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Abstract. A smooth closed manifold is said to be an almost sphere if it admits a

Morse function with exactly two critical points. In this paper, we characterize those

smooth closed manifolds which admit Morse functions such that each regular fiber is a

finite disjoint union of almost spheres. We will see that such manifolds coincide with

those which admit Morse functions with at most three critical values. As an appli-

cation, we give a new proof of the characterization theorem of those closed manifolds

which admit special generic maps into the plane. We also discuss homotopy and

di¤eomorphism invariants of manifolds related to the minimum number of critical

values of Morse functions; in particular, the Lusternik-Schnirelmann category and

spherical cone length. Those closed orientable 3-manifolds which admit Morse func-

tions with regular fibers consisting of spheres and tori are also studied.

1. Introduction

In [42, 49] Suzuoka and the author studied the topology of generic smooth

maps between smooth manifolds whose regular fibers are unions of spheres or

homotopy spheres. One of the major motivations for studying such maps is

the fact that special generic maps have such a property, where a special generic

map is a generic smooth map between smooth manifolds which admit only the

simplest singularity, i.e. the definite fold point (for a precise definition, see

Definition 4.1 of the present paper). In other words, our aim was to generalize

those topological results which had been known for special generic maps (for

example, see [5, 39, 41]) to the class of generic smooth maps whose regular

fibers are unions of (homotopy) spheres. This makes sense, since the global
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topology of generic maps has not been clarified so much except for the class of

special generic maps.

In this paper, we study Morse functions on smooth manifolds whose re-

gular fibers are unions of spheres or homotopy spheres. Here, a Morse func-

tion is a smooth function whose critical points are all nondegenerate. Note

that we allow two or more distinct critical points to have the same value.

In order to formulate our results, in § 2 we will introduce the notion of an

almost sphere. A closed connected manifold of positive dimension is called an

almost sphere if it admits a Morse function with exactly two critical points.

We will recall several known results about almost spheres.

In § 3, we will see that the class of manifolds admitting Morse functions

whose regular fibers are unions of almost spheres coincide with the class of

manifolds which admit Morse functions with at most three critical values

(Proposition 3.2). Furthermore, we will give a characterization theorem of

such manifolds in terms of their decompositions into some simple pieces

(Theorem 3.7). For low dimensions, we can completely characterize those

manifolds which admit Morse functions with almost sphere fibers (Corollaries

3.14–3.16). We will also deduce several necessary conditions for such mani-

folds (Corollary 3.17).

In § 4, we will apply the result obtained in § 3 to give a new proof of the

characterization theorem of those closed manifolds which admit special generic

maps into the plane, originally proved in [41]. In the proof, we will show that

such manifolds admit Morse functions with almost sphere fibers as well.

In § 5, we will study several homotopy and di¤eomorphism invariants of

smooth manifolds related to the number of critical values of Morse functions.

It is a classical result of Lusternik-Schnirelmann [29] that the number of critical

points of a smooth function on a given closed manifold M is always bounded

below by the smallest number of open sets covering M each of which is

contractible in M. The smallest number of such open sets minus 1 is called

the Lusternik-Schnirelmann category of M. In homotopy theory, it is known

that the Lusternik-Schnirelmann category is closely related to the cone length of

the space, where the cone length of a space X is, roughly speaking, the number

of cones necessary to obtain X homotopically from a contractible space by

attaching them successively. We will see that the number of critical values of

a Morse function on a given manifold M is always bounded below by its

spherical cone length plus 1, where a spherical cone length is, roughly speak-

ing, the number of cones over a bouquet of spheres necessary to obtain M

homotopically from a contractible space. Using this, we will show that the

di¤erence between the minimum number of critical values of Morse functions

and the minimum number of critical points of smooth functions on a given

manifold can be arbitrarily large, by giving explicit examples.
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In § 6, we study the invariants mentioned in § 5 more in detail for

manifolds of dimension 3. Furthermore, we will show that a closed connected

orientable 3-manifold admits a Morse function whose regular fibers are unions

of spheres and tori if and only if it is a connected sum of some copies of

S1 � S2 and/or lens spaces. Finally, we will propose a conjecture concerning

Morse functions on a 3-manifold and its Heegaard genus.

Throughout the paper, manifolds and maps are di¤erentiable of class Cy

unless otherwise indicated. The homology and cohomology groups are with

integer coe‰cients unless otherwise indicated. The symbol ‘‘G’’ denotes a

di¤eomorphism between smooth manifolds. The symbol ‘‘]’’ is used for a

usual connected sum of manifolds, while the symbol ‘‘\’’ is used for a boundary

connected sum.

The author would like to express his sincere gratitude to Norio Iwase for

stimulating discussions and important comments on the theory of Lusternik-

Schnirelmann category. The author would like to express his thanks to

Keiichi Suzuoka for stimulating discussions and to the referee for useful sug-

gestions. Finally, the author would like to express his deep thanks to Pro-

fessor Takao Matumoto for having introduced him to the theory of Lusternik-

Schnirelmann category and for his constant encouragement.

2. Preliminaries

Let M be a smooth manifold. A smooth function f : M ! R is called a

Morse function if its critical points are all nondegenerate. We do not assume

that the critical values are all distinct: distinct critical points may have the same

value.

Definition 2.1. A smooth closed n-dimensional manifold M with n > 0

is called an almost sphere (or almost n-sphere) if it admits a Morse function

f : M ! R with exactly two critical points. For example, the standard n-

sphere Sn is an almost sphere.

For a smooth closed manifold M, we denote by CritðMÞ the minimum

number of critical points over all smooth (not necessarily Morse) functions on

M. Then we have the following characterization of almost n-spheres.

Proposition 2.2. For a smooth closed n-dimensional manifold M, the

following three are equivalent.

(1) M is an almost n-sphere.

(2) M is di¤eomorphic to the closed manifold obtained by attaching two

copies of the n-dimensional disk along the boundary spheres.

(3) For na 6, M is di¤eomorphic to the standard n-dimensional sphere Sn,

and for nb 7, M is a homotopy n-sphere.
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Furthermore, for n0 4, all the above three conditions are equivalent to the

following.

(4) CritðMÞ ¼ 2.

Proof. The equivalence ð1Þ , ð2Þ is an easy exercise of the standard

Morse theory. The equivalence ð2Þ , ð3Þ is a consequence of celebrated re-

sults due to Smale [45, 46, 47], Cerf [7], etc.

It is easy to see that (1) always implies (4). Conversely, suppose (4) holds.

It is known that then M is homeomorphic to the standard n-sphere (for

example, see [35], [10, Proposition 7.24], [40]). Therefore, (3) holds, except

possibly for n ¼ 4. r

In [36], a manifold which satisfies Proposition 2.2 (2) is called a twisted

sphere. For Proposition 2.2 (2), refer to [34, p. 442] as well. In fact, it is

not di‰cult to see that for every nb 1, the set of all di¤eomorphism classes

of oriented almost n-spheres forms an abelian group under connected sum.

Following [34], we denote this group by G n. Note that G n ¼ 0 for na 6 and

that G n is isomorphic to the h-cobordism group Yn of oriented homotopy n-

spheres for nb 5.

If M is an almost n-sphere, then MnInt Dn is di¤eomorphic to the standard

n-dimensional disk for every n-dimensional disk Dn embedded in M. Note

also that every almost n-sphere is homeomorphic to the standard n-sphere Sn.

3. Morse functions with almost sphere fibers

In this section, we give a characterization theorem of those closed mani-

folds which admit Morse functions with regular fibers consisting of almost

spheres. Let us begin by the following definition.

Definition 3.1. A proper smooth function f : M ! R is almost spherical

(or f has almost sphere fibers) if every component of f �1ðyÞ is an almost

sphere for all regular value y A f ðMÞHR. If every component of f �1ðyÞ is
di¤eomorphic to the standard sphere for all regular value y A f ðMÞHR, then

we say that f is purely spherical. Note that every surface clearly admits a

purely spherical Morse function.

The first result of this section is the following.

Proposition 3.2. Let M be a smooth closed connected n-dimensional

manifold with nb 2. Then the following three conditions are equivalent.

(1) There exists a purely spherical Morse function f : M ! R.

(2) There exists an almost spherical Morse function f : M ! R.

(3) There exists a Morse function f : M ! R with at most three critical

values.
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Before proving Proposition 3.2, let us give an illustrating example of

Morse functions with exactly three critical values.

Example 3.3. Let us consider the square J � J with J ¼ ½�1; 1� and a

smooth function h : J � J ! ½�1; 1� whose level sets are as depicted in Fig. 1.

Consider the equivalence relation on J � J generated by

ðt;�1Þ@ ðt; 1Þ and ð�1; tÞ@ ð1; tÞ ðEt A JÞ:

Then the quotient space ðJ � JÞ=@ is naturally identified with the 2-dimensional

torus T 2, and the function h induces a Morse function f1 : T
2 ! ½�1; 1�. Note

that it has exactly four critical points c1, c2, c3 and c4 with f1ðc1Þ ¼ 1, f1ðc2Þ ¼
f1ðc3Þ ¼ 0 and f1ðc4Þ ¼ �1. Therefore, f1 has exactly three critical values.

If we consider the equivalence relation on J � J generated by

ðt;�1Þ@ ð�t; 1Þ and ð�1; tÞ@ ð1; tÞ ðEt A JÞ;

then the quotient space ðJ � JÞ=@ is naturally identified with the Klein bottle

K 2, and the function h induces a Morse function f2 : K
2 ! ½�1; 1�. This also

has exactly three critical values.

Proof of Proposition 3.2. Clearly (1) implies (2).

Fig. 1. Smooth function h on J � J
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Let us show that (2) implies (3). Suppose that there exists an almost

spherical Morse function f : M ! R. Let c1 < c2 < � � � < cm be its critical

values. Take real numbers ti, i ¼ 1; 2; . . . ;mþ 1, such that t1 < c1 < t2 < c2 <

t3 < � � � < tm < cm < tmþ1 and set Mi ¼ f �1½t1; ti�, i ¼ 1; 2; . . . ;mþ 1. Note

that M1 is the empty set. Since f is almost spherical, Mi is a compact n-

dimensional manifold such that each connected component of qMi is an almost

sphere. Furthermore, Miþ1, i ¼ 1; 2; . . . ;m, is obtained from Mi by simulta-

neously attaching those handles which correspond to the critical points with

critical value ci.

Since qMi ¼ f �1ðtiÞ consists of almost ðn� 1Þ-spheres, for each component

S of f �1ðtiÞ, ib 2, there exists an ðn� 1Þ-disk embedded in S such that

the handles of index di¤erent from 0 or n are attached on the union of the

ðn� 1Þ-disks. Furthermore, these ðn� 1Þ-disks can be isotoped so that it does

not intersect those handles of positive index which were attached previously.

Therefore, M admits a handlebody decomposition of the form

6
s

a¼1
h0a

 !
U 6

t

b¼1
hrb
b

 !
U 6

u

c¼1
hn
c

 !
; ð3:1Þ

where hr
� denotes a handle of index r, the indices of the handles in the middle

satisfy 1a rb a n� 1, b ¼ 1; 2; . . . ; t, and the handles hrb
b are attached simul-

taneously to the union of the 0-handles.

Then any Morse function corresponding to such a handlebody decom-

position is a desired function as in (3).

Finally a Morse function as in (3) is always purely spherical. Therefore,

(3) implies (1). This completes the proof of Proposition 3.2. r

Remark 3.4. Suppose that a manifold M admits an almost spherical

Morse function. By virtue of the above proof (see also the second paragraph

of the proof of Theorem 3.7), we see easily that the minimum number of

critical points over all Morse functions on M can be realized by a purely

spherical Morse function.

In order to state a characterization theorem of manifolds which admit

Morse functions as in Proposition 3.2, we need the following definition.

Definition 3.5. (1) For nb 3 and 1a ra n� r, let us consider an

ðn� r� 1Þ-sphere S2 embedded in Sn�1. Let S1 be the ðr� 1Þ-sphere em-

bedded as the boundary of an r-disk fiber of the normal disk bundle to S2 in

Sn�1. Let W be the n-dimensional handlebody obtained from a 0-handle by

attaching an r-handle and an ðn� rÞ-handle simultaneously along S1 and S2

respectively, where we identify Sn�1 with the boundary of the 0-handle. Note
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that W is a compact (possibly nonorientable when r ¼ 1) connected n-

dimensional manifold with boundary. It is easy to observe that qW is a

homotopy ðn� 1Þ-sphere if r < n� r or if nD 0 ðmod 4Þ. If qW is an almost

ðn� 1Þ-sphere, then W (or any manifold which is di¤eomorphic to such a

manifold W ) is called an elementary handlebody with index pair ðr; n� rÞ.
(2) For nb 4 and n1 0 ðmod 2Þ, let W be an n-dimensional handlebody

obtained from a 0-handle by attaching some handles of index n=2 simulta-

neously. If qW is an almost ðn� 1Þ-sphere, then W (or any manifold which is

di¤eomorphic to such a manifold W ) is called a pseudo elementary handlebody

with index n=2.

Remark 3.6. (1) In [33, § 1], Milnor constructs an elementary handlebody

W1 of dimension mþ nþ 2 with index pair ðmþ 1; nþ 1Þ, by using the stan-

dard pair of an m-sphere and an n-sphere with linking number G1 disjointly

embedded in Smþnþ1, and studies the di¤eomorphism type of the boundary

homotopy sphere qW1. Note that Milnor uses the ‘‘standard identifications’’

between spheres for attaching the handles. Therefore, even if S2 is a standardly

embedded ðn� r� 1Þ-sphere in Definition 3.5 (1), the manifold W may not be

di¤eomorphic to a manifold constructed by Milnor.

(2) In the stable range (i.e. when rbðn=3Þ þ 1), the embedded ðn� r� 1Þ-
sphere S2 is standard in Definition 3.5 (1) (see, for example, [17]). In fact,

in the stable range, any pair of an ðr� 1Þ-sphere and an ðn� r� 1Þ-sphere
disjointly embedded in Sn�1 with linking number G1 is standard by virtue of a

result of Haefliger [17, 18].

Now we have the following characterization theorem.

Theorem 3.7. Let M be a smooth closed connected n-dimensional manifold

with nb 3. Then conditions (1)–(3) of Proposition 3.2 are all equivalent to the

following.

(4) The manifold MnInt Dn is di¤eomorphic to \ki¼1Wi for some kb 0,

where the boundary connected sum over the empty set is assumed to be

the n-dimensional disk, and each Wi is either

( i ) an elementary handlebody of dimension n, or

(ii) a pseudo elementary handlebody of dimension n with index n=2 if

n1 0 ðmod 4Þ.

Proof. Suppose that M is di¤eomorphic to a manifold as in (4). Then it

is easy to see that M admits a handlebody decomposition of the form

h0 U 6
l

j¼1
h
rj
j

 !
U hn

147Morse functions with sphere fibers



for some 0a l < þy and 1a rj a n� 1, j ¼ 1; 2; . . . ; l, where the handles

hr1
1 ; h

r2
2 ; . . . ; h

rl
l are attached simultaneously to h0. Therefore M admits a

Morse function f : M ! R with lþ 2 critical points such that each handle

of index r corresponds to a critical point of index r and that all the critical

points corresponding to the handles h
rj
j , j ¼ 1; 2; . . . ; l, have the same value.

Then f has exactly three critical values and a regular fiber is either empty or

di¤eomorphic to the standard ðn� 1Þ-sphere. Thus (1), (2) and (3) of Propo-

sition 3.2 hold.

Let us now show that (3) implies (4). By the proof of Proposition 3.2, M

admits a handlebody decomposition as in (3.1). Since M is connected, the

union of the 0-handles and the 1-handles are connected. Therefore, the union

of the s 0-handles and some s� 1 1-handles connecting them can be considered

as a 0-handle. Thus, we may assume that the number of 0-handles s is equal

to 1. By dualizing the argument, we may also assume that the number of n-

handles u is equal to 1.

First note that for each r with 0a ra n, the number of r-handles coincides

with the r-th betti number of M. Therefore, for each r with 0a r < n=2, the

number of r-handles coincides with that of ðn� rÞ-handles by Poincaré duality

for Z=2Z-coe‰cients.

For each v with 0a va n=2, let Mv be the union of the 0-handle h0 and

all the handles hrb
b with 1a rb a v or n� va rb a n� 1. Let us show, by

induction on v, that Mv, vb 1, is di¤eomorphic to a boundary connected sum

of (pseudo) elementary handlebodies, provided that n0 5. (For n ¼ 5, we will

use a di¤erent argument to prove the theorem.)

Let us begin by considering the case v ¼ 1. First note that qM1 must be

connected, since otherwise MnInt hn would have disconnected boundary, which

leads to a contradiction. For an ðn� 1Þ-handle hn�1, its attaching sphere is

an ðn� 2Þ-sphere embedded in an ðn� 1Þ-sphere, the boundary of the 0-handle

h0. Therefore, by Alexander duality, the boundary of the union h0 U hn�1 has

two connected components. Thus, there must be a 1-handle h1 connecting the

two connected components. Let us put Y ¼ h0 U h1 U hn�1 and show that it is

an elementary handlebody.

By the di¤erentiable Schoenflies theorem (see [4] for n ¼ 3, [1] for n ¼ 4,

and [36, p. 112] for nb 6), the attaching sphere is isotopic to the standard

ðn� 2Þ-sphere embedded in an ðn� 1Þ-sphere. Therefore, the union of the 0-

handle h0 and the ðn� 1Þ-handle hn�1 is di¤eomorphic to Sn�1 � ½0; 1� for
some almost ðn� 1Þ-sphere Sn�1. Hence, the boundary of Y ¼ h0 U h1 U hn�1

is di¤eomorphic either to Sn�1]ð�Sn�1ÞGSn�1 or to the almost ðn� 1Þ-sphere
Sn�1]Sn�1, where �Sn�1 denotes the manifold Sn�1 with the reversed orienta-

tion, and the second case occurs if and only if Y is nonorientable. Hence, Y

is an elementary handlebody with index pair ð1; n� 1Þ.

148 Osamu Saeki



Let C be a small open collar neighborhood of qY in Y , which we identify

with qY � ½0; 1Þ. Note that YnC is di¤eomorphic to Y . Furthermore, let D

be a closed ðn� 1Þ-disk embedded in qY V qh0 such that all the handles of

index 1 and n� 1 of M are attached outside of D. Since qY is an almost

ðn� 1Þ-sphere, we see the following:

( i ) Y 0 ¼ ðYnCÞU ðD� ½0; 1ÞÞ is di¤eomorphic to Y ,

( ii ) the closure DY of YnY 0 is di¤eomorphic to the n-dimensional disk,

and

(iii) Y 0 VDY is di¤eomorphic to the ðn� 1Þ-dimensional disk.

This implies that M1 is di¤eomorphic to the boundary connected sum of the

elementary handlebody Y and a handlebody M 0
1 obtained by simultaneously

attaching 1- and ðn� 1Þ-handles to an 0-handle, where the number of 1-handles

coincides with that of ðn� 1Þ-handles and is smaller than that for M1 by

one. Therefore, by an inductive argument, we see that M1 is di¤eomorphic

to a boundary connected sum of elementary handlebodies with index pair

ð1; n� 1Þ, provided that n0 5.

Now let us proceed by induction on v. Let us assume 2a va n=2 and

Mv�1 is di¤eomorphic to a boundary connected sum of elementary handle-

bodies. Since qMv�1 is an almost ðn� 1Þ-sphere, there exists an embedded

ðn� 1Þ-disk D1 in qMv�1 such that all the handles of index v and n� v are

attached to D1. Therefore, Mv is di¤eomorphic to the boundary connected

sum of Mv�1 and a handlebody Pv obtained by simultaneously attaching v- and

ðn� vÞ-handles to a 0-handle. Let us determine the structure of Pv.

Case 1. 3a v < n=2.

Note that in this case, we have nb 7.

Let hn�v be an ðn� vÞ-handle. By sliding handles of index v, we may

assume that there exists a v-handle hv such that the attaching spheres S1 of hv

and S2 of hn�v in the boundary of the 0-handle h0 of Pv have linking number

G1, by virtue of the Poincaré duality for the manifold

h0 U 6
2arban�2

hrb
b

 !
; ð3:2Þ

which has an almost sphere boundary. Note that the boundary of the union

Yv ¼ h0 U hv U hn�v is simply connected, since n� 3b n� v > vb 3. Further-

more, it is easy to check that qYv has the same Z-homology as Sn�1. There-

fore, qYv is a homotopy ðn� 1Þ-sphere. By Proposition 2.2, qYv is an almost

ðn� 1Þ-sphere, since we have assumed nb 7.

Furthermore, if vb ðn=3Þ þ 1, then the attaching spheres S1 and S2 form

a standard pair as noted in Remark 3.6 (2). Even if vb ðn=3Þ þ 1 is not

satisfied, S1 is homotopic in Sn�1nS2 to the boundary ðv� 1Þ-sphere S0 of a
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disk fiber of the normal disk bundle to S2 in Sn�1. Then by [17], we see that

S1 is always isotopic to S0 in Sn�1nS2. Therefore, Yv is an elementary han-

dlebody.

Then by the same argument as for the case v ¼ 1, we see that Pv is

di¤eomorphic to a boundary connected sum of elementary handlebodies of

index pair ðv; n� vÞ.

Case 2. v ¼ n=2.

Since Mv ¼MnInt hn, we see that qMv must be di¤eomorphic to Sn�1.

On the other hand, qMv is di¤eomorphic to the connected sum of qPv and

the almost ðn� 1Þ-sphere qMv�1. Therefore, qPv must be an almost ðn� 1Þ-
sphere. Hence Pv is a pseudo elementary handlebody with index n=2.

Furthermore, if n1 2 ðmod 4Þ (and hence nb 6), then the intersection

form

Hn=2ðPvÞ �Hn=2ðPvÞ ! Z

is unimodular and skew-symmetric and hence is isomorphic to the standard

one. (Here, note that the manifold Pv is orientable and hence the intersection

form is defined over the integers.) Therefore, an argument similar to that in

Case 1 can be applied to show that Pv is di¤eomorphic to a boundary con-

nected sum of elementary handlebodies with index pair ðn=2; n=2Þ.

Case 3. 2 ¼ v < n=2.

Note that in this case nb 6. Furthermore, qP2 is simply connected by the

following reasons.

(1) By attaching handles of index r with 3a ra n� 3 to P2, we obtain a

compact manifold with boundary homotopy equivalent to Sn�1.

(2) Attaching handles of index r with 3a ra n� 3 does not change the

fundamental group of the boundary.

Moreover, by Poincaré duality for the manifold (3.2), the intersection form

H2ðP2Þ �Hn�2ðP2Þ ! Z

over the integers is unimodular, and hence qP2 is a Z-homology sphere.

Therefore, qP2 is a homotopy sphere and since nb 6, it is an almost ðn� 1Þ-
sphere.

Let us show that P2 is di¤eomorphic to a boundary connected sum of

elementary handlebodies of index pair ð2; n� 2Þ.
Let

P2 ¼ h0 U 6
w

j¼1
h2j

 !
U 6

w

k¼1
hn�2
k

 !

be the given handlebody decomposition of P2. Let D be a small n-dimensional

disk embedded in the interior of h0 such that h0nInt DG qh0 � ½0; 1�. Then
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there exist ðn� 2Þ-handles hn�2
k , k ¼ 1; 2; . . . ;w, disjointly embedded in the

interior of

X ¼ h0 U 6
w

k¼1
hn�2
k

 !

such that they are attached to D simultaneously. More precisely, hn�2
k is the

union of a small closed tubular neighborhood Nk of the core ðn� 2Þ-disk of

hn�2
k in hn�2

k and ðNk V qh0Þ � ½0; 1�H h0nInt D, k ¼ 1; 2; . . . ;w. Note that

X ¼ DU 6
w

k¼1
hn�2
k

 !

is a deformation retract of X and that the closure of XnX is di¤eomorphic to

qX � ½0; 1�.
Let us consider

Z ¼ ðXnInt XÞU 6
w

j¼1
h2j

 !
:

By considering the dual handlebody decomposition, we see that Z is di¤eo-

morphic to a manifold obtained from qP2 � ½0; 1� by attaching w handles of

index n� 2. Since qP2 is simply connected, so is Z.

Note that Kk ¼ hn�2
k VD ¼ hn�2

k V qD is di¤eomorphic to Sn�3 �D2, k ¼
1; 2; . . . ;w. Let ck be a circle embedded in qDnKk obtained by pushing the

boundary of a disk fiber f�g �D2 of Kk slightly toward qDnKk. Since Z is

simply connected and dim Zb 6, there exists an embedded 2-disk dk in Z with

qdk ¼ ck which intersects qD transversely along ck and satisfies dk V qZ ¼ ck.

We may further assume that d1; d2; . . . ; dw do not mutually intersect. Then

small closed tubular neighborhoods h2k of dk in Z are 2-handles and are at-

tached simultaneously to D.

Set

P2 ¼ DU 6
w

j¼1
h2j

 !
U 6

w

k¼1
hn�2
k

 !
:

Then by considering the intersection form of P2, we see that the inclusion

P2 ,! P2 is a homotopy equivalence. Furthermore, P2nInt P2 is homotopy

equivalent to

Zn 6
w

k¼1
dk

 !
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and is simply connected. Since p1ðqX Þ is normally generated by the elements

represented by c1; c2; . . . ; cw, we see that qP2 is simply connected. Recall that

qP2 is also simply connected. Therefore, P2nInt P2 is an h-cobordism between

qP2 and qP2 of dimension nb 6 and is di¤eomorphic to the product qP2 � ½0; 1�
by the h-cobordism theorem [36, 46]. Hence, P2 is di¤eomorphic to P2.

Therefore, we may assume that the attaching circle of the 2-handle h2k is the

boundary of a 2-disk fiber of the normal disk bundle to the attaching ðn� 3Þ-
sphere of the ðn� 2Þ-handle hn�2

k in qh0, k ¼ 1; 2; . . . ;w. Then the boundary

of h0 U h2k U hn�2
k is simply connected and hence it is an elementary handlebody

of index pair ð2; n� 2Þ. Now the argument in Case 1 can be applied to show

that P2 is di¤eomorphic to a boundary connected sum of elementary han-

dlebodies of index pair ð2; n� 2Þ.

This completes the proof of Theorem 3.7 for the case n0 5.

For n ¼ 5, we need the following.

Lemma 3.8. Let S4 be a smooth closed 4-manifold homotopy equivalent to

the 4-sphere S4. Then there exist 5-dimensional h-cobordisms W0 and W1 be-

tween S4 and S4 such that W0 US 4 W1 is di¤eomorphic to S4 � ½0; 1�.

The above lemma follows from [53] and [26] (see also [25]).

Let us consider the union X of the 0-handle and the 4-handles in the

handlebody decomposition (3.1) of M with s ¼ u ¼ 1. It is not di‰cult to

see that for each 4-handle, there exists a homotopy 4-sphere Si embedded in

Int X which is the union of the core 4-disk of the 4-handle and a homotopy

4-disk properly embedded in the 0-handle. We may further assume that the

embedded homotopy 4-spheres are mutually disjoint.

For each embedded homotopy 4-sphere Si, its closed tubular neighbor-

hood in X is di¤eomorphic to Si � ½0; 1�. Therefore, by Lemma 3.8, we can

find an embedded 4-sphere Si inside the interior of the tubular neighborhood

which cuts Si � ½0; 1� into two h-cobordisms. Note that Si is embedded in X .

There exists a 5-disk D embedded in the interior of the 0-handle such that

ðD;DVSiÞ is di¤eomorphic to the standard disk pair for each Si.

Now let us consider the union M1 of X and the 1-handles. For each 1-

handle, we can find a circle smoothly embedded in Int M1 which is the union of

the core arc of the 1-handle and a properly embedded arc in the 0-handle. We

may assume that these arcs are mutually disjoint and that each circle intersects

D in a properly embedded arc. Then it is not di‰cult to show that the union

T of the 5-disk D, the 4-spheres Si, and the circles is a deformation retract

of M1. Furthermore, a small regular neighborhood NðTÞ of T in M1 is

di¤eomorphic to ð]aðS1 � S4ÞÞ]ð]bðS1 ~��S4ÞÞnInt D5, where S1 ~��S4 denotes the

unique nonorientable S4-bundle over S1, a is the number of orientable 1-
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handles, and b is the number of nonorientable 1-handles. Therefore, the

closure of M1nNðTÞ is an h-cobordism between S4 and the homotopy 4-sphere

qM1.

Thus, we have shown that M is di¤eomorphic to

ð]aðS1 � S4ÞÞ]ð]bðS1 ~��S4ÞÞ]M 0;

where the smooth closed 5-manifold M 0 is constructed from a compact con-

tractible 5-manifold with boundary di¤eomorphic to qM1 by attaching handles

of index 2 and 3 simultaneously and then by attaching a 5-handle. We see

easily that such a 5-manifold is simply connected and has torsion free homology

groups. Then, by the classification of smooth closed simply connected 5-

manifolds [2, 47], we see that M 0 is di¤eomorphic to a connected sum of some

copies of S2 � S3 and some copies of a unique nontrivial S3-bundle over S2.

Then we can show that M 0nInt D5 is a boundary connected sum of elementary

handlebodies with index pair ð2; 3Þ. Thus we have the desired result, since

both ðS1 � S4ÞnInt D5 and ðS1 ~��S4ÞnInt D5 are elementary handlebodies of

index pair ð1; 4Þ. This completes the proof of Theorem 3.7. r

Remark 3.9. Let W be an elementary handlebody of dimension nb 3,

n0 5, with index pair ð1; n� 1Þ. If W is orientable, then the manifold W is

di¤eomorphic to ðS1 � Sn�1ÞnInt Dn for some almost sphere Sn�1 of dimen-

sion n� 1.

In order to consider the case where W is nonorientable, let us introduce

the following notation. Let S be an almost ðn� 1Þ-sphere which is orientation

preservingly di¤eomorphic to its orientation reversal �S. (This is equivalent

to that S]S is di¤eomorphic to Sn�1. Thus, if 2G n�1 ¼ 0, then every almost

ðn� 1Þ-sphere satisfies this property.) Let r : S ! S be an orientation

reversing di¤eomorphism. We denote by S1 ~��S the total space of the S-

bundle over the circle with the monodromy di¤eomorphism given by r: i.e.

S1 ~��S ¼ ½0; 1� � S=ð1; xÞ@ ð0; rðxÞÞ:

Note that the di¤eomorphism type of S1 ~��S depends on the choice of r in

general, but that it is uniquely determined up to a connected sum with an

almost n-sphere.

Suppose that G n�1 is a Z=2Z-module, i.e. 2G n�1 ¼ 0, and nb 3, n0 5.

(For example, n ¼ 3; 4; 6; 7; 9; 13; 15; 17, etc.) If W is nonorientable, then W is

di¤eomorphic to S1 ~��SnInt Dn for some almost ðn� 1Þ-sphere S. For the

case 2G n�1 0 0, see Example 3.20.

Remark 3.10. Let W be an elementary handlebody of index pair

ð2; n� 2Þ as in Definition 3.5 (1) with nb 6. Then the union of the 0-handle

and the 2-handle is di¤eomorphic to a Dn�2-bundle over S2. If this bundle is
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trivial (or equivalently, if W is spin), then in some cases (for example, if n is

odd), W is di¤eomorphic to an elementary handlebody of index pair ð2; n� 2Þ
such that the attaching sphere of the ðn� 2Þ-handle is the standard ðn� 3Þ-
sphere in the boundary of the 0-handle. For details, see [27, Theorem 1 and

Proposition 1].

Remark 3.11. For n ¼ 2sþ 1b 9 with s0 7, a di¤eomorphism classi-

fication of elementary handlebodies of index pair ðs; sþ 1Þ can be obtained

from results obtained in [54].

Remark 3.12. For n even with nb 6, pseudo elementary handlebodies of

dimension n with index n=2 are studied in [52]. For example, it is shown that

the di¤eomorphism classes of such manifolds are in one-to-one correspondence

with the ‘‘n-spaces’’ (see [52, p. 170]).

Remark 3.13. We see easily that a manifold M as in Theorem 3.7 is

homeomorphic to a connected sum of the form ŴW1]ŴW2] . . . ]ŴWk, where each ŴWi

is the closed topological manifold obtained from a (pseudo) elementary han-

dlebody as appearing in Theorem 3.7 by attaching an n-dimensional disk along

the boundary almost ðn� 1Þ-sphere by a homeomorphism.

Suppose that Wi is an elementary handlebody of index pair ðr; n� rÞ. If

r ¼ 1, then ŴWi is homeomorphic either to S1 � Sn�1 or to S1 ~��Sn�1. If 3a

ra n� r, then ŴWi is homeomorphic to a manifold obtained from Milnor’s

manifold as described in Remark 3.6 (1) by attaching an n-disk, since every

ðn� r� 1Þ-sphere smoothly embedded in Sn�1 is topologically unknotted by

[48, 56]. For r ¼ 2, we do not know if the corresponding statement for ŴWi is

true or not.

As direct corollaries to Theorem 3.7, we have the following.

Corollary 3.14. A smooth closed connected 3-manifold admits a purely

spherical Morse function if and only if it is di¤eomorphic to S3 or to a connected

sum of some copies of S1 � S2 and/or S1 ~��S2.

Note that the above corollary has already been obtained in [42] under the

assumption that the critical points of the Morse function have distinct critical

values. In § 6 we give another proof of the above corollary (see Remark 6.3).

In § 6 we also give a characterization theorem of 3-manifolds admitting Morse

functions whose regular fibers are disjoint unions of 2-spheres and tori (see

Theorem 6.5).

Corollary 3.15. A smooth closed connected 4-manifold admits a purely

spherical Morse function if and only if it is di¤eomorphic to a manifold of the

form M1]M2, where M1 is S4 or a connected sum of some copies of S1 � S3
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and/or S1 ~��S3, and M2 is a closed 1-connected 4-manifold which admits a

handlebody decomposition without 1- or 3-handles.

It is still an open problem whether or not every smooth closed 1-connected

4-manifold admits a handlebody decomposition without 1- or 3-handles, as

far as the author knows (see also the final open question posed in [9, p. 459]).

Note also that every closed 1-connected 4-manifold is known to be covered by

three open 4-balls [28].

The following is a direct consequence of the proof of Theorem 3.7 for the

case n ¼ 5.

Corollary 3.16. A smooth closed connected 5-manifold admits a purely

spherical Morse function if and only if it is di¤eomorphic to S5 or to a connected

sum of some copies of the following manifolds:

( i ) S1 � S4,

( ii ) S1 ~��S4,

(iii) S2 � S3,

(iv) nontrivial S3-bundle over S2.

As another corollary to Theorem 3.7, we have the following.

Corollary 3.17. If a smooth closed connected n-dimensional manifold M

admits an almost spherical Morse function, then we have the following.

(1) The fundamental group p1ðMÞ of M is free.

(2) The homology group HiðMÞ is torsion free for all i if M is orientable.

(3) The cup product

^: ~HHiðM;RÞ � ~HH jðM;RÞ ! ~HHiþjðM;RÞ

is nontrivial only if i þ j ¼ n, where R ¼ Z if M is orientable and R ¼
Z=2Z otherwise.

(4) CritðMÞa 3.

(5) Mnfpointg is homotopy equivalent to a bouquet of spheres.

Proof. Since MnInt Dn admits a handlebody decomposition consisting

of a 0-handle and some handles of positive index which are attached simul-

taneously to the 0-handle, (5) follows immediately.

(1) and (2) are direct consequences of (5).

The cup product of a manifold is the dual of its intersection form. By

virtue of the handlebody decomposition described above, the intersection of

two cycles representing the natural generators of the homology groups lies in

the 0-handle. Hence, the result is nontrivial only when the intersection is 0-

dimensional. Therefore, (3) follows.

(4) follows from Proposition 3.2 (3) and [50, Chap. II] (see also [10, Re-

mark 7.27]). r
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Note that (3) can also be proved by using the well-known relationship

between the cup-length and the Lusternik-Schnirelmann category (for the

definition, see § 5). See [55, Chap. X] or [21, § 4], for example. (1) can also

be proved by using the Lusternik-Schnirelmann category (see [12, § 23] or [21,

§ 4]).

Example 3.18. Let us consider an ðn� 1Þ-connected 2n-dimensional

closed manifold with nb 3. By Smale [46], such a manifold admits a han-

dlebody decomposition consisting of one 0-handle, some n-handles attached

to the 0-handle simultaneously, and one 2n-handle. Thus, such a manifold

satisfies the properties mentioned in Proposition 3.2 and Corollary 3.17. See

also [52] where the di¤eomorphism types of such manifolds are studied.

Example 3.19. Let V be a compact manifold obtained from Dn by simul-

taneously attaching some handles of positive index. Then the double of V ,

V UV , satisfies the properties mentioned in Proposition 3.2 and Corollary 3.17.

This construction is due to Mielke [31].

In Remark 3.9, when the manifold is nonorientable, without the hypothesis

2G n�1 ¼ 0 we cannot conclude a similar result as the following example shows.

Example 3.20. Let A be the 2k-dimensional disk bundle over S2k ob-

tained as the closed tubular neighborhood of the diagonal of S2k � S2k.

Furthermore, let W be the compact manifold of dimension 4k obtained by

plumbing eight copies of A according to the so-called E8 diagram. Then it is

known that for kb 2, S4k�1 ¼ qW is homeomorphic to the standard sphere

S4k�1, but is not di¤eomorphic to S4k�1 (see [23] or [35, § 2]). It is also known

that S4k�1]S4k�1 is not di¤eomorphic to S4k�1.

Note that W has a handlebody decomposition consisting of one 0-handle

and eight 2k-handles attached simultaneously to the 0-handle. Note also that

W]W gives a cobordism between S4k�1 and its orientation reversal �S4k�1

and that this cobordism is obtained by simultaneously attaching sixteen 2k-

handles to S4k�1 � ½�1; 1� on S4k�1 � f�1g.
Let us consider the following construction. We first attach a 4k-

dimensional ð4k � 1Þ-handle to a 0-handle along the standardly embedded

ð4k � 2Þ-sphere in the boundary of the 0-handle so that the resulting manifold

X1 is di¤eomorphic to S4k�1 � ½�1; 1�. We then attach sixteen 2k-handles

to X1 simultaneously along S4k�1 � f�1g so that they do not intersect the

ð4k � 1Þ-handle and that the result has boundary oriented di¤eomorphic to

the union of two copies of S4k�1. Let us denote by X2 the resulting compact

4k-dimensional manifold. Then we attach a 1-handle to X2 so that it connects

the two boundary components of X2 and that we get a nonorientable man-

ifold. The resulting nonorientable manifold X3 has boundary di¤eomorphic
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to S4k�1]ð�S4k�1ÞGS4k�1. Finally, we attach a 4k-handle to X3 to obtain a

closed nonorientable 4k-dimensional manifold M.

By the above construction, M has a handlebody decomposition of the

form

M ¼ h0 U h1 U 6
16

h2k

 !
U h4k�1 U h4k;

where hr denotes a handle of index r and the handles of indices 1, 2k and

4k � 1 are attached simultaneously to the 0-handle. Therefore, M admits a

Morse function f : M ! R with exactly three critical values. Note that f is

purely spherical.

However, the union h0 U h1 U h4k�1 has boundary di¤eomorphic to

S4k�1]S4k�1, which is not di¤eomorphic to S4k�1. Therefore, we cannot

attach the 4k-disk so as to obtain a closed manifold. Note that 2G 4k�1 0 0,

kb 2.

Remark 3.21. Manifolds which admit Morse functions with exactly three

critical points (and hence with three critical values) are studied in [11].

4. An application to special generic maps

As another interesting corollary to Theorem 3.7, we obtain a new proof

of the characterization theorem of those closed n-dimensional manifolds which

admit a certain generic smooth map into the plane. Let us first recall the

following definition.

Definition 4.1. Let f : M ! N be a smooth map between smooth man-

ifolds, where we assume n ¼ dim Mb dim N ¼ p. A point x A M is a sin-

gular point of f if rank dfx < p. A singular point x of f is called a definite

fold singular point if there exist local coordinates ðx1; x2; . . . ; xnÞ around x and

ðy1; y2; . . . ; ypÞ around f ðxÞ such that f has the form

yi � f ¼
xi; 1a ia p� 1;

x2
p þ x2

pþ1 þ � � � þ x2
n ; i ¼ p:

�

A smooth map f : M ! N is called a special generic map if every singular

point of f is a definite fold singular point (see [5, 41]).

Then we have the following characterization theorem, originally proved in

[41] (see also [5, 39]).

Corollary 4.2. A smooth closed connected n-dimensional manifold with

nb 2 admits a special generic map into R2 if and only if it is di¤eomorphic to a

157Morse functions with sphere fibers



manifold of the form M0 or M0]M1, where the closed manifolds M0 and M1 are

as follows.

(1) M0 is an almost n-sphere.

(2) M1 is the connected sum

ð]ki¼1ðS1 � Sn�1
i ÞÞ]ð]lj¼1ðS1 ~�� ~SSn�1

j ÞÞ

for some 0a k < þy and l ¼ 0 or 1 with k þ lb 1, where Sn�1
i is an

almost ðn� 1Þ-sphere, ~SSn�1
j is an almost ðn� 1Þ-sphere such that

~SSn�1
j ] ~SSn�1

j is di¤eomorphic to Sn�1, and S1 ~�� ~SSn�1
j stands for the total

space of a nonorientable ~SSn�1
j -bundle over the circle.

Proof. It is easy to see that the closed n-dimensional manifolds as above

admit special generic maps into R2 (for example, see [41]).

Conversely, let f : M ! R2 be a special generic map of a closed n-

dimensional manifold M into the plane. Let us recall the Stein factorization

of f :

M ����!f
R2

qf  
���� ����!f

Wf :

Here, qf is the map identifying each component of the inverse image of a point

under f to a point, Wf is the quotient space, and the continuous map f is

defined by the commutativity of the diagram (for details, see [41]). Note that

Wf has the structure of a compact connected 2-dimensional smooth manifold

with boundary such that f is a smooth immersion.

By choosing an orthogonal projection p : R2 ! R generically, we may

assume that the composition g ¼ p � f : M ! R is a Morse function (see

[30] and [13]). Take a regular value y A gðMÞ. Since g ¼ p � f ¼ p � f � qf ,
we have g�1ðyÞ ¼ q�1f ð f �1ðp�1ðyÞÞÞ. Note that p�1ðyÞ is a line in R2 and

that f : Wf ! R2 is an immersion of a compact surface with boundary such

that f jqWf
is transverse to p�1ðyÞ. Therefore, each connected component g

of f �1ðp�1ðyÞÞ is a properly embedded arc in Wf . Furthermore, the map

qf jq�1
f
ðgÞ : q

�1
f ðgÞ ! gG ½0; 1� is a Morse function with exactly one maximum

and one minimum. Hence q�1f ðgÞ is an almost ðn� 1Þ-sphere. Therefore,

g : M ! R is an almost spherical Morse function (see also [42, Theorem 3.2

and Proposition 3.3]).

Furthermore, we see easily that the critical points of g have indices 0, 1,

n� 1 or n. Hence, by Theorem 3.7 and its proof together with Remark 3.9,

we see that M is di¤eomorphic to a closed n-dimensional manifold as described

in Corollary 4.2, provided that M is orientable or n ¼ 5.
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When M is nonorientable and n0 5, we can take o¤ orientable connected

summands from M1 until we have just one 1-handle left, where M1 is as in

the proof of Theorem 3.7. (For this, consider sliding handles of index 1.)

The resulting manifold is a nonorientable elementary handlebody of index pair

ð1; n� 1Þ and is di¤eomorphic to the union of Sn�1 � ½0; 1� and a nonorientable

1-handle for some almost ðn� 1Þ-sphere Sn�1. Since there are no handles of

index between 2 and n� 2, this must have boundary di¤eomorphic to Sn�1.

This implies that Sn�1]Sn�1 is di¤eomorphic to Sn�1. Therefore, there exists

an orientation reversing di¤eomorphism Sn�1 ! Sn�1 and the union of Sn�1�
½0; 1� and the nonorientable 1-handle is di¤eomorphic to ðS1 ~��Sn�1ÞnInt Dn.

Thus we have the desired conclusion. This completes the proof. r

Note that the above proof is based on the idea given in [42] (see Prop-

osition 3.3 and the succeeding paragraph).

Remark 4.3. Let f : M ! Rp be a generic smooth map of a closed n-

dimensional manifold into Rp with n > p such that every regular fiber is a

union of almost spheres (see [42]). Then by an argument similar to that in

the proof of Corollary 4.2, we see that f jf �1ðLÞ : f �1ðLÞ ! L is an almost

spherical Morse function for every generic line L in Rp. Therefore, each

component of the submanifold f �1ðLÞ of M is always di¤eomorphic to a

manifold as described in Theorem 3.7.

5. Several invariants of manifolds

In this section, we study relationships among several homotopy or dif-

feomorphism invariants of manifolds related to smooth functions.

Definition 5.1. Let M be a smooth closed manifold of dimension n.

We define mðMÞ to be the minimum number of critical values among all Morse

functions on M (see [6, 32]).

Furthermore, we define the cell number, denoted by CðMÞ, to be the

minimum number of open n-balls covering M (see [32, 44] or [10, § 3.1]).

We say that a finite set of closed n-balls1 fBig in M is a ball covering of

M if it covers M and Bi VBj ¼ qBi V qBj is an ðn� 1Þ-dimensional manifold

whenever i0 j. We define bðMÞ to be the minimum number of closed n-balls

among all ball coverings of M (see [6, 24]).

Note that these are di¤eomorphism invariants of M.

1Here, we mean by an ‘‘n-ball’’ a combinatorial n-ball with respect to a smooth triangulation of

M.
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A subset U of a topological space2 X is said to be categorical if the

inclusion map U ,! X is null-homotopic. We denote by catðXÞ the smallest

possible integer k such that there exist k þ 1 open sets3 of X covering X each

of which is categorical. If no such covering exists, then we define catðX Þ to be

þy. This integer (possibly þy) is called the Lusternik-Schnirelmann category

of X [29] (see also [3, 8, 9, 10, 12, 14, 16, 21, 22, 37, 43, 51, 55] etc.).

Furthermore, we denote by gcatðXÞ the smallest possible integer k such

that there exist k þ 1 open sets of X covering X each of which is contractible in

itself. Again, if there is no such covering, then we define gcatðXÞ ¼ þy. We

denote by CatðXÞ the smallest possible gcatðYÞ among all spaces Y homotopy

equivalent to X . This integer (possibly þy) is called the strong category of

X . Note that both catðX Þ and CatðX Þ are homotopy invariants of X .

Moreover, we denote by ClSðX Þ, the spherical cone length, the minimum

number n of cofibrations

Zi ! Xi ! Xiþ1

such that 0a i < n, X0 F �, Xn FX , and each Zi is homotopy equivalent to

a bouquet of spheres (for example, see [10, § 3.5] or [43]). The cone length,

denoted by ClðX Þ, is the minimum number n of cofibrations

Zi ! Xi ! Xiþ1

such that 0a i < n, X0 F � and Xn FX . Note that both ClSðXÞ and ClðX Þ
are homotopy invariants of X . It is known that ClðX Þ ¼ CatðXÞ always holds
[14]. Furthermore, by [51] we always have

catðXÞaCatðXÞa catðX Þ þ 1:

The following is known or is easy to prove. For the reader’s convenience,

we will give a brief proof.

Proposition 5.2. For a smooth closed connected manifold M of positive

dimension, we have the following.

(1) We always have

2a catðMÞ þ 1aCatðMÞ þ 1 ¼ ClðMÞ þ 1

aCðMÞaCritðMÞa mðMÞa dim M þ 1;

ClðMÞ þ 1aClSðMÞ þ 1a mðMÞ;

2 In what follows, we consider only those topological spaces which have the homotopy type of a

CW complex.

3 In this definition, ‘‘open’’ can be replaced by ‘‘closed’’, provided that X is a normal ANR. See

[12] or [10, § 1.2].
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and

CðMÞa bðMÞa mðMÞ:

(2) mðMÞ ¼ 2 if and only if M is an almost sphere.

Proof. (1) Since M is closed of positive dimension, it is not contractible,

and hence catðMÞb 1. The inequalities catðMÞaCatðMÞaCðMÞ � 1 follow

from the definitions. The inequality CðMÞaCritðMÞ is proved in [15].

Suppose f : M ! R is a Morse function with the minimum number of

critical values. We may assume that the critical points of index 0 (or n ¼
dim M) all have the same value. Then, since M is connected, we may assume

that the number of critical points of index 0 (or n) is equal to 1. We may

further assume that for any critical point p of index 1 and for any critical point

p 0; f ðp 0Þ < f ðpÞ holds only if p 0 has index 0. Then each critical level of f is

connected, and by using Takens’ technique [50, Chap. II], we can construct a

smooth function g on M such that the number of critical points of g is equal

to the number of critical values of f . Hence CritðMÞa mðMÞ follows.

The inequality mðMÞa dim M þ 1 can easily be proved by using the stand-

ard Morse theory (see [36, Theorem 4.8], for example).

The inequality ClðMÞaClSðMÞ follows from the very definition.

Suppose that a compact manifold W is obtained from a compact manifold

V with connected boundary by simultaneously attaching some handles to its

boundary. Then it is easy to see that there is a cofibration

Z ! V !W

with Z a homotopy bouquet of spheres. (Take Z to be the union of the at-

taching spheres of the handles in the boundary of V and some arcs connecting

them. See [9, § 4].) Therefore, the inequality ClSðMÞ þ 1a mðMÞ follows.

Finally, CðMÞa bðMÞ follows from the very definition. The inequality

bðMÞa mðMÞ can be proved by using an argument similar to that in the proof

of [24, Theorem 2.7].

(2) This also follows from the standard Morse theory. This completes

the proof. r

Example 5.3. Let us consider a smooth S3-bundle E over S4 as follows.

Such a bundle has the same homotopy type as

S3 Uc e
4 Uj e

7;

where ek stands for the k-dimensional cell, and c : qe4 ! S3 and j : qe7 !
S3 Uc e

4 are attaching maps. It is known that if c represents an element of

p3ðS3ÞGZ distinct from G1, then we have catðEÞ ¼ 2 (for example, see [3,
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22])4. However, if c0 0;G1, then E � fpointg is not homotopy equivalent

to a bouquet of spheres, since H3ðS3 Uc e
4Þ has a nontrivial torsion. Hence,

mðEÞ cannot be less than or equal to 3 by Corollary 3.17 (5). Thus we have

catðEÞ þ 1 < mðEÞ. (In fact, we can show that 3 ¼ catðEÞ þ 1 ¼ CatðEÞ þ 1 <

ClSðEÞ þ 1 ¼ mðEÞ ¼ 4.)

Furthermore, since E is 2-connected, by [50, Corollary 6.6], we have

CritðEÞ ¼ 3. Therefore, we have 3 ¼ CðEÞ ¼ CritðEÞ < mðEÞ ¼ 4. (We do

not know the exact value of bðEÞ. It should be equal to 3 or 4.)

As Scheerer and Tanré [43, § 3.3] point out, the di¤erence ClSðX Þ � catðX Þ
can be arbitrarily large for CW complexes X . Modifying their example, we

can show the following.

Proposition 5.4. For any positive integer k, there exists a smooth closed

connected manifold M such that

mðMÞ � CritðMÞb ðClSðMÞ þ 1Þ � CritðMÞb k:

Proof. Let us consider the complex projective space CPl, where l ¼ 2n

with nb 1. It is easy to see that for a generator a of H 2ðCPl;Z=2ZÞGZ=2Z,

we have

Sq2
n � Sq2 n�1 � � � � � Sq4 � Sq2ðaÞ ¼ a2

n

0 0:

Therefore, we have

ClSðCPlÞ > n

(see [10, Example 3.25], for example). Furthermore, for the suspension SCPl,

we have

ClSðSCPlÞ > n

as well, since the suspension operation is consistent with the squaring operation.

Note that catðSCPlÞ ¼ 1 and that SCPl is simply connected.

Now we can embed SCPl in an Euclidean space RN of su‰ciently high

dimension. Let V be a regular neighborhood of SCPl in RN . Note that V

is a compact N-dimensional manifold with boundary and is homotopy equiv-

alent to SCPl. Therefore, V is simply connected, and if N is su‰ciently

large, qV is also simply connected.

Thus by [10, § 7.4] (see also [9]), there exists a smooth function f on V

which is regular, constant and maximal on qV with the number of critical

points at most catðVÞ þ 2 ¼ 3.

4The inequality catðEÞa 2 can easily be seen, since S3 Uc e
4 is homotopy equivalent to the

suspension of S2 Uc 0 e
3 for an attaching map c 0 : qe3 ! S2 whose suspension is homotopic to c.
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Now let us consider the double of V : M ¼ V UV . Then M is a smooth

closed manifold of dimension N. If N is su‰ciently large, then the in-

clusion V ,!M induces isomorphisms on cohomology groups of dimension

a dim SCPl. Therefore, we see that

Sqin � Sqin�1 � � � � � Sqi2 � Sqi1ðbÞ0 0

for some b A H �ðM;Z=2ZÞ and i1; i2; . . . ; in�1; in b 1. Thus we have mðMÞb
ClSðMÞ þ 1 > nþ 1.

On the other hand, using the above constructed smooth function

f : V ! R, we can construct a smooth function on M with at most 6

critical points. Therefore, CritðMÞa 6 and we have mðMÞ � CritðMÞb
ðClSðMÞ þ 1Þ � CritðMÞ > n� 5. Choosing n so that n� 4b k, we have the

desired conclusion. This completes the proof. r

Remark 5.5. By [10, Example 7.32], for the above constructed manifold

M, we have catðMÞa 2.

Remark 5.6. We do not know how close are ClSðMÞ þ 1 and mðMÞ (see
also [43, § 7]).

Recall that mðMÞa 3 if and only if M satisfies one (and hence all) of the

conditions (1), (2) and (3) of Proposition 3.2.

In fact, we have the following.

Proposition 5.7. Let M be a smooth closed manifold. Then mðMÞa 3 if

and only if there exists a Morse function f : M ! R such that for each regular

value y A f ðMÞ, we have mð f �1ðyÞÞa 2.

Proof. If mðMÞa 3, then there exists a Morse function f : M ! R with

at most three critical values. Then it is easy to see that f �1ðyÞ is a union

of finitely many standard spheres for every regular value y A f ðMÞ and hence

mð f �1ðyÞÞa 2.

Conversely, if a Morse function f : M ! R as in the proposition exists,

then mðMÞa 3 holds by Proposition 3.2. r

It may be conjectured that for each integer kb 2, mðMÞa k þ 1 if and

only if there exists a Morse function f : M ! R such that for each regular

value y A f ðMÞ, we have mð f �1ðyÞÞa k. The above proposition shows that

this is true for k ¼ 2.

Note that the above conjecture is true at least for dim Ma 3. The first

unknown case would be that of dim M ¼ 4 and k ¼ 3.

Remark 5.8. Let f : M ! R be a Morse function on a closed manifold

M. By applying [38, Theorem 1.1] to the quotient map qf : M !Wf in the
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Stein factorization of f , we see that if catðq�1f ðxÞÞam for all x A Wf , then

catðMÞa 2mþ 1 holds. In particular, if mð f �1ðyÞÞa k for each regular value

y A f ðMÞ, then we have catðMÞa 2k þ 1.

Remark 5.9. For a smooth closed manifold M, we could consider the

minimum number of critical values among all smooth (not necessarily Morse)

functions on M. However, it is clear that the number is always equal to one

(consider a constant function). Nevertheless, if the set of critical points has

some topological restrictions, then such a number makes sense. For details,

see [8].

Remark 5.10. For smooth closed manifolds M, the author does not

know if CritðMÞ, CðMÞ, bðMÞ or mðMÞ are invariants of the homotopy type

of M.

6. Further results in the 3-dimensional case

In this section, we study the invariants mentioned in the previous section

more in detail for 3-dimensional manifolds. We also study Morse functions on

3-dimensional manifolds whose regular fibers are unions of 2-spheres and tori.

First we show the following.

Proposition 6.1. Let M be a smooth closed connected 3-manifold. Then

we have the following.

(1) catðMÞ ¼ CatðMÞ ¼ ClðMÞ ¼ ClSðMÞ.
(2) CðMÞ ¼ bðMÞ ¼ CritðMÞ ¼ mðMÞ.

Proof. (1) If ClSðMÞa 1, then we have

catðMÞ ¼ CatðMÞ ¼ ClðMÞ ¼ ClSðMÞ ¼ 1 ð6:1Þ

and M is a homotopy 3-sphere. Furthermore, if M is a homotopy 3-sphere,

then the equalities in (6.1) hold.

If ClSðMÞ ¼ 2, then we have

catðMÞaCatðMÞ ¼ ClðMÞaClSðMÞ ¼ 2

and M has a free fundamental group ([16, 37]). If ClðMÞa 1 or catðMÞa 1,

then M is a homotopy 3-sphere and ClSðMÞ ¼ 1, which is a contradiction.

Thus we have

catðMÞ ¼ CatðMÞ ¼ ClðMÞ ¼ ClSðMÞ ¼ 2

and M has a nontrivial free fundamental group.

Suppose now ClSðMÞ ¼ 3. If ClðMÞa 2 or catðMÞa 2, then M has a

free fundamental group and is homotopy equivalent to a connected sum of
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some copies of S1 � S2 and/or S1 ~��S2 (see [19, p. 57]). Thus we have

ClSðMÞa 2, which is a contradiction. Thus we have

catðMÞ ¼ CatðMÞ ¼ ClðMÞ ¼ ClSðMÞ ¼ 3:

This completes the proof of (1).

(2) If mðMÞ ¼ 2, then by Proposition 5.2 we have CðMÞ ¼ bðMÞ ¼
CritðMÞ ¼ mðMÞ. If mðMÞ ¼ 3, then we have CðMÞaCritðMÞa 3 and

bðMÞa 3. If CritðMÞ ¼ 2, CðMÞ ¼ 2, or bðMÞ ¼ 2, then M is homeomorphic

to S3 and mðMÞ ¼ 2, which is a contradiction. Thus we have CðMÞ ¼ bðMÞ ¼
CritðMÞ ¼ mðMÞ ¼ 3.

If mðMÞ ¼ 4, then we have CðMÞaCritðMÞa 4 and bðMÞa 4. If

CritðMÞa 3, CðMÞa 3, or bðMÞa 3, then by [50, Theorem (3.3)], [20] or

[24, Theorem 4.3], M is di¤eomorphic to a connected sum of some copies

of S1 � S2 and/or S1 ~��S2. Therefore, we have mðMÞa 3, which is a con-

tradiction. This completes the proof. r

Remark 6.2. As the above proof shows, we have

catðMÞ þ 1 ¼ CatðMÞ þ 1 ¼ ClðMÞ þ 1 ¼ ClSðMÞ þ 1

¼ CðMÞ ¼ bðMÞ ¼ CritðMÞ ¼ mðMÞ

for all smooth closed connected 3-manifolds M if and only if the Poincaré

conjecture is positive; i.e. if and only if every homotopy 3-sphere is homeo-

morphic to S3.

Remark 6.3. Corollary 3.14 can also be proved in the following way.

For a smooth closed connected 3-manifold M, if mðMÞa 3, then we have

CritðMÞa 3. Hence, by [50, Theorem (3.3)] M is di¤eomorphic to a con-

nected sum of some copies of S1 � S2 and/or S1 ~��S2. Conversely, if M is

di¤eomorphic to such a manifold, then it is easy to see that mðMÞa 3 holds.

Let us now study Morse functions on 3-manifolds more in detail. Let M

be a smooth closed orientable 3-dimensional manifold and f : M ! R a Morse

function. Note that every regular fiber of f is a closed orientable surface.

Definition 6.4. The fiber genus of a Morse function f : M ! R on a

smooth closed orientable 3-manifold M is the maximum over all genera of the

components of regular fibers of f . For example, a Morse function is of fiber

genus 0 if and only if f is purely spherical.

In the rest of this section, we will prove the following.

Theorem 6.5. Let M be a smooth closed connected orientable 3-dimensional

manifold. Then there exists a Morse function f : M ! R on M of fiber genus
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at most 1 if and only if M is di¤eomorphic to a connected sum of some copies of

the following 3-manifolds:

S3; S1 � S2; lens space Lðp; qÞ; pb 2:

For the proof, we need the following.

Lemma 6.6. Let f : M ! R be a Morse function of fiber genus g. Then

there exists a Morse function h : M ! R of the same fiber genus g whose critical

points have distinct critical values.

Proof. Suppose that c A f ðMÞHR is a critical value and let p1; p2; . . . ; pl
be the critical points lying in f �1ðcÞ. We can take a su‰ciently small e > 0

such that c is the unique critical value in the interval ½c� e; cþ e�. Then,

changing f slightly on V ¼ f �1ð½c� ðe=2Þ; cþ ðe=2Þ�Þ, we can construct a

Morse function fc : M ! R with the following properties:

(1) fc ¼ f outside of V ,

(2) fcðVÞH ½c� ðe=2Þ; cþ ðe=2Þ�,
(3) fc has the same critical points as f , and

(4) fcðpiÞ < fcðpjÞ if i < j.

By renumbering the critical points p1; p2; . . . ; pl if necessary, we may further

assume that their corresponding indices are arranged in a form

0; . . . ; 0; 2; . . . ; 2; 1; . . . ; 1; 3; . . . ; 3:

It is easy to observe that attaching a 0-handle or a 2-handle to a compact

orientable 3-manifold does not increase the maximum genus of the components

of the boundary surface. Dualizing the argument, we also see that attaching a

3-handle or a 1-handle does not decrease the maximum genus.

Since the maximum genus of the components of f �1ðcG eÞ ¼ f �1c ðcG eÞ is
smaller than or equal to g, the new Morse function fc has the same fiber genus

as f .

Repeating this procedure for each critical value of f , we obtain a desired

Morse function h. This completes the proof of Lemma 6.6. r

Proof of Theorem 6.5. It is easy to see that the 3-sphere S3, lens spaces

Lðp; qÞ and S1 � S2 all admit a Morse function of fiber genus at most 1.

Then on a 3-manifold obtained by their connected sum, we can also construct

such a Morse function by the obvious connected sum construction with respect

to disk neighborhoods of minimum or maximum points.

Conversely, suppose that M admits a Morse function f of fiber genus

at most 1. By Lemma 6.6, we may assume that the critical points of f have

distinct critical values. Let p1; p2; . . . ; pm be the critical points of f and we

assume f ðp1Þ < f ðp2Þ < � � � < f ðpmÞ. Set f ðpiÞ ¼ ci, i ¼ 1; 2; . . . ;m, and take

real numbers ti, i ¼ 1; 2; . . . ;mþ 1, such that t1 < c1 < t2 < c2 < t3 < � � � <
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tm < cm < tmþ1. We set Mi ¼ f �1½t1; ti�, i ¼ 1; 2; . . . ;mþ 1. In the following,

for a compact 3-dimensional manifold V , we denote by V̂V the compact 3-

dimensional manifold obtained by attaching 3-dimensional disks to V along all

the 2-sphere components of the boundary qV .

Let us show, by induction on i, that each component of M̂Mi, ib 2, is a

connected sum of some copies of the following 3-manifolds:

S3; S1 � S2; lens space Lðp; qÞ; S1 �D2: ð6:2Þ

Note that the assertion for i ¼ mþ 1 implies the theorem.

The assertion trivially holds for i ¼ 2, since M2 is a 3-dimensional disk.

Let us assume that the assertion holds for M̂Mi for an i with mb ib 2.

If the index of the critical point pi is equal to 0 or 3, then it is easy to see

that the assertion holds also for M̂Miþ1.

Suppose that the index of pi is equal to 2. Then Miþ1 is obtained from

Mi by attaching a 2-handle. If the attaching circle bounds a 2-disk in the

boundary surface, then we see easily that M̂Mi G M̂Miþ1. If the attaching circle

does not bound a 2-disk in qMi, then the boundary component along which

the 2-handle is attached should be a torus. By our induction hypothesis, this

implies that M̂Mi has S
1 �D2 as a connected summand. Then we see that M̂Miþ1

is obtained from M̂Mi by replacing this S1 �D2 factor with S3, S1 � S2, or a

lens space Lðp; qÞ.
Now suppose that the index of pi is equal to 1. Then Miþ1 is obtained

from Mi by attaching a 1-handle. If the 1-handle is attached to a connected

component of qMi, then this component should be a 2-sphere and we see

that M̂Miþ1 G M̂Mi]ðS1 �D2Þ. Suppose that the 1-handle is attached to distinct

connected components of qMi. Note that then one of the components, say S,

should be a 2-sphere. First, let us consider the case where these two com-

ponents are contained in a connected component of Mi. If both of these

components are 2-spheres, then we see easily that M̂Miþ1 G M̂Mi]ðS1 � S2Þ.
If one of the components, say T , is a torus, then we see that M̂Miþ1 is

di¤eomorphic to the boundary connected sum of M̂Mi and ðS1 � S2ÞnInt D3,

where the boundary connected sum is performed along T . (This can be

proved as follows. Let B3 be the 3-disk in M̂Mi attached to Mi along the 2-

sphere component S, and let ~BB3 be the union of B3 and a small closed collar

neighborhood C of qB3 in Mi. Furthermore, let N be a closed tubular

neighborhood of a properly embedded arc in MinInt ~BB3 connecting the torus

component T and q ~BB3. We may assume that N VT coincides with one of the

attaching 2-disks of the 1-handle. Note that M̂MinIntð ~BB3 UNÞ is di¤eomorphic

to M̂Mi. Then M̂Miþ1 is obtained from M̂Mi by removing Intð ~BB3 UNÞ and by

attaching the union of C, N and the 1-handle along a 2-disk. Since the latter

union is di¤eomorphic to ðS1 � S2ÞnInt D3, the above assertion follows.)
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Therefore, we have M̂Miþ1 G M̂Mi]ðS1 � S2Þ again.

Finally, suppose that the 1-handle is attached to distinct connected com-

ponents of Mi. If the corresponding components of qMi are 2-spheres, then

M̂Miþ1 is obtained from M̂Mi by taking the connected sum of two components.

In fact, this holds even if one of the components is a torus.

Therefore, we have proved that each component of M̂Miþ1 is a connected

sum of some copies of the 3-manifolds as in (6.2). This completes the induc-

tion and hence the proof of Theorem 6.5. r

Remark 6.7. Recall that a smooth closed connected orientable 3-manifold

can always be decomposed as the union of two 3-dimensional handlebodies

attached along their boundaries (for example, see [19]). Such a decomposition

is called a Heegaard decomposition of the 3-manifold, and the genus of the

attaching surface is called the genus of the Heegaard decomposition. The

Heegaard genus of a 3-manifold is the minimum genus of its Heegaard

decompositions.

It is known that the Heegaard genus of a 3-manifold is at most 1 if and

only if it is di¤eomorphic to S3, S1 � S2, or a lens space Lðp; qÞ. Therefore,

Theorem 6.5 can be interpreted as follows. For a smooth closed connected

orientable 3-manifold M, there exists a Morse function f : M ! R of fiber

genus at most 1 if and only if M is di¤eomorphic to a connected sum of some

closed orientable 3-manifolds of Heegaard genus at most 1. We do not know

if the corresponding statement for higher genera holds or not. (Note that the

corresponding statement for genus 0 does not hold.)
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