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Abstract. By Schwarzenberger’s property, a complex vector bundle of dimension t

over the complex projective space CPn is extendible to CPnþk for any kb 0 if and only

if it is stably equivalent to a Whitney sum of t complex line bundles. In this paper, we

show some conditions for a negative multiple of a complex line bundle over CPn to be

extendible to CPnþ1 or CPnþ2, and its application to unextendibility of a normal bundle

of CPn.

1. Introduction and results

An m-dimensional vector bundle V over a space A is called extendible to a

space BIA when there exists an m-dimensional vector bundle over B whose

restriction to A is isomorphic to V . Classically, Schwarzenberger [11], [4,

Appendix I] studied extendibility of vector bundles over the real or complex

projective spaces. Related results were obtained by Rees [3], [10] and Adams–

Mahmud [1]. Extendibility of vector bundles over the real projective spaces

and the standard lens spaces are studied extensively by Kobayashi-Maki-

Yoshida [8], [9] and so on, and that of vector bundles over the quaternionic

projective spaces by [6], [7].

We consider only complex vector bundles, and thus a k-dimensional vector

bundle means a Ck-vector bundle. Let x be the canonical line bundle over the

complex projective space CPn, and for an integer m

xm ¼ xn � � �n x|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
m

if m > 0; x0 ¼ C1; xm ¼ xn � � �n x|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
�m

if m < 0;

where x is the complex conjugate bundle of x and C1 is the trivial

line bundle. Then, any line bundle over CPn is isomorphic to xm for some

m.
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There exists a vector bundle �xm over CPn which satisfies xm l ð�xmÞl
C j ¼ Ck for trivial vector bundles C j and Ck of some dimensions j and

k. Then, �xm is uniquely determined up to stable equivalence, that is, if g

satisfies the relation, then glC j 0 ¼ ð�xmÞlCk 0
for some j 0 and k 0. A

vector bundle �lxm with an integer l > 0 is the Whitney sum of l numbers of

�xm. Then, we can take �lxm as an n-dimensional vector bundle over CPn by

the following stability property (cf. [5, Chapter 9, Section 1]):

Proposition 1.1 (Stability property). For any m-dimensional vector bundle

a over CPn with mb n, there exists an n-dimensional vector bundle b satisfying

a ¼ blCm�n. In addition, b is unique for the stably equivalent class of a.

By Schwarzenberger [4, Appendix I], if a t-dimensional vector bundle a

over CPn is extendible to CPnþk for any kb 0, then a is stably equivalent to a

Whitney sum of t line bundles. On the other hand, since the K-group of CPn

is additively generated by the stably equivalent classes of line bundles xm for

0ama n (cf. [2]), any vector bundle over CPn is stably equivalent to a

Whitney sum of line bundles and vector bundles �xk. Our main purpose

of this paper is to determine conditions when an n-dimensional vector bundle

�lxm over CPn is extendible to CPnþ1 or CPnþ2.

Thomas [14] has characterized the so-called Chern vectors of vector

bundles over CPn, which is applicable to our problem. Using such combi-

natorial relations of Chern classes, we show the following, where a
b

� �
denotes a

binomial coe‰cient.

Theorem 1.2. Let n, l and m be integers with n > 0 and l > 0, and �lxm

be the n-dimensional vector bundle over CPn. Then, the following hold:

(1) �lxm is extendible to CPnþ1 if and only if the following congruence

holds:

nþ l

nþ 1

� �
mnþ1 1 0 ðmod n!Þ:

(2) If �lxm is extendible to CPnþ2, then the congruence in (1) and the

following congruence hold:

l m� nþ 2

2

� �� �
nþ l

n

� �
mnþ1 1 0 ðmodðnþ 2Þ!Þ:

Conversely, when n is odd, �lxm is extendible to CPnþ2 if the above two

congruences hold.

Thus, if one of the congruences in Theorem 1.2 does not hold, then �lxm

over CPn is not stably equivalent to a Whitney sum of less than or equal to
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n numbers of line bundles, because the latter is extendible to CPnþk for any

kb 0.

We also remark that the stable extendibility, introduced in [6], of the n-

dimensional vector bundle �lxm over CPn is the same as extendibility of it by

stability property (Proposition 1.1).

Let qðnÞ denote the product of all distinct primes less than or equal to n,

that is,

qðnÞ ¼
Y

prime pan

p:

Then, in special cases, Theorem 1.2 is expressed as follows:

Corollary 1.3. Assume that m1 0 ðmod qðnÞÞ. Then, for the n-

dimensional vector bundle �lxm over CPn with n > 0 and l > 0, the following

hold:

(1) �lxm is extendible to CPnþ1.

(2) When n is odd, if nþ 2 is not a prime or m1 0 ðmod nþ 2Þ, then

�lxm is extendible to CPnþ2.

(3) When nþ 2 is a prime and mD 0 ðmod nþ 2Þ, �lxm is extendible to

CPnþ2 if and only if lD 1 ðmod nþ 2Þ.

Corollary 1.4. Let �xm be the n-dimensional vector bundle over CPn for

n > 0. Then, the following hold:

(1) �xm is extendible to CPnþ1 if and only if m1 0 ðmod qðnÞÞ.
(2) If �xm is extendible to CPnþ2, then m1 0 ðmod qðnþ 2ÞÞ or m1 0

ðmod qðnÞÞ according as nþ 2 is a prime or not. When n is odd, the converse

holds.

Let nðCPnÞ be a normal bundle of CPn in the sense that nðCPnÞ is a

complex vector bundle satisfying that TðCPnÞl nðCPnÞ is stably equivalent to

a trivial vector bundle, where TðCPnÞ is the complex tangent bundle of CPn.

Then, nðCPnÞ exists and is unique up to stable equivalence, and the following

holds:

Lemma 1.5. For nb 2, nðCPnÞ is not stably equivalent to any Whitney sum

of line bundles over CPn.

Thus, by Schwarzenberger’s property, any choice of normal bundle nðCPnÞ
for nb 2 is not extendible to CPnþk for some k > 0. Now, by stability

property, we can take nðCPnÞ as an n-dimensional vector bundle over CPn.

Then, applying Theorem 1.2, we show the following:
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Theorem 1.6. The n-dimensional normal bundle nðCPnÞ is not extendible to

CPnþ1 for nb 3. nðCP1Þ ¼ x2 is extendible to CPk for any kb 1, and nðCP2Þ
is extendible to CP3 but not extendible to CP4.

The paper is organized as follows: In § 2 we prepare some necessary

properties about Chern vectors studied in [14], and in § 3 we prove Theorem 1.2

and Corollaries 1.3 and 1.4. § 4 is devoted to the proof of Lemma 1.5 and

Theorem 1.6.

2. Chern vectors of negative line bundles

Let x A H 2ðCPn;ZÞ be the Euler class of the canonical line bundle x over

CPn. Then, the cohomology ring H �ðCPn;ZÞ is isomorphic to the truncated

polynomial ring Z½x�=ðxnþ1Þ, and the i-th Chern class CiðVÞ of a vector bundle

V over CPn is represented as an integer ciðVÞ multiple of xi, namely CiðVÞ ¼
ciðVÞxi. Then, the Chern vector of V is defined to be an integral vector

ðc1ðVÞ; . . . ; cnðVÞÞ A Zn.

As for the Chern vector of �lxm, we have the following:

Lemma 2.1. The Chern vector of �lxm with l > 0 over CPn is equal to

�lm;
l þ 1

2

� �
m2; . . . ; ð�1Þ i l þ i � 1

i

� �
mi; . . . ; ð�1Þn l þ n� 1

n

� �
mn

� �
:

Proof. Let CðVÞ ¼
P

ib0 CiðVÞ be the total Chern class of a vector

bundle V . Then, since CðVÞ is multiplicative and CðxmÞ ¼ 1þmx (cf. [4, § 4]),

Cð�lxmÞ ¼ ð1þmxÞ�l ¼
Xn

i¼0

�l

i

� �
mixi ¼

Xn

i¼0

ð�1Þ i l þ i � 1

i

� �
mixi;

and we have the required Chern vector. r

Next, let sk : Z
k ! Z for kb 1 be a map defined recursively using the

Newton’s formula as follows: s1ðm1Þ ¼ m1; for kb 2,

skðm1; . . . ;mkÞ ¼
Xk�1

i¼1

ð�1Þ iþ1
misk�iðm1; . . . ;mk�iÞ þ ð�1Þkþ1

kmk:ð2:1Þ

Also, for a vector bundle V over CPn, we set

skðVÞ ¼ skðc1ðVÞ; . . . ; ckðVÞÞ:ð2:2Þ

Then, skðVÞ for 1a ka n is additive, that is, skðV lWÞ ¼ skðVÞ þ skðWÞ
holds for vector bundles V and W over CPn (cf. [4, § 10]), and obviously

skðC jÞ ¼ 0 for a trivial vector bundle C j.
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For the line bundle xm over CPn, since c1ðxmÞ ¼ m and ciðxmÞ ¼ 0 for

ib 2, we have skðxmÞ ¼ mk for kb 1 by definition. Hence, for the vector

bundle �lxm over CPn, we have the following:

Lemma 2.2. skð�lxmÞ ¼ �lmk for 1a ka n.

Let fk : Zk ! Z for an integer kb 1 be a map defined recursively by

f1ðm1Þ ¼ m1 and for kb 2

fkðm1; . . . ;mkÞ ¼ fk�1ðm2; . . . ;mkÞ � ðk � 1Þ fk�1ðm1; . . . ;mk�1Þ:

The following is straightforward from the definition.

Lemma 2.3. (1) fk is a linear map, that is, for x; y A Zk and r; s A Z,

fkðrxþ syÞ ¼ rfkðxÞ þ sfkðyÞ:

(2) fkð1; 0; 0; . . . ; 0Þ ¼ ð�1Þk�1ðk � 1Þ!.
(3) fkð0; . . . ; 0; 1Þ ¼ 1, fkð0; . . . ; 0; 1; 0Þ ¼ � k

2

� �
for kb 2.

(4) ([14, Lemma 3.3(i)]). For any integer j,

fkð j; j2; . . . ; j kÞ ¼
Yk�1

i¼0

ð j � iÞ:

Using the maps fk, Thomas has shown the following.

Theorem 2.4 ([14, Theorem A, Proposition 3.5]).

(1) An integral vector ðm1; . . . ;mnÞ is a Chern vector of a vector bundle

over CPn if and only if fkðs1; . . . ; skÞ1 0 ðmod k!Þ for 1a ka n, where si ¼
siðm1; . . . ;miÞ.

(2) An n-dimensional vector bundle a over CPn is extendible to CPnþ1 if

and only if the following congruence holds:

fnþ1ðs1ðaÞ; . . . ; snðaÞ; snþ1ðaÞÞ1 0 ðmodðnþ 1Þ!Þ:

Some part of this theorem are slightly generalized as follows:

Proposition 2.5. If an n-dimensional vector bundle a over CPn is ex-

tendible to CPnþk for some kb 1, then the following congruences hold:

fnþiðs1ðaÞ; . . . ; snðaÞ; snþ1ðaÞ; . . . ; snþiðaÞÞ1 0 ðmodðnþ iÞ!Þ

for any i with 1a ia k. Furtheremore, when n is odd and k ¼ 2, the converse

holds.

Proof. If a is extendible to an n-dimensional vector bundle b over CPnþk,

then cjðbÞ ¼ cjðaÞ for any jb 1. Thus, sjðbÞ ¼ sjðaÞ for any jb 1. Hence,

applying Theorem 2.4(1) to b, we have the first required result.
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As for the converse, we assume that n is odd and the congruences hold

for k ¼ 2. Then, by Theorem 2.4(1) and the stability property, there exists

an ðnþ 2Þ-dimensional vector bundle g over CPnþ2, which satisfies ciðgÞ ¼
ciðaÞ for any ib 1. In particular, we have cnþ1ðgÞ ¼ cnþ2ðgÞ ¼ 0. Then, by

Thomas [15, Theorem 3.5], g has two linearly independent sections, and

hence there exists an n-dimensiona vector bundle b over CPnþ2 satisfying

g ¼ blC2. Then, ciðbÞ ¼ ciðgÞ ¼ ciðaÞ for all ib 1. Since the cohomology

group H �ðCPn;ZÞ has no torsion, two vector bundles over CPn which have

the same Chern classes are stably equivalent. Thus, the restriction of b over

CPn is stably equivalent to a. Since a and the restriction of b are both n-

dimensional vector bundles over CPn, they are isomorphic by stability property,

which completes the proof of the converse. r

3. Proof of Theorem 1.2 and its corollaries

First, we prove Theorem 1.2 using the results in the last section.

Proof of Theorem 1.2. Let a be the ðnþ 2Þ-dimensional vector bundle

�lxm over CPnþ2. Then, by Lemmas 2.1 and 2.2,

cnþjðaÞ ¼ ð�1Þnþj l þ nþ j � 1

nþ j

� �
mnþj and snþjðaÞ ¼ �lmnþj

for j ¼ 1; 2. Thus, for the vector bundle �lxm over CPn, sið�lxmÞ ¼ �lmi for

1a ia n, and, by (2.1) and (2.2),

snþ1ð�lxmÞ ¼ snþ1ðaÞ � ð�1Þnðnþ 1Þcnþ1ðaÞ

¼ �lmnþ1 þ ðnþ 1Þ l þ n

nþ 1

� �
mnþ1:

snþ2ð�lxmÞ ¼ snþ2ðaÞ � ð�1Þncnþ1ðaÞs1ðaÞ � ð�1Þnþ1ðnþ 2Þcnþ2ðaÞ

¼ �lmnþ2 � l
l þ n

nþ 1

� �
mnþ2 þ ðnþ 2Þ l þ nþ 1

nþ 2

� �
mnþ2:

Now, we consider the extendibility of �lxm to CPnþ1 in (1). Using

Lemma 2.3,

fnþ1ðs1ð�lxmÞ; . . . ; snþ1ð�lxmÞÞ

¼ �lfnþ1ðm; . . . ;mnþ1Þ þ ðnþ 1Þ l þ n

nþ 1

� �
mnþ1fnþ1ð0; . . . ; 0; 1Þ

¼ �l
Yn
i¼0

ðm� iÞ þ ðnþ 1Þ nþ l

nþ 1

� �
mnþ1:
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But, concerning the first term of the last equation,

Yn
i¼0

ðm� iÞ ¼ ðnþ 1Þ! m

nþ 1

� �
1 0 ðmodðnþ 1Þ!Þ:

Hence, by Theorem 2.4(2), �lxm is extendible to CPnþ1 if and only if the

following congruence holds:

nþ l

nþ 1

� �
mnþ1 1 0 ðmod n!Þ;ð3:1Þ

which is the required result of (1).

As for the extendibility of �lxm to CPnþ2 in (2), we can proceed sim-

ilarly. Using Lemma 2.3,

fnþ2ðs1; . . . ; snþ2Þ ¼ �l
Ynþ1

i¼0

ðm� iÞ � ðnþ 1Þ l þ n

nþ 1

� �
mnþ1 nþ 2

2

� �

þ �l
l þ n

nþ 1

� �
þ ðnþ 2Þ l þ nþ 1

nþ 2

� �� �
mnþ2

¼ �lðnþ 2Þ! m

nþ 2

� �
þ l m� nþ 2

2

� �� �
nþ l

n

� �
mnþ1;

where si ¼ sið�lxmÞ. Hence, by Proposition 2.5, if �lxm is extendible to

CPnþ2, then the congruence (3.1) and the following congruence hold:

l m� nþ 2

2

� �� �
nþ l

n

� �
mnþ1 1 0 ðmodðnþ 2Þ!Þ:

Also, the converse holds by Proposition 2.5 when n is odd. Thus, we have

completed the proof. r

In order to prove Corollaries 1.3 and 1.4, we prepare some notations.

For a prime p, let npðmÞ ¼ a for an integer m if m ¼ pab and b is an integer

prime to p, and apðkÞ for an integer kb 1 be the sum
P j

i¼0 ai of the coe‰cients

in the p-adic expansion k ¼
P j

i¼0 ai p
i, where 0a ai a p� 1. Then, the fol-

lowing is known, but we give a proof briefly.

Lemma 3.1. For a prime p and a positive integer k,

npðk!Þ ¼
k � apðkÞ
p� 1

:

Proof. When k ¼ 1, it is clear. Thus, inductively, assume that the

result is true for an integer kb1. We put k þ 1 ¼ bpt with tb0 and
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bD 0 ðmod pÞ. Then, npðk þ 1Þ ¼ t and apðk þ 1Þ ¼ apðbÞ. Since k ¼ b� 1

if t ¼ 0 and since

k ¼ bpt � 1 ¼ ðb� 1Þpt þ ðp� 1Þpt�1 þ � � � þ ðp� 1Þpþ ðp� 1Þ

if t > 0, we have apðkÞ ¼ apðbÞ � 1þ tðp� 1Þ. Thus, we have

npððk þ 1Þ!Þ ¼ npðk!Þ þ npðk þ 1Þ ¼ k � apðkÞ
p� 1

þ t

¼ k � apðbÞ þ 1

p� 1
¼ ðk þ 1Þ � apðk þ 1Þ

p� 1
;

which completes the induction. r

Let qðnÞ be the product of all distinct primes less than or equal to a

positive integer n, as is introduced in § 1. Then, we have the following:

Lemma 3.2. For integers kb 1 and m, if mi 1 0 ðmod k!Þ for some

ib 1, then m1 0 ðmod qðkÞÞ. Conversely, if m1 0 ðmod qðkÞÞ, then mk�1 1
0 ðmod k!Þ.

Proof. First, assume that mi 1 0 ðmod k!Þ for some ib 1. Then,

m1 0 ðmod pÞ for any prime pa k, and thus m1 0 ðmod qðkÞÞ. Conversely,

assume that m1 0 ðmod qðkÞÞ, and let p be any prime with pa k. Then,

m1 0 ðmod pÞ, and by Lemma 3.1 we have npðk!Þa k � 1a ðk � 1ÞnpðmÞ ¼
npðmk�1Þ. Hence, we have mk�1 1 0 ðmod k!Þ, as is required. r

Now, we prove the corollaries.

Proof of Corollary 1.3. Assume that m1 0 ðmod qðnÞÞ. As for (1),

the congruence in Theorem 1.2(1) holds by Lemma 3.2, and we have the

required result.

Concernig the proof of (2), we first assume that n is odd and nþ 2 is not

a prime. Let p be any prime with pa n. We shall show

npððnþ 2Þ!Þa npðmnþ1Þ:ð3:2Þ

Then, since

l
nþ l

n

� �
mnþ1 ¼ nþ l

nþ 1

� �
ðnþ 1Þmnþ1

and ðnþ 1Þmnþ1 1 0 ðmodðnþ 2Þ!Þ by (3.2), we obtain the required result in

this case by Theorem 1.2(2). Now, we prove (3.2). We notice that npðmnþ1Þb
nþ 1 by the first assumption. We put nþ 1 ¼ apk þ

Pk�1
i¼0 ðp� 1Þpi for some

kb 0 and ab 0 with aD p� 1 ðmod pÞ, where we consider the second term

of the right hand side of the equality is 0 when k ¼ 0. Then, apðnþ 1Þ ¼
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apðaÞ þ kðp� 1Þ and npðnþ 2Þ ¼ k, and thus we obtain (3.2) using lemma 3.1

as follows:

npððnþ 2Þ!Þ ¼ npððnþ 1Þ!Þ þ k ¼ ðnþ 1Þ � apðaÞ
p� 1

a nþ 1a npðmnþ1Þ:

Next, assume that m1 0 ðmod nþ 2Þ and nþ 2 is a prime. Then, since

nþ 1 is not a prime, we have m1 0 ðmod qðnþ 2ÞÞ by the assumptions

m1 0 ðmod qðnÞÞ and m1 0 ðmod nþ 2Þ. Hence, mnþ1 1 0 ðmodðnþ 2Þ!Þ
by Lemma 3.2, which establishes the congruence in Theorem 1.2(2), and thus

we have (2).

Lastly, we prove (3). Thus, we assume that nþ 2 is a prime and

mD 0 ðmod nþ 2Þ. Then, since nþ 1 is even and mn�1 1 0 ðmod n!Þ by the

first assumption and Lemma 3.2, the following term in the second congruence

in Theorem 1.2 satisfies

l
nþ 2

2

� �
nþ l

n

� �
mnþ1 ¼ nþ 1

2

nþ l

nþ 1

� �
ðnþ 1Þðnþ 2Þmnþ110 ðmodðnþ 2Þ!Þ:

Thus, by Theorem 1.2(2) and (1), �lxm is extendible to CPnþ2 if and only if the

congruence

l
nþ l

n

� �
mnþ2 ¼ nþ l

nþ 1

� �
ðnþ 1Þmnþ2 1 0 ðmodðnþ 2Þ!Þ

holds. Since ðnþ 1Þmnþ2 1 0 ðmodðnþ 1Þ!Þ and ðnþ 1Þmnþ2 D 0

ðmodðnþ 2Þ!Þ, the congruence is equivalent to

nþ l

nþ 1

� �
1 0 ðmod nþ 2Þ:ð3:3Þ

Then, putting nþ l ¼ cðnþ 2Þ þ d for some integers cb 0 and 0a da nþ 1

and using a well known property of binomial coe‰cients modulo a prime

(cf. [12, Lemma 2.6]), we have

nþ l

nþ 1

� �
1

d

nþ 1

� �
ðmod nþ 2Þ:

Hence, (3.3) holds if and only if 0a da n, that is, if and only if lD 1

ðmod nþ 2Þ, and thus we have completed the proof. r

Proof of Corollary 1.4. As for (1), by Theorem 1.2(1), �xm over CPn

is extendible to CPnþ1 if and only if the congruence mnþ1 1 0 ðmod n!Þ holds

since l ¼ 1 in this case. Then, the congruence is equivalent to the required

congruence m1 0 ðmod qðnÞÞ by Lemma 3.2.
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Concerning (2), assume first that nþ 2 is a prime. Then, if m1 0

ðmod qðnþ 2ÞÞ, then mnþ1 1 0 ðmodðnþ 2Þ!Þ by Lemma 3.2. Thus, �xm is

extendible to CPnþ2 by Theorem 1.2(2). Conversely, if �xm is extendible to

CPnþ2, then mnþ1 1 0 ðmod n!Þ by the congruence in Theorem 1.2(1), and thus

m1 0 ðmod qðnÞÞ by Lemma 3.2. Then, by Corollary 1.3(2) and (3), we have

m1 0 ðmod nþ 2Þ since l ¼ 1, and thus m1 0 ðmod qðnþ 2ÞÞ as is required.

Similarly, when n is odd and nþ 2 is not a prime, �xm is extendible to CPnþ2

if m1 0 ðmod qðnÞÞ by Corollary 1.3(2), and the converse follows from the

congruence in Theorem 1.2(1) and Lemma 3.2. Thus, we have completed the

proof. r

4. Unxtendibility of normal bundle

First, we prove Lemma 1.5 using the K-ring structure of CPn.

Proof of Lemma 1.5. Let X ¼ ½x� C1� be the stably equivalent class of

x over CPn. Then, the K-ring KðCPnÞ of CPn is a truncated polynomial

ring Z½X �=ðX nþ1Þ (cf. [2]). The tangent bundle TðCPnÞ of CPn satisfies

TðCPnÞlC1 ¼ ðnþ 1Þx ¼ ðnþ 1Þx�1 (cf. [13, Chapter V]). Thus, a normal

bundle nðCPnÞ is stably equivalent to �ðnþ 1Þx�1. Since xn x�1 ¼ C1, we

have ðX þ 1Þð½x�1 � C1� þ 1Þ ¼ 1 in KðCPnÞ. Hence,

½x�1 � C1� ¼ ðX þ 1Þ�1 � 1 ¼
Xn

i¼1

ð�1Þ iX i;

and thus

½nðCPnÞ � CN � ¼ �ðnþ 1Þ½x�1 � C1�1 ðnþ 1ÞX � ðnþ 1ÞX 2 ðmod X 3Þ;

where nb 2 and N ¼ dim nðCPnÞ.
Now, we suppose that nðCPnÞ is stably equivalent to a Whitney sum

xk1 l � � �l xkj of line bundles, and induce a contradiction. Under the hy-

pothesis, we have

½nðCPnÞ � CN � ¼
Xj

i¼1

ð1þ XÞki � j1
Xj

i¼1

kiX þ
Xj

i¼1

ki

2

� �
X 2 ðmod X 3Þ:

Thus, comparing the coe‰cients of X and X 2 in the above two con-

gruences,

Xj

i¼1

ki ¼ nþ 1 and
Xj

i¼1

ki

2

� �
¼ �ðnþ 1Þ:
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But, these two equalities are not compatible since
P j

i¼1 k
2
i 0�ðnþ 1Þ, and thus

we have completed the proof. r

Lastly, we prove Theorem 1.6.

Proof of Theorem 1.6. Since the n-dimensional vector bundles nðCPnÞ
and �ðnþ 1Þx�1 over CPn are stably equivalent each other as is mentioned in

the above, they are actually isomorphic by stability property.

The line bundle nðCP1Þ is isomorphic to x2 over CP1, because they have

the same Chern classes. Thus, nðCP1Þ is extendible to CPk for any kb 1.

As for the 2-dimensional vector bundle nðCP2Þ ¼ �3x�1, since the con-

gruence in Theorem 1.2(1) is satisfied and the second congruence in Theorem

1.2(2) is not in the case of n ¼ 2, m ¼ �1 and l ¼ 3, we have the required

result.

Thus, we assume nb 3, and show that the n-dimensional vector bundle

�ðnþ 1Þx�1 is not extendible to CPnþ1. By Theorem 1.2(1), it is su‰cient to

show

2nþ 1

nþ 1

� �
D 0 ðmod n!Þ:

But, the incongruence follows if we prove the inequality

n2
2nþ 1

nþ 1

� �
< n2ðn!Þ:ð4:1Þ

As for the right hand side of (4.1), we have n2ðn!Þ ¼ n� a2ðnÞ by Lemma 3.1.

Since

2nþ 1

nþ 1

� �
¼ ð2nþ 1Þ!

ðnþ 1Þ!n! ¼
2nn!ð2hþ 1Þ
ðnþ 1Þ!n! ¼ 2nð2hþ 1Þ

ðnþ 1Þ!

for some integer h > 0, we have

n2
2nþ 1

nþ 1

� �
¼ n2ð2nÞ � n2ððnþ 1Þ!Þ

¼ n� ððnþ 1Þ � a2ðnþ 1ÞÞ ¼ a2ðnþ 1Þ � 1:

Then, the following inequality is easily shown by the induction on nb 3:

n2ðn!Þ � n2
2nþ 1

nþ 1

� �
¼ nþ 1� a2ðnÞ � a2ðnþ 1Þ > 0:

Hence (4.1) holds, and thus we have completed the proof. r
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