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0 Introduction

For any Hilbert space H , the Hermit inner product induces an anti C-
linear isometric isomorphism H � H ∨, and in particular, the canonical
C-linear homomorphism H →H ∨∨ is an isometric isomorphism.

Example 0.1. For a set I, we put

`2(I) B

 f : I → C

∣∣∣∣∣∣∣
∞∑

n=0

| f (ιn)|2 < ∞, ∀ι : N ↪→ I


‖ · ‖ : `2(I)→ [0,∞) : f 7→

√∑
i∈I

| f (i)|2.

Then (`2(I), ‖ · ‖) is a Banach C-vector space admitting a unique structure
of a Hilbert space. On the other hand, every Hilbert space is isometrically
isomorphic to (`2(I), ‖ · ‖) as a Banach C-vector space for some set I.

Let k be a local field. There are several non-Archimedean analogues
of a Hilbert space. One is a strictly Cartesian Banach k-vector space, and
another one is a compact Hausdorff flat linear topological Ok-module.
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(V, ‖ · ‖) ; a Banach k-vector space, i.e.
a k-vector space + a complete non-Archimedean norm

(V, ‖ · ‖) is strictly Cartesian.
def
⇔ V = O or ‖V‖ = |k|

Example 0.2. For a set I, we put

C0(I, k) B k⊕̂I = k ⊗Ok lim
←−−
r∈N

O⊕I
k /$

r
k

�
{

f : I → k
∣∣∣∣∣ lim

n→∞
f (ιn) = 0, ∀ι : N ↪→ I

}
‖ · ‖ : C0(I, k)→ [0,∞) : f 7→ max

i∈I
| f (i)| .

Then (C0(I, k), ‖ · ‖) is a strictly Cartesian Banach k-vector space. On the
other hand, every strictly Cartesian Banach k-vector space is isometrically
isomorphic to (C0(I, k), ‖ · ‖) for some set I.

Remark 0.3. Every Banach k-vector space is homeomorphically (not nec-
essarily isometrically) isomorphic to a strictly Cartesian Banach k-vector
space.

Ban(k) B

(
the category of Banach k-vector spaces

and continuous k-linear homomorphisms

)
Ban(Ok) B

(
the category of strictly Cartesian Banach k-vector

spaces and submetric k-linear homomorphisms

)
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M ; a topological Ok-module

M is linear.
def
⇔

[
The set of open Ok-submodules of M forms
a fundamental system of neighbourhoods of 0.

]
M is a chflt Ok-module.

def
⇔

[
M is a compact Hausdorff flat linear
topological Ok-module.

]
Example 0.4. For a set I, OI

k is a chflt Ok-module. On the other hand,
every chflt Ok-module is homeomorphically isomorphic to OI

k for some
set I.

Modch
fl (Ok) B

(
the category of chflt Ok-modules and

continuous Ok-linear homomorphisms

)
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(V, ‖ · ‖) ; a Banach k-vector space

V(1) B {v ∈ V | ‖v‖ ≤ 1}
(V, ‖ · ‖)D B

{
m : V → k

∣∣∣ ‖m(v)‖ ≤ ‖v‖ , ∀v ∈ V
}

� HomOk(V(1),Ok)

We endow (V, ‖ · ‖)D with the relative topology of OV(1)
k through the

embedding

(V, ‖ · ‖)D ↪→ OV(1)
k : m 7→ (m(v))v∈V(1),

with respect to which (V, ‖ · ‖)D is a chflt Ok-module.

M ; a chflt Ok-module

MD B
{
v ∈ HomOk(M, k)

∣∣∣ v is continuous.
}

We endow MD with the norm

‖ · ‖ : MD → [0,∞) : v 7→ max
m∈M
|v(m)| ,

with respect to which MD is a strictly Cartesian Banach k-vector space.
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Theorem 0.5 (Iwasawa-type duality for the trivial group, by Schikhof,
Schneider, and Teitelbaum).

(i) For any strictly Cartesian Banach k-vector space (V, ‖ · ‖), the canon-
ical k-linear homomorphism (V, ‖ · ‖) → (V, ‖ · ‖)DD is an isometric
isomorphism.

(ii) For any chflt Ok-module M, the canonical Ok-linear homomorphism
M → MDD is a homeomorphic isomorphism.

(iii) For any Banach k-vector space (V, ‖ · ‖), the canonical k-linear ho-
momorphism (V, ‖ · ‖)→ (V, ‖ · ‖)DD is a homeomorphic isomorphism.

(iv) The correspondence D gives contravariant Ok-linear equivalences
Ban(Ok) � Modch

fl (Ok) and Ban(k) � k ⊗Ok Modch
fl (Ok).

Example 0.6. For a set I, the canonical pairing

OI
k × C0(I, k)→ k : (µ, f ) 7→

∫
f dµ B

∑
i∈I

µ(i) f (i)

yields an isometric k-linear isomorphism C0(I, k) � (OI
k)

D and a homeo-
morphic Ok-linear isomorphism OI

k � (C0(I, k), ‖ · ‖)D.

Question 0.7. Is there a category C containing Ban(Ok) and Modch
fl (Ok)

on which D extends to a contravariant automorphism D?

We construct an explicit example of a pair (C ,D).
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1 Locally Convex Spaces

W ; a topological k-vector space

W is a locally convex k-vector space.
def
⇔ W is linear as a topological Ok-module.

Example 1.1. For a Banach k-vector space (V, ‖ · ‖), the underlying topo-
logical k-vector space of (V, ‖ · ‖) is a complete locally convex k-vector
space.

W ; a locally convex k-vector space
L ; an Ok-submodule of W

L is a lattice of W.
def
⇔ L is a bounded closed subset generating W as a k-vector space.

Example 1.2. For a Banach k-vector space (V, ‖ · ‖), V(1) is a lattice of the
underlying complete locally convex k-vector space of (V, ‖ · ‖).

Example 1.3. For a chflt Ok-module M, k⊗Ok M admits a canonical topol-
ogy with respect to which k ⊗Ok M is a complete locally convex k-vector
space and the natural embedding M ↪→ k ⊗Ok M is a homeomorphic Ok-
linear isomorphism onto a lattice.

Remark 1.4. A locally convex k-vector space does not necessarily admit
a lattice. For example, kN is a complete locally convex k-vector space
admitting no lattice.
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L ; a topological Ok-module

L is adically bounded.
def
⇔

[
Every open subset of L is open with respect to
the $k-adic topology on the underlying Ok-module.

]
L is a locally convex Ok-module.

def
⇔

[
L is adically bounded linear, and the scalar multiplication
L→ L : l 7→ $kl is a homeomorphism onto the closed image.

]
Example 1.5.

(i) For a Banach k-vector space (V, ‖ · ‖), V(1) is a locally convex Ok-
module.

(ii) Every chflt Ok-module is a locally convex Ok-module.

Example 1.6. For a locally convex k-vector space W, every lattice of W is
a locally convex Ok-module. On the other hand, for any locally convex Ok-
module L, k⊗Ok L admits a canonical topology with respect to which k⊗Ok L
is a locally convex k-vector space and the natural embedding L ↪→ k⊗Ok L
is a homeomorphic Ok-linear isomorphism onto a lattice.
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L ; a topological Ok-module

K(L) B the set of compact Ok-submodules of L
LD B

{
λ ∈ HomOk(L,Ok)

∣∣∣ λ is continuous.
}

We endow LD with the topology generated by the set{{
λ ∈ LD

∣∣∣ λ(l) − λ0(l) ∈ $r
kOk,

∀l ∈ K
} ∣∣∣∣ (λ0,K, r) ∈ LD × K(L) × N

}
,

with respect to which LD is a Hausdorff flat linear topological Ok-module.

Proposition 1.7. For any locally convex Ok-module L, LD is also a locally
convex Ok-module. In particular, D gives a contravariant endomorphism
on the category of locally convex Ok-modules and continuous Ok-linear
homomorphisms.

We remark that D is an extension of D. We construct a full subcategory
of the category of locally convex Ok-modules closed under D on which D
is a contravariant automorphism.
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2 Hahn–Banach Theorem

Theorem 2.1 (Hahn–Banach theorem for a seminormed C-vector space,
by Banach, Hahn, Helly, and Riesz). Let W be a seminormed C-vector
space, and W0 ⊂ W a C-vector subspace. Then every continuous C-linear
homomorphism W0 → C extends to a continuous C-linear homomorphism
W → C.

Theorem 2.2 (Hahn–Banach theorem for a locally convex k-vector space,
by Perez-Garcia, Schikhof, and Schneider). Let W be a locally convex k-
vector space, and W0 ⊂ W a k-vector subspace. Then every continuous
k-linear homomorphism W0 → k extends to a continuous k-linear homo-
morphism W → k.

Hahn–Banach theorem plays an important role in duality theory. We
establish Hahn–Banach theorem for a locally convex Ok-module.

L ; a topological Ok-module
L0 ; an Ok-submodule of L

L0 is adically saturated in L.
def
⇔ L0 ∩$kL = $kL0

Theorem 2.3 (Hahn–Banach theorem for a locally convex Ok-module).
Let L be a Hausdorff locally convex Ok-module, and K ⊂ L a compact
adically saturated Ok-submodule. Then the restriction map LD → KD is
surjective.

Corollary 2.4. Let L be a Hausdorff locally convex Ok-module. Then the
canonical Ok-linear homomorphism L→ LDD is injective.

Proof. Let l ∈ L\{0}. The smallest adically saturated Ok-submodule L0 ⊂

L containing l is a Hausdorff free Ok-module of rank 1. In particular, L0

is a compact adically saturated Ok-submodule of L such that the canonical
Ok-linear homomorphism L0 → LDD0 is a homeomorphic isomorphism.
Applying Theorem 2.3 to L0, we obtain the surjectivity of the restriction
map LD → LD0 . Therefore the composite L0 � LDD0 → LDD is injective.
Thus the image of l ∈ L0 ⊂ L in LDD is non-trivial. �
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3 Compactly Generated Modules

L ; a Hausdorff linear topological Ok-module

L is compactly generated.

def
⇔

 The canonical continuous bijective Ok-linear homomorphism
lim
−−→

K∈K(L)

K → L is a homeomorphism.


Example 3.1.

(i) Every first countable complete linear topological Ok-module is com-
pactly generated. In particular, for a Banach k-vector space (V, ‖ · ‖),
V(1) is compactly generated.

(ii) Every chflt Ok-module is compactly generated.

Lemma 3.2. Let L be a compactly generated Hausdorff linear topological
Ok-module. Then a subset of LD is totally bounded if and only if it is
equicontinuous.

Theorem 3.3. For any compactly generated Hausdorff locally convex Ok-
module L, the canonical Ok-linear homomorphism L → LDD is a homeo-
morphism onto the image.

Proof. The continuity of L → LDD follows from the equicontinuity of a
compact subsets of LD by the definition of the topology of LDD. The open-
ness onto the image follows from the Iwasawa-type duality Ban(Ok) �
Modch

fl (Ok) because every Hausdorff linear topological Ok-module embeds
into the direct product of Banach k-vector spaces. �
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Theorem 3.4. For any first countable complete locally convex Ok-module
L, the canonical Ok-linear homomorphism L→ LDD is a homeomorphism.

Proof. Since L is first countable and complete, it is compactly generated
by Example 3.1 (i), and hence the given homomorphism is a homeomor-
phism onto the image by Theorem 3.3. The surjectivity follows from
Iwasawa-type duality Ban(Ok) � Modch

fl (Ok). Indeed, let ` ∈ LDD. Then
` : LD → Ok factors through the restriction map LD → KD for some
K ∈ K(L) by the definition of the topology of LD. Therefore the Iwasawa-
type duality Ban(Ok) � Modch

fl (Ok) ensures that there is an l ∈ K ⊂ L
whose image in LDD coincides with `. �
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4 Main Result

The remaining problem is that D does not preserve the first countability.
For this reason, we introduce the dual notion of the first countability.

L ; a topological Ok-module

L is reductively σ-compact.
def
⇔ L/$kL is σ-compact.

Example 4.1.

(i) For a separable Banach k-vector space (V, ‖ · ‖), V(1) is a first count-
able reductively σ-compact complete locally convex Ok-module.

(ii) Every separable chflt Ok-module is a first countable reductively σ-
compact complete locally convex Ok-module.

(iii) For a separable Banach k-vector space (V, ‖ · ‖), EndOk(V(1)) is a
first countable reductively σ-compact complete locally convex Ok-
module with respect to the topology of strong convergence (not Ba-
nach or chflt).

(iv) For a chflt Ok-module M, Endcont
Ok

(M) is a first countable reductively
σ-compact complete locally convex Ok-module with respect to the
topology of uniform convergence (not Banach or chflt).

Lemma 4.2. Let L be a complete locally convex Ok-module. If L is first
countable, then LD is reductively σ-compact and complete. In addition if
L is reductively σ-compact, then LD is first countable.

Theorem 4.3 (Extended Iwasawa-type duality). The full subcategory C
of the category of locally convex Ok-modules and continuous Ok-linear
homomorphisms consisting of first countable reductively σ-compact com-
plete locally convex Ok-modules is closed under D, and the restriction of
D to C is a contravariant automorphism.
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