Reflexivity of Locally Convex Spaces over Local Fields

Tomoki Mihara

University of Tokyo & Keio University

0 Introduction

For any Hilbert space \mathscr{H} , the Hermit inner product induces an anti \mathbb{C} -linear isometric isomorphism $\mathscr{H} \cong \mathscr{H}^{\vee}$, and in particular, the canonical \mathbb{C} -linear homomorphism $\mathscr{H} \to \mathscr{H}^{\vee\vee}$ is an isometric isomorphism.

Example 0.1. For a set *I*, we put

$$\ell^{2}(I) := \left\{ f \colon I \to \mathbb{C} \mid \sum_{n=0}^{\infty} |f(\iota_{n})|^{2} < \infty, \forall \iota \colon \mathbb{N} \hookrightarrow I \right\}$$
$$\| \cdot \| \colon \ell^{2}(I) \to [0,\infty) \colon f \mapsto \sqrt{\sum_{i \in I} |f(i)|^{2}}.$$

Then $(\ell^2(I), \|\cdot\|)$ is a Banach \mathbb{C} -vector space admitting a unique structure of a Hilbert space. On the other hand, every Hilbert space is isometrically isomorphic to $(\ell^2(I), \|\cdot\|)$ as a Banach \mathbb{C} -vector space for some set *I*.

Let k be a local field. There are several non-Archimedean analogues of a Hilbert space. One is a strictly Cartesian Banach k-vector space, and another one is a compact Hausdorff flat linear topological O_k -module. $(V, \|\cdot\|)$; a Banach k-vector space, i.e.

a k-vector space + a complete non-Archimedean norm

 $(V, \|\cdot\|)$ is *strictly Cartesian*. $\stackrel{\text{def}}{\Leftrightarrow} V = O \text{ or } \|V\| = |k|$

Example 0.2. For a set *I*, we put

$$C_{0}(I,k) := k^{\oplus I} = k \otimes_{O_{k}} \varprojlim_{r \in \mathbb{N}} O_{k}^{\oplus I} / \varpi_{k}^{r}$$
$$\cong \left\{ f \colon I \to k \mid \lim_{n \to \infty} f(\iota_{n}) = 0, \forall \iota \colon \mathbb{N} \hookrightarrow I \right\}$$
$$\| \cdot \| \colon C_{0}(I,k) \to [0,\infty) \colon f \mapsto \max_{i \in I} |f(i)|.$$

Then $(C_0(I, k), \|\cdot\|)$ is a strictly Cartesian Banach *k*-vector space. On the other hand, every strictly Cartesian Banach *k*-vector space is isometrically isomorphic to $(C_0(I, k), \|\cdot\|)$ for some set *I*.

Remark 0.3. Every Banach *k*-vector space is homeomorphically (not necessarily isometrically) isomorphic to a strictly Cartesian Banach *k*-vector space.

 $Ban(k) := \begin{pmatrix} \text{the category of Banach } k \text{-vector spaces} \\ \text{and continuous } k \text{-linear homomorphisms} \end{pmatrix}$ $Ban(O_k) := \begin{pmatrix} \text{the category of strictly Cartesian Banach } k \text{-vector} \\ \text{spaces and submetric } k \text{-linear homomorphisms} \end{pmatrix}$

M; a topological O_k -module

 $\overset{M \text{ is } linear.}{\Leftrightarrow} \begin{bmatrix} \text{ The set of open } O_k \text{-submodules of } M \text{ forms} \\ \text{a fundamental system of neighbourhoods of 0.} \end{bmatrix} \\ M \text{ is a } chflt O_k \text{-module}.$

 $\stackrel{\text{def}}{\Leftrightarrow} \left[\begin{array}{c} M \text{ is a compact Hausdorff flat linear} \\ \text{topological } O_k \text{-module.} \end{array} \right]$

Example 0.4. For a set I, O_k^I is a chflt O_k -module. On the other hand, every chflt O_k -module is homeomorphically isomorphic to O_k^I for some set I.

$$\operatorname{Mod}_{\mathrm{fl}}^{\mathrm{ch}}(O_k) := \left(\begin{array}{c} \text{the category of chflt } O_k \text{-modules and} \\ \text{continuous } O_k \text{-linear homomorphisms} \end{array} \right)$$

 $(V, \|\cdot\|)$; a Banach *k*-vector space

$$V(1) := \{ v \in V \mid ||v|| \le 1 \}$$

$$(V, ||\cdot||)^{D} := \{ m \colon V \to k \mid ||m(v)|| \le ||v||, \forall v \in V \}$$

$$\cong \operatorname{Hom}_{O_{k}}(V(1), O_{k})$$

We endow $(V, \|\cdot\|)^{D}$ with the relative topology of $O_{k}^{V(1)}$ through the embedding

$$(V, \|\cdot\|)^{\mathrm{D}} \hookrightarrow O_k^{V(1)} \colon m \mapsto (m(v))_{v \in V(1)},$$

with respect to which $(V, \|\cdot\|)^{D}$ is a chflt O_k -module.

M; a chflt O_k -module

$$M^{\mathrm{D}} := \{ v \in \mathrm{Hom}_{O_k}(M, k) \mid v \text{ is continuous.} \}$$

We endow $M^{\rm D}$ with the norm

$$\|\cdot\|: M^{\mathcal{D}} \to [0,\infty): v \mapsto \max_{m \in M} |v(m)|,$$

with respect to which M^{D} is a strictly Cartesian Banach k-vector space.

Theorem 0.5 (Iwasawa-type duality for the trivial group, by Schikhof, Schneider, and Teitelbaum).

- (i) For any strictly Cartesian Banach k-vector space $(V, \|\cdot\|)$, the canonical k-linear homomorphism $(V, \|\cdot\|) \rightarrow (V, \|\cdot\|)^{DD}$ is an isometric isomorphism.
- (ii) For any chflt O_k -module M, the canonical O_k -linear homomorphism $M \to M^{\text{DD}}$ is a homeomorphic isomorphism.
- (iii) For any Banach k-vector space $(V, \|\cdot\|)$, the canonical k-linear homomorphism $(V, \|\cdot\|) \rightarrow (V, \|\cdot\|)^{DD}$ is a homeomorphic isomorphism.
- (iv) The correspondence D gives contravariant O_k -linear equivalences Ban $(O_k) \cong \operatorname{Mod}_{\mathrm{fl}}^{\mathrm{ch}}(O_k)$ and Ban $(k) \cong k \otimes_{O_k} \operatorname{Mod}_{\mathrm{fl}}^{\mathrm{ch}}(O_k)$.

Example 0.6. For a set *I*, the canonical pairing

$$O_k^I \times \mathcal{C}_0(I,k) \to k \colon (\mu, f) \mapsto \int f d\mu \coloneqq \sum_{i \in I} \mu(i) f(i)$$

yields an isometric k-linear isomorphism $C_0(I, k) \cong (O_k^I)^D$ and a homeomorphic O_k -linear isomorphism $O_k^I \cong (C_0(I, k), || \cdot ||)^D$.

Question 0.7. Is there a category \mathscr{C} containing $\operatorname{Ban}(O_k)$ and $\operatorname{Mod}_{\mathrm{fl}}^{\mathrm{ch}}(O_k)$ on which D extends to a contravariant automorphism \mathbb{D} ?

We construct an explicit example of a pair $(\mathcal{C}, \mathbb{D})$.

1 Locally Convex Spaces

W; a topological k-vector space

W is a locally convex k-vector space.

 $\stackrel{\text{def}}{\Leftrightarrow} W \text{ is linear as a topological } O_k \text{-module.}$

Example 1.1. For a Banach *k*-vector space $(V, \|\cdot\|)$, the underlying topological *k*-vector space of $(V, \|\cdot\|)$ is a complete locally convex *k*-vector space.

W; a locally convex *k*-vector space

L; an O_k -submodule of W

L is a *lattice of W*.

def

 \Leftrightarrow L is a bounded closed subset generating W as a k-vector space.

Example 1.2. For a Banach *k*-vector space $(V, \|\cdot\|)$, V(1) is a lattice of the underlying complete locally convex *k*-vector space of $(V, \|\cdot\|)$.

Example 1.3. For a chflt O_k -module M, $k \otimes_{O_k} M$ admits a canonical topology with respect to which $k \otimes_{O_k} M$ is a complete locally convex k-vector space and the natural embedding $M \hookrightarrow k \otimes_{O_k} M$ is a homeomorphic O_k -linear isomorphism onto a lattice.

Remark 1.4. A locally convex *k*-vector space does not necessarily admit a lattice. For example, $k^{\mathbb{N}}$ is a complete locally convex *k*-vector space admitting no lattice.

L; a topological O_k -module

L is adically bounded.

 $\stackrel{\text{def}}{\Leftrightarrow} \left[\begin{array}{c} \text{Every open subset of } L \text{ is open with respect to} \\ \text{the } \varpi_k \text{-adic topology on the underlying } O_k \text{-module.} \end{array} \right]$

L is a locally convex O_k -module.

 $\stackrel{\text{def}}{\Leftrightarrow} \begin{bmatrix} L \text{ is adically bounded linear, and the scalar multiplication} \\ L \to L: l \mapsto \varpi_k l \text{ is a homeomorphism onto the closed image.} \end{bmatrix}$

Example 1.5.

- (i) For a Banach k-vector space $(V, \|\cdot\|)$, V(1) is a locally convex O_k -module.
- (ii) Every chflt O_k -module is a locally convex O_k -module.

Example 1.6. For a locally convex *k*-vector space *W*, every lattice of *W* is a locally convex O_k -module. On the other hand, for any locally convex O_k -module L, $k \otimes_{O_k} L$ admits a canonical topology with respect to which $k \otimes_{O_k} L$ is a locally convex *k*-vector space and the natural embedding $L \hookrightarrow k \otimes_{O_k} L$ is a homeomorphic O_k -linear isomorphism onto a lattice.

L; a topological O_k -module

$$K(L) := \text{ the set of compact } O_k \text{-submodules of } L$$
$$L^{\mathbb{D}} := \{\lambda \in \text{Hom}_{O_k}(L, O_k) \mid \lambda \text{ is continuous.}\}$$

We endow $L^{\mathbb{D}}$ with the topology generated by the set

$$\left\{\left\{\lambda \in L^{\mathbb{D}} \mid \lambda(l) - \lambda_0(l) \in \varpi_k^r O_k, \forall l \in K\right\} \mid (\lambda_0, K, r) \in L^{\mathbb{D}} \times \mathrm{K}(L) \times \mathbb{N}\right\},\$$

with respect to which $L^{\mathbb{D}}$ is a Hausdorff flat linear topological O_k -module.

Proposition 1.7. For any locally convex O_k -module L, $L^{\mathbb{D}}$ is also a locally convex O_k -module. In particular, \mathbb{D} gives a contravariant endomorphism on the category of locally convex O_k -modules and continuous O_k -linear homomorphisms.

We remark that \mathbb{D} is an extension of D. We construct a full subcategory of the category of locally convex O_k -modules closed under \mathbb{D} on which \mathbb{D} is a contravariant automorphism.

2 Hahn–Banach Theorem

Theorem 2.1 (Hahn–Banach theorem for a seminormed \mathbb{C} -vector space, by Banach, Hahn, Helly, and Riesz). Let W be a seminormed \mathbb{C} -vector space, and $W_0 \subset W$ a \mathbb{C} -vector subspace. Then every continuous \mathbb{C} -linear homomorphism $W_0 \to \mathbb{C}$ extends to a continuous \mathbb{C} -linear homomorphism $W \to \mathbb{C}$.

Theorem 2.2 (Hahn–Banach theorem for a locally convex *k*-vector space, by Perez-Garcia, Schikhof, and Schneider). Let W be a locally convex k-vector space, and $W_0 \subset W$ a k-vector subspace. Then every continuous k-linear homomorphism $W_0 \rightarrow k$ extends to a continuous k-linear homomorphism $W \rightarrow k$.

Hahn–Banach theorem plays an important role in duality theory. We establish Hahn–Banach theorem for a locally convex O_k -module.

L; a topological O_k -module L_0 ; an O_k -submodule of L

 L_0 is adically saturated in L. $\stackrel{\text{def}}{\Leftrightarrow} L_0 \cap \varpi_k L = \varpi_k L_0$

Theorem 2.3 (Hahn–Banach theorem for a locally convex O_k -module). Let L be a Hausdorff locally convex O_k -module, and $K \subset L$ a compact adically saturated O_k -submodule. Then the restriction map $L^{\mathbb{D}} \to K^{\mathbb{D}}$ is surjective.

Corollary 2.4. Let *L* be a Hausdorff locally convex O_k -module. Then the canonical O_k -linear homomorphism $L \to L^{\mathbb{DD}}$ is injective.

Proof. Let $l \in L \setminus \{0\}$. The smallest adically saturated O_k -submodule $L_0 \subset L$ containing l is a Hausdorff free O_k -module of rank 1. In particular, L_0 is a compact adically saturated O_k -submodule of L such that the canonical O_k -linear homomorphism $L_0 \to L_0^{\mathbb{DD}}$ is a homeomorphic isomorphism. Applying Theorem 2.3 to L_0 , we obtain the surjectivity of the restriction map $L^{\mathbb{D}} \to L_0^{\mathbb{D}}$. Therefore the composite $L_0 \cong L_0^{\mathbb{DD}} \to L^{\mathbb{DD}}$ is injective. Thus the image of $l \in L_0 \subset L$ in $L^{\mathbb{DD}}$ is non-trivial.

3 **Compactly Generated Modules**

L; a Hausdorff linear topological O_k -module

L is compactly generated.

The canonical continuous bijective O_k -linear homomorphism $\varinjlim_{K \in K(L)} K \to L$ is a homeomorphism. def ⇔

Example 3.1.

- (i) Every first countable complete linear topological O_k -module is compactly generated. In particular, for a Banach k-vector space $(V, \|\cdot\|)$, V(1) is compactly generated.
- (ii) Every chflt O_k -module is compactly generated.

Lemma 3.2. Let L be a compactly generated Hausdorff linear topological O_k -module. Then a subset of $L^{\mathbb{D}}$ is totally bounded if and only if it is equicontinuous.

Theorem 3.3. For any compactly generated Hausdorff locally convex O_k module L, the canonical O_k -linear homomorphism $L \to L^{\mathbb{DD}}$ is a homeomorphism onto the image.

Proof. The continuity of $L \to L^{\mathbb{DD}}$ follows from the equicontinuity of a compact subsets of $L^{\mathbb{D}}$ by the definition of the topology of $L^{\mathbb{DD}}$. The openness onto the image follows from the Iwasawa-type duality $Ban(O_k) \cong$ $\operatorname{Mod}_{fl}^{ch}(O_k)$ because every Hausdorff linear topological O_k -module embeds into the direct product of Banach k-vector spaces. **Theorem 3.4.** For any first countable complete locally convex O_k -module L, the canonical O_k -linear homomorphism $L \to L^{\mathbb{DD}}$ is a homeomorphism.

Proof. Since *L* is first countable and complete, it is compactly generated by Example 3.1 (i), and hence the given homomorphism is a homeomorphism onto the image by Theorem 3.3. The surjectivity follows from Iwasawa-type duality $\text{Ban}(O_k) \cong \text{Mod}_{\text{fl}}^{\text{ch}}(O_k)$. Indeed, let $\ell \in L^{\mathbb{DD}}$. Then $\ell: L^{\mathbb{D}} \to O_k$ factors through the restriction map $L^{\mathbb{D}} \to K^{\mathbb{D}}$ for some $K \in K(L)$ by the definition of the topology of $L^{\mathbb{D}}$. Therefore the Iwasawatype duality $\text{Ban}(O_k) \cong \text{Mod}_{\text{fl}}^{\text{ch}}(O_k)$ ensures that there is an $l \in K \subset L$ whose image in $L^{\mathbb{DD}}$ coincides with ℓ . \Box

4 Main Result

The remaining problem is that \mathbb{D} does not preserve the first countability. For this reason, we introduce the dual notion of the first countability.

L; a topological O_k -module

 $L \text{ is reductively } \sigma\text{-compact.}$ $\stackrel{\text{def}}{\Leftrightarrow} L/\varpi_k L \text{ is } \sigma\text{-compact.}$

Example 4.1.

- (i) For a separable Banach *k*-vector space $(V, \|\cdot\|)$, V(1) is a first countable reductively σ -compact complete locally convex O_k -module.
- (ii) Every separable chflt O_k -module is a first countable reductively σ compact complete locally convex O_k -module.
- (iii) For a separable Banach *k*-vector space $(V, \|\cdot\|)$, $\operatorname{End}_{O_k}(V(1))$ is a first countable reductively σ -compact complete locally convex O_k -module with respect to the topology of strong convergence (not Banach or chflt).
- (iv) For a chflt O_k -module M, $\operatorname{End}_{O_k}^{\operatorname{cont}}(M)$ is a first countable reductively σ -compact complete locally convex O_k -module with respect to the topology of uniform convergence (not Banach or chflt).

Lemma 4.2. Let *L* be a complete locally convex O_k -module. If *L* is first countable, then $L^{\mathbb{D}}$ is reductively σ -compact and complete. In addition if *L* is reductively σ -compact, then $L^{\mathbb{D}}$ is first countable.

Theorem 4.3 (Extended Iwasawa-type duality). The full subcategory \mathscr{C} of the category of locally convex O_k -modules and continuous O_k -linear homomorphisms consisting of first countable reductively σ -compact complete locally convex O_k -modules is closed under \mathbb{D} , and the restriction of \mathbb{D} to \mathscr{C} is a contravariant automorphism.