A_J^{K}(u, -) \Pi u\Phi(k(y)) = V_J(k, u, y)\) by (5.7).

7. Main theorem

In this section, we describe in detail relationships between the set \(\mathfrak{W}^\infty_J\) of all infinite reduced words of the Coxeter system \((W_J, S_J)\) and the set \(\mathfrak{B}_J^c\) of all infinite real biconvex sets in \(A_J\) for each non-empty subset \(J \subset \bar{I}\). Let \(W_J^\infty\) be the quotient set of \(\mathfrak{W}^\infty_J\) obtained by applying Definition 2.6 to the Coxeter system \((W_J, S_J)\), and \(\Phi_J^c : W_J^\infty \rightarrow \mathfrak{B}_J^c\) the injective mapping obtained by applying Definition 2.7(1) to the root system \((b_J^+, \Lambda_J, \Pi_J)\) of the Coxeter system \((W_J, S_J)\).

Proposition 7.1 ([1]). Let \(K\) be a proper subset of \(J\), and \(\lambda\) an element of the lattice \(\hat{Q}_J^\lambda\) (see Definition 5.3) such that \((\alpha_j | \lambda) > 0\) for all \(j \in J \setminus K\) and
In the case where J is an element of W_J^∞ such that $\Phi_J^\infty([s]) = A_J^K(1,-)$.

Remark. In [1], J. Beck showed the previous proposition in the case where $J = \emptyset$ and $K = \emptyset$.

Definition 7.2. For each proper subset K of J, we denote by Z_J^K the unique element of W_J^∞ such that $\Phi_J^\infty(Z_J^K) = A_J^K(1,-)$, and define a mapping $\chi_J : \mathcal{P}_J \to W_J^\infty$ by setting for each $(K, u, y) \in \mathcal{P}_J$:

$$\chi_J((K, u, y)) := uy. Z_J^K.$$

In the case where $J = \emptyset$, we remove J from the symbols above.

Lemma 7.3. For each $K \subseteq J$ and $y \in \hat{W}_J T_J$, we have

$$yA_J^K(1,-) = A_J^K(1,-), \quad (7.1)$$

$$yA_J^K(1,-) \setminus A_J^K(1,-), \quad (7.2)$$

$$\{ \Phi_J(y) \setminus (-A) \} \cap A_{K_+}^\infty = \Phi_J(y) \cap A_{K_+}^\infty, \quad (7.3)$$

where $A := yA_J^K(1,-) \cap A_{K_+}^\infty$.

Proof. Since $y \in \hat{W}_J$ we have $yA_J^K = A_J^K$ by Lemma 4.1(3). Hence (7.1) follows from (iii) of Lemma 5.2(1). Moreover, by (ii) of Lemma 5.2(1), we have

$$\overline{yA_J^K(1,-)} \subseteq A_J^K.$$

(7.4)

By the definition of A, we have

$$yA_J^K(1,-) \setminus A = yA_J^K(1,-) \cap A_{K_+}^\infty.$$

Thus (7.2) follows from (7.4). Moreover, by (7.4) we have

$$-A = (-yA_J^K(1,-)) \cap A_{K_+}^\infty \subseteq A_J^K(1,+),$$

and hence $(-A) \cap A_{K_+}^\infty = \emptyset$. Thus we get

$$\{ \Phi_J(y) \setminus (-A) \} \cap A_{K_+}^\infty = \Phi_J(y) \cap A_{K_+}^\infty.$$

Theorem 7.4. Let J be an arbitrary non-empty subset of \hat{I}.

(1) For each $x \in W_J$ and $K \subseteq J$, we have the following equality:

$$\Phi_J^\infty(x. Z_J^K) = V_J(K, s^K, z_x)$$

(7.5)
with a unique element \(z_x \in \mathbb{W}_K \) such that
\[
\Phi_J((x^K)^{-1}x) \cap \mathbb{A}_+ = \Phi_K(z_x).
\] (7.6)

(2) Both \(\Phi_J^* \) and \(x_J \) are bijective and the following diagram is commutative:

\[
\begin{array}{ccc}
\mathbb{B}_J^* & \xrightarrow{\Phi_J^*} & \mathbb{V}_J \\
\downarrow & & \downarrow \\
W_J^* & \xrightarrow{x_J} & \mathbb{P}_J.
\end{array}
\]

(3) We have the following orbit decomposition:

\[
W_J^* = \coprod_{K \in J} W_J Z_J^K.
\]

Proof. (1) Put \(y = (x^K)^{-1} \cdot x \). Then \(y \in \mathbb{W}_K T_J \). By Proposition 2.15, we have

\[
\Phi_J^*(y).Z_J^K = \{ \Phi_J(y) \} \amalg \{ y.A_J^K(1, -) \},
\] (7.7)
where \(A = y.A_J^K(1, -) \cap A_J^* \). Since \#A < \(\infty \) we have \(\Phi_J^*(y.Z_J^K) \cong A_J^K(1, -) \) by (7.1). Thus, by Lemma 6.1(2) we get

\[
\begin{align*}
A_J^K(1, -) & \subset \Phi_J^*(y.Z_J^K), \\
A_J^K(1, +) \cap \Phi_J^*(y.Z_J^K) & = \emptyset.
\end{align*}
\] (7.8) (7.9)

By (7.2), (7.3), (7.6), and (7.7), we see that

\[
\Phi_J^*(y.Z_J^K) \cap A_J^* = \Phi_J(y) \cap A_J^* = \Phi_K(z_x).
\] (7.10)

By (7.8)–(7.10) with (5.7), we have

\[
\Phi_J^*(y.Z_J^K) = \{ \Phi_J^*(y.Z_J^K) \cap A_J^*(1, -) \} \amalg \{ \Phi_J^*(y.Z_J^K) \cap A_J^* \}
= A_J^*(1, -) \amalg \Phi_K(z_x) = \mathbb{V}_J(K, 1, z_x).
\]

Hence, by Proposition 2.15 and (6.2), we get

\[
\Phi_J^*(x.Z_J^K) = \Phi_J^*(x^K.y.Z_J^K) = \Phi(x^K) \amalg x^K \Phi_J^*(y.Z_J^K) = \mathbb{V}_J(K, x^K, z_x).
\]

(2) By (1), we have

\[
\Phi_J^*(uy.Z_J^K) = \mathbb{V}_J(K, u, y)
\] (7.11)

for each \((k, u, y) \in \mathbb{P}_J \). Hence \(\Phi_J^* \circ x_J = \mathbb{V}_J \), which implies the surjectivity of \(\Phi_J^* \) since \(\mathbb{V}_J \) is bijective (see Theorem 6.7). Moreover, since \(\Phi_J^* \) is injective, \(\Phi_J^* \) is bijective, so is \(x_J \).
(3) Since \(\chi_J \) is surjective, we have \(W^\infty_J = \bigcup_{K \in J} W_J .z_K^J \). Hence, it suffices to show that this union is disjoint. By (7.5), (7.11), and the injectivity of \(\Phi^\infty_J \), we have the following equality:

\[
x . z^K_J = x^K x . z^K_J
\]

(7.12)

for each \(x \in W_J \). Suppose that \(x . z^K_J = y . z^L_J \) for some \(L \subseteq J \) and \(y \in W_J \). By (7.12), we have \(x^K x . z^K_J = y^L y . z^L_J \) with a unique \(z_y \in W_L \). Thus we get \(K = L \) since \(\chi_J \) is injective.

Remark. The existence and uniqueness of the element \(z_x \in W_K \) satisfying (7.6) are guaranteed by Lemma 2.5(2) and Corollary 5.5(1).

Lemma 7.5. If \(B \) is a biconvex set in \(A_{1+} \), then we have either \(B \subset A_{1+}^r \) or \(A_{1+}^m \subset B \).

Proof. We claim that if \(B \cap A_{1+}^m \neq \emptyset \) then \(A_{1+}^m \subset B \). Indeed, if \(m \delta \in B \)

for some \(m \in \mathbb{N} \), then \(\delta \in B \) by the convexity of \(A_{1+} \setminus B \), and hence \(m \delta \in B \) for all \(m \in \mathbb{N} \) by the convexity of \(B \), i.e., \(A_{1+}^m \subset B \). Thus we have either \(B \subset A_{1+}^r \) or \(A_{1+}^m \subset B \).

Corollary 7.6. Let \(B \) be a subset of \(A_{1+} \). Then \(B \) is a biconvex set in \(A_{1+} \) if and only if one of the following (a)–(d) holds:

(a) \(B = \Phi_J(z) \);
(b) \(B = A_{1+} \setminus \Phi_J(z) \);
(c) \(B = \Phi^\infty_J(Z) \);
(d) \(B = A_{1+} \setminus \Phi^\infty_J(Z) \),

where \(z \) is an element of \(W_J \) and \(Z \) is an element of \(W^\infty_J \).

Proof. The “if part” is obvious. Let us prove the “only if part”. By Lemma 7.5, we have either \(B \subset A_{1+}^r \) or \(A_{1+}^m \subset B \). If \(B \subset A_{1+}^r \) and \(\# B < \infty \), then \(B = \Phi_J(z) \) with \(z \in W_J \) by Theorem 2.6. If \(B \subset A_{1+}^r \) and \(\# B = \infty \), then \(B = \Phi^\infty_J(Z) \) with \(Z \in W^\infty_J \) by Theorem 7.4(2). If \(B \subset A_{1+}^m \), then \(A_{1+} \setminus B \) is a real biconvex set in \(A_{1+} \). Hence we have either \(A_{1+} \setminus B = \Phi_J(z) \) or \(A_{1+} \setminus B = \Phi^\infty_J(Z) \), i.e., \(B = A_{1+} \setminus \Phi_J(z) \) or \(B = A_{1+} \setminus \Phi^\infty_J(Z) \), where \(z \in W_J \) and \(Z \in W^\infty_J \).

Remark. By the corollary, we see that a subset \(B \subset A_{1+} \) is a biconvex set in \(A_{1+} \) if and only if \(B \) satisfies the conditions \(qC(i)' \) and \(qC(ii)' \) with replacing \(A_{1+} \) by \(A_{1+} \) (see the remarks below Theorem 2.6).

Example. Suppose that \(A \) is of the type \(A_2^{(1)} \) and \(J = \mathbf{I} = \{1, 2\} \). Then \(\{\emptyset, \{1\}, \{2\}\} \) is the set of all proper subsets of \(\mathbf{I} \) and the following equalities hold:

\[
\hat{W}^\emptyset = \hat{W} = \langle s_1, s_2 \rangle, \quad \hat{W}^{(1)} = \{1, s_2, s_1 s_2\}, \quad \hat{W}^{(2)} = \{1, s_1, s_2 s_1\}.
\]

Thus the following set
\(\mathcal{P} = \{ (\emptyset, u, 1) \mid u \in \langle s_1, s_2 \rangle \} \cup \{ \{ 1 \}, u, y \} \mid u \in \{ 1, s_2, s_1 s_2 \}, y \in \langle s_{0 - \delta - 1}, s_1 \rangle \} \)
\(\cup \{ \{ 2 \}, u, y \} \mid u \in \{ 1, s_1, s_2 s_1 \}, y \in \langle s_{0 - \delta - 2}, s_2 \rangle \)

parametrizes the set \(\mathcal{B}^\infty \) of all infinite real biconvex set by the following mapping:

\[
V(k, u, y) := \Delta^k(u, -) \Pi u\Phi_k(y).
\]

In particular, the following three sets are fundamental infinite real biconvex sets:

\[
V(\emptyset, 1, 1) = \Delta^\emptyset(1, -) = \{ m\delta - x_1, m\delta - x_2, m\delta - x_2 \mid m \in \mathbb{N} \},
\]

\[
V(\{ 1 \}, 1, 1) = \Delta^{\{ 1 \}}(1, -) = \{ m\delta - x_1 - x_2, m\delta - x_2 \mid m \in \mathbb{N} \},
\]

\[
V(\{ 2 \}, 1, 1) = \Delta^{\{ 2 \}}(1, -) = \{ m\delta - x_1, m\delta - x_1 - x_2 \mid m \in \mathbb{N} \}.
\]

[1] Set \(\lambda_\emptyset = x_1 + x_2 \). Then \(\lambda_\emptyset \) is an element of \(\hat{Q}^\gamma = \mathbb{Z} x_1 \oplus \mathbb{Z} x_2 \) such that \(\langle x_1 | \lambda_\emptyset \rangle = \langle x_2 | \lambda_\emptyset \rangle = 1 > 0 \), and hence \(\Phi(t_{\lambda_\emptyset}) = \{ \delta - x_1 - x_2, \delta - x_1, 2\delta - x_1 - x_2, \delta - x_2 \} \). Since \(t_{\lambda_\emptyset} = s_0 s_2 s_1 s_2 \) is a reduced expression, the infinite sequence \(s_\emptyset := (s_0, s_2, s_1, s_2)^\infty \) is an infinite reduced word such that \(\Phi^\infty(s_\emptyset) = V(\emptyset, 1, 1) \). For example, set \(u := s_1 s_2 \) and \(s'_\emptyset := (s_1, s_2) s_\emptyset \). Then \(s'_\emptyset \) is an infinite reduced word satisfying \(u \cdot [s_\emptyset] = [s'_\emptyset] \) and

\[
\Phi^\infty(s'_\emptyset) = V(\emptyset, u, 1) = \{ m\delta + x_1 + x_2, m\delta + x_1, n\delta - x_2 \mid m \in \mathbb{Z}_{\geq 0}, n \in \mathbb{N} \}.
\]

[2] Set \(\lambda_{\{ 1 \}} := x_1 + 2x_2 \). Then \(\lambda_{\{ 1 \}} \) is an element of \(\hat{Q}^\gamma \) such that \(\langle x_1 | \lambda_{\{ 1 \}} \rangle = 0 \) and \(\langle x_2 | \lambda_{\{ 1 \}} \rangle = 3 > 0 \), and hence \(\Phi(t_{\lambda_{\{ 1 \}}}) = \{ m\delta - x_1 - x_2, m\delta - x_2 \mid m = 1, 2, 3 \} \). Since \(t_{\lambda_{\{ 1 \}}} = s_0 s_1 s_2 s_0 s_1 s_2 \) is a reduced expression, the infinite sequence \(s_{\{ 1 \}} := (s_0, s_1, s_2)^\infty \) is an infinite reduced word such that \(\Phi^\infty(s_{\{ 1 \}}) = V(\{ 1 \}, 1, 1) \). The group \(W_{\{ 1 \}} \) is isomorphic to the infinite dihedral group and satisfies the equality:

\[
W_{\{ 1 \}} = \{ (s_{0 - \delta - 1}, s_1)^n, (s_{\delta - 1}, s_1)^n n, s_{\delta - 2}, (s_1 s_{\delta - 2})^n, (s_1 s_{\delta - 2})^n s_1 \mid n \in \mathbb{Z}_{\geq 0} \}.
\]

For example, set \(u := s_2 \) and \(y := (s_{0 - \delta - 1}, s_1)^n \), then \(uy(s_0 s_1 s_2)^{2n} = s_2(s_0 s_2 s_1 s_2)^{2n} \), and hence the infinite sequence \(s'_{\{ 1 \}} := (s_2)(s_0, s_2, s_1, s_2)^{2n} s_{\{ 1 \}} \) is an infinite reduced word satisfying \(uy \cdot [s_{\{ 1 \}}] = [s'_{\{ 1 \}}] \) and

\[
\Phi^\infty(s'_{\{ 1 \}}) = V(\{ 1 \}, u, y) = \{ m\delta - x_1 - x_2 \mid 1 \leq m \leq 2n \} \Pi \Delta^{\{ 1 \}}(u, -),
\]

where \(\Delta^{\{ 1 \}}(u, -) = \{ m\delta - x_1, n\delta + x_2 \mid m \in \mathbb{N}, n \in \mathbb{Z}_{\geq 0} \} \). For one more example, set \(u' := s_1 s_2 \) and \(y' = (s_1 s_{\delta - 1})^n \), then \(u'y'\langle s_0 s_1 s_2 \rangle^{2n - 1} = s_2 s_1 s_2 s_1 s_2 s_1 \), and hence the infinite sequence \(s''_{\{ 1 \}} := (s_1, s_2, s_1)(s_0, s_2, s_1, s_2)^{2n - 1} s_{\{ 1 \}} \) is an infinite reduced word satisfying \(u'y' \cdot [s_{\{ 1 \}}] = [s''_{\{ 1 \}}] \) and
\[\Phi^G([y'_{11}]) = V((1,u',y')) = \{m\delta + x_2 \mid 0 \leq m \leq 2n - 1\} \Pi A^{(1)}(u,-), \]

where \(A^{(1)}(u,-) = \{m\delta + x_1 + x_2, m\delta + x_1 \mid m \in \mathbb{Z}_{\geq 0}\}. \)

References

Ken Ito
Science Division
Center for General Education
Aichi Institute of Technology
Yakusa-cho, Toyota 470-0392, Japan
e-mail: ken-ito@aitech.ac.jp