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Abstract. We introduce a theoretical test, named weight discrepancy test, on pseu-
dorandom number generators. This test measures the χ2-discrepancy between the
distribution of the number of ones in some specified bits in the generated sequence
and the binomial distribution, under the assumption that the initial value is ran-
domly selected.

This test can be performed for most generators based on a linear recursion over
the two-element field �2, and predicts with high precision for which sample size the
generator will be rejected by a classical statistical test called the weight distribution
test.

This test may be considered as a theoretical version of a one-dimensional ran-
dom walk test. Differently from the empirical tests which can reject only very bad
generators, this test assigns a ranking to generators. Thus it is useful to select good
generators, similarly to the spectral tests and the k-distribution tests. This test re-
jects practically all generators linear over �2 that are known to fail in some physical
tests although they pass k-distribution tests.

1 Necessity of a theoretical test on weight

Among the numerous pseudorandom number generators available, some are
known to be defective, and some seem to be good.

For more than thirty years, GFSRs[11] based on three-term relations are
known to suffer from statistical nonsymmetricity between 0 and 1, and to
be rejected by χ2-test on the goodness-of-fit to the binomial distribution
[12][6][3][18][16].

However, these warnings were not loud enough to reach the users. These
three-term GFSRs were introduced to the computational physics community
by [8] suggesting the recursion xj = xj−103 ⊕ xj−250, and became fairly pop-
ular. In middle 80’s, physicists began to find the failure of these generators
in simulations of physical models, such as Ising models [5][2][1] and random
walks [4]. These physical models are simplified and proposed as tests of ran-
domness in [22], which we call physical tests here.

In these works some physicists proposed two ways of improving GFSR: one
is to increase the degree of the recurrence (e.g.[2]), and the other is to use five
or more-term relations (e.g. [24]). These follow from an intuitive observation



that few-term relations in a short range should lead to a deviation, and that
increasing the number of terms or the range of the correlation will improve
the deviation. These improvements are shown to be effective in the physical
tests.

However, it is not clear which degree will be sufficient, or how many
terms are enough for the required randomness. Five-term relations of degree
89 behave well for 106 samples, but are rejected for 108 samples by a random
walk test [22]. A five-term relation of degree 1279 passed the test even for
109 samples. Is this enough? The computational power of the machines is
increasing rapidly. Will some defect of such a generator be revealed in future?
Or is it impossible for any future machine?

These physical tests are interesting in that they clearly exhibit the defects
of random number generators in practical computational physics. However,
they are not powerful enough to select good generators. Actually, these tests
reject only (1) three-term GFSRs, (2) five-term GFSRs with small degree,
and (3) linear congruential generators with poor spectral properties. All these
generators are known to fail in some simple statistical tests.

We shall introduce a theoretical test on the distribution of 1’s and 0’s
in the bits of the sequence, named weight discrepancy test. This is not an
empirical test but a figure of merit defined on the full period of the generator,
like the spectral test[7] or the k-distribution test [9]. It predicts with high
precision the sample size for which the generator is rejected by the weight
distribution test, which is a classical empirical test equivalent to a random-
walk test. For example, a generator (MT521) is shown to be quite safe since
it would require 10156 samples to reject its output, whereas another generator
called R(11, 39, 95, 218) which passed all the physical tests in [24] is shown
to be rejected if we take the sample size > 600, 000, 000 (see Table 7).

The weight discrepancy test gives an index δ which is a real number
indicating the extent of the discrepancy between the distribution of the weight
of the generated sequence and the ideal binomial distribution. Thus, smaller
δ means better fit to the theoretical distribution, so we can choose the best
one from a set of generators, even if they pass the physical tests. In this
regard, our test is similar to the spectral test and the k-distribution test.

In the context of this discussion, we would like to point to a highly reli-
able random number generator. As mentioned above, physicists proposed the
following improvements: (1) increase the number of terms [24], (2) increase
the degree of recursion [2], and (3) use only a part of the sequence (deci-
mation in [24] or discarding in [14]). Although these are effective, there is a
generator adopting more advanced improvements, named Mersenne Twister
(MT) [19]. This has period 219937 − 1, good k-distribution property, is based
on more than 100-term relations, consumes only 624 words memory, passes
practically all reasonable tests, and is very fast. Implementations in C, For-
tran, and other languages are available from the following URL.
http://www.math.keio.ac.jp/matumoto/emt.html



2 χ2-discrepancy

We begin with recalling the well-known χ2-test for goodness-of-fit. Let Zi

(i = 1, 2, . . . , N) be independent identically distributed random variables
conforming to the same discrete distribution such that the value k (k =
0, 1, 2, . . . , ν) is taken with probability pk (thus pk ≥ 0 and p0+p1+· · ·+pν =
1).

Let b1, b2, . . . , bN ∈ {0, 1, . . . , ν} be a sequence, computed from a pseudo
random sequence, to mimic a sample sequence conforming to the random
variables Z1, Z2, . . . , ZN . Our question is whether the null hypothesis H0

that this sample comes from the random variables is justified or not.
We count the number of k among b1, . . . , bN , and let it be Yk for 0 ≤ k ≤ ν:

Yk := the number of i (i = 1, 2, . . . , N) with bi = k. (1)

These are random variables which conform to binomial distribution B(N, pk)
under the null hypothesis H0. We compute the χ2-value X by

X :=
ν∑

k=0

(Yk − Npk)2/Npk, (2)

which measures a kind of discrepancy between the observed numbers Yk and
the expected value Npk. Under the null hypothesis, it is known that this X is
a random variable which approximately conforms to the χ2-distribution with
ν degrees of freedom, regardless of pk.

Let Xb be the realization of X for an observed sample b := (b1, . . . , bN),
and let χ2

ν denote the random variable which conforms to the above χ2-
distribution. We compute the probability value

Prob(χ2
ν < Xb). (3)

If this value is, say, > .99, then such a large value of Xb appears with prob-
ability < .01, thus the null hypothesis on the distribution of b1, . . . , bN is
suspicious: the observed distribution is too far from the hypothetical distri-
bution pk. If this value is, say, .75, then such Xb appears with a moderate
probability, so we do not reject the hypothesis.

Assume that our method to mimic Zi has some deviation, and the proba-
bility to observe k in a trial is qk, not pk (independence is still assumed). We
call this assumption the nonnull assumption. Then, (b1, b2, . . . , bN ) is a sam-
ple conforming to the distribution qk, so Yk in (1) is a random variable con-
forming to the binomial distribution B(N, qk) with expectation E(Yk) = Nqk

and variance E(Y 2
k ) − E(Yk)2 = Nqk(1 − qk).

Under this nonnull assumption, X in (2) approximately conforms to a
noncentral χ2-distribution. Recall its definition (see [20]). If U1, U2, . . . , Uν

are ν independently normally distributed random variables, each having zero



mean and unit standard deviation, and if a1, a2, . . . , aν are ν constants, then

χ′2 :=
ν∑

i=1

(Ui + ai)2

is called a noncentral χ2-variate having ν degrees of freedom with noncen-
trality parameter λ :=

∑ν
i=1 a2

i . It is easy to check E(χ′2) = ν + λ.
It is known (c.f. [20, P.279]) that the above X approximately conforms to

the noncentral χ2-distribution having ν degrees of freedom with noncentrality
parameter λ = Nδ, where δ is the χ2-discrepancy defined below.

Definition 1. We define the χ2-discrepancy δ between the true distribution
qk and the expected distribution pk by

δ :=
ν∑

k=0

(qk − pk)2/pk.

(The term χ2-discrepancy appears in model selection theory, e.g. in [13].)
The expectation of X in (2) under the nonnull hypothesis is approximated

by δ as follows.

Proposition 1. E(X ) ∼ ν + Nδ. Here ∼ means that the absolute value of
the difference is

|E(X ) − (ν + Nδ)| ≤ ν max
k=0,...,ν

∣∣∣∣1 − qk

pk

∣∣∣∣,

and hence the error is negligible if |1 − qk

pk
| << 1 for every k.

The first formula is implied by E(χ′2) = ν + λ and λ = Nδ as stated above,
but we show it by the following direct computation:

E(X ) =
ν∑

k=0

E((Yk − Npk)2)
Npk

=
ν∑

k=0

E(Y 2
k ) − 2E(Yk)Npk + (Npk)2

Npk

=
ν∑

k=0

E(Y 2
k ) − E(Yk)2 + (E(Yk) − Npk)2

Npk

=
ν∑

k=0

qk(1 − qk)
pk

+ N

ν∑
k=0

(qk − pk)2

pk
�

ν∑
k=0

(1 − qk) + Nδ = ν + Nδ.

This supports the obvious fact that χ2-test reveals the deviation if both χ2-
discrepancy δ and the sample size N are large.



The point is that a more quantitative analysis is possible. For 0 < p < 1,
Xp satisfying Prob(χ2

ν < Xp) = p is approximated for large ν by the formula1

Xp = ν +
√

2νxp +
2
3
(x2

p − 1) + o(ν− 1
2 ), (4)

where xp = 2.33 for p = .99 and xp = 0.674 for p = .75, (see e.g.[7]).
Comparison of this with Proposition 1 yields the following

Theorem 1. Let ν be moderately large, say ν ≥ 5. (For ν < 5, we need to
consult a table of χ2-distribution.)

1. (Accepting sample size.) If the sample size N is small so that

N ≤
√

2νxp + 2
3 (x2

p − 1)
δ

for xp = 0.674,

then approximately E(X ) falls in the area with probability p ≤ .75, and
the χ2-test will not reject the sequence.

2. (Rejecting sample size.) If the sample size N is large so that

N ≥
√

2νxp + 2
3 (x2

p − 1)
δ

for xp = 2.33,

then approximately E(X ) falls in the area with probability p > .99, and
the χ2-test will reject the sequence.

Thus, the χ2-discrepancy δ provides us with a guess at the sample size
for which χ2-test reveals the defect of the generator, as well as the size for
which it does not.

Definition 2. A χ2-discrepancy test means to obtain the χ2-discrepancy δ
for the simulation of the random variables Zi by a pseudorandom number
generator.

This test is similar to the spectral test(e.g. [7]) or to the k-distribution
test(e.g. [9]), in the sense that it deals with the full-period behavior of the
pseudorandom number generator, that it is not empirical, and that it gives
a numerical estimate of the quality of the generator, differently from the
statistical tests. The latter yield only probability values, which are sometimes
confusing if they are on the border of .95 or 0.05, and differ every time we
choose a new initial value.
1 Knuth [7] presents this approximation for ν > 30. An explicit computation shows

that the maximal error ratio of this approximation for p = 99% and ν ≥ 5 is
attained when ν = 5, with true value 15.32 and the approximation 15.09. The
error for p = 75% is even smaller. Thus, to guess the safe/dangerous sample sizes
as in Theorem 1, ν ≥ 5 would suffice.



3 Weight discrepancy test

3.1 Weight discrepancy test for F2-generators

We shall introduce a χ2-discrepancy test on the distribution of 1’s in the bits
of the generated sequences, named a weight discrepancy test.

Let x0,x1,x2, . . . be a pseudorandom sequence of w-bit integers generated
by an F2-linear generator. Here, by an F2-linear generator we mean a machine
(automaton) that has the p-bit state space F

p
2, the linear state transition map

f : F
p
2 → F

p
2, and the linear output function b : F

p
2 → F

w
2 . Thus, we choose an

initial seed X0 ∈ F
p
2, then generates a sequence of state vectors X0, X1, X2, . . .

by the recursion Xj+1 := f(Xj), and generate an output sequence of w-bit
integers by xj := b(Xj). This class of generators covers Tausworthe genera-
tors, M -sequences, GFSR, Combined Tausworthe, Twisted GFSR, Mersenne
Twisters, and several other types.

We focus only on some bits of x. For simplicity, we assume them to be the
most significant s bits of x, denoted by x(s), although the following discussion
makes sense for any choice of bits. We also fix a positive integer µ, and
consider the distribution of the consecutive µ words of the sequence.

We shall count the number W (W for weight) of 1’s appearing in the
m := s × µ bits in x(s)

0 ,x(s)
1 , . . . ,x(s)

µ−1. We assume that the initial seed is
randomly uniformly chosen from the state space, consider W as a random
variable, and look at the discrepancy between the distribution of W and the
ideal binomial distribution. The term weight comes from coding theory where
the (Hamming) weight wt(x) of a vector x ∈ F

m
2 is defined as the number of

1’s in the m components of x.
We want to know the true distribution qk of the weight W obtained from a

pseudorandom number generator by the random selection of the initial seed.
The exhaustive check of the seeds is intractable for generators with large
state space, but for F2-generators one can compute qk under some condition.

Assume that the generator is F2-linear. The mapping Φ from the state
space to the m := s× µ bits in the output is F2-linear, so the image C ⊂ F

m
2

is a linear subspace. In coding theory we call C a linear code, and have the
following terminology.

Definition 3. Let A� be the number of the vectors in C with weight � (0 ≤
� ≤ m), which is called the �-th weight enumeration of C. We define the
weight enumerator polynomial of C in indeterminates x, y by

WC(x, y) := A0x
m + A1x

m−1y + · · · + Aix
m−iyi + · · · + Amym.

Let r be the dimension of C. Since the mapping Φ : F
p
2 → F

m
2 is linear, every

vector in C := Image of Φ equally likely occurs under a random selection of
the initial seed. Thus, the probability Q� that we have weight � in the m-bits
is given by

Q� = A�/2r, (5)



where the desired probability P� of binomial distribution is

P� =
(

m

�

)
/2m. (6)

The problem is that the weight enumerations of C are in general intractable
since it is an NP-complete problem [21]. So we use a fundamental theorem[15]
in coding theory. Let us define an inner product on F

m
2 by

y · x = (y1, . . . , ym) · (x1, . . . , xm) = y1x1 + · · · + ymxm ∈ F2, (7)

and let C⊥ ⊂ F
m
2 be the orthogonal dual to C, i.e. the subspace consisting

of the vectors whose inner product with any vector in C is zero.

Theorem 2. (MacWilliams identity) Let r be the dimension of C ⊂ F
m
2 .

Then we have

WC(x, y) =
1

2m−r
WC⊥(x + y, x − y).

Thus, if we have the weight enumerations of C⊥, we know those of C. If we
choose µ so that m = µ× s is only slightly larger than r, then the dimension
m − r of C⊥ is small enough that an exhaustive check for C⊥ is possible. In
particular, if r = m or equivalently Φ is surjective, the weight enumerations
of C coincide with the binomial coefficients, hence the discrepancy δ = 0.

For approximations used in χ2-test, the expectation Npk for each k should
not be too small, say at least five. For this, we need to group some low weights
together, as well as high ones. We choose the following categorization:

S0 = {0, 1, . . . , s0},
Sk = {s0 + k} (1 ≤ k ≤ m − 2s0 − 1),
Sν = {m − s0, m − s0 + 1, . . . , m} (8)

for suitably chosen s0, where ν := m − 2s0.
Let W be the random variable from the pseudorandom number generator

as above. We define a random variable Z that takes the value k if W falls in
Sk (0 ≤ k ≤ ν), and compute the χ2-discrepancy for Z as in §2.

From (5) and (6), we have

qk := Prob(W ∈ Sk) =
∑
�∈Sk

A�/2r, (9)

pk := Prob(W ′ ∈ Sk) =
∑
�∈Sk

(
m

�

)
/2m, (10)

where W ′ is the random variable when the sequence is truly random. We
choose s0 so that Np0 = Npν is not less than 1000.



3.2 Description of weight discrepancy test

Now we shall summarize the design of the weight discrepancy test.

1. Fix an F2-generator to test.
2. Determine which bits to test in each output word, say, s most significant

bits.
3. Determine µ, for which we test the distribution of the s bits in consecutive

µ words. Put m := s × µ.
4. Take a linear basis {σ1, . . . , σp} of the initial seed space. For each σi, ini-

tialize the generator with seed σi and generate µ words of the correspond-
ing output. Let Σi be the m-dimensional vectors consisting of m-bits in
the output sequence. Let C ⊂ F

m
2 be the span by Σi (1 ≤ i ≤ p), and r

be its dimension.
5. Compute a basis of the dual space C⊥ of C. Obtain the weight enumera-

tions B0, B1, . . . , Bm of C⊥ by exhaustive enumeration. If the dimension
m− r of C⊥ is too large to do an exhaustive check, then make µ smaller.
If it is too small, then the power of the test is weaker, so make µ larger.
Note that often r = p, so we can make a guess that the dimension of C⊥

is µs − p.
6. By the MacWilliams identity, obtain the weight enumeration A� of C.

Compute qk, pk by (9), (10), then the χ2-discrepancy δ as in Definition 1.
We obtain the safe and dangerous sample sizes by Theorem 1.
An explicit formula for δ is given as:

δ =
[
∑m

j=1(
∑s0

�=0 M�j)Bj ]2

2m
∑s0

�=0

(
m
�

) +
m−s0−1∑
�=s0+1

[
∑m

j=1 M�jBj ]2

2m
(
m
�

)

+
[
∑m

j=1(
∑m

�=m−s0
M�j)Bj ]2

2m
∑m

�=m−s0

(
m
�

) , (11)

where Mij is defined by

(x + y)m−j(x − y)j =
m∑

i=0

Mijx
m−iyi. (12)

Here we mention that in the case of s = 1, the use of the weight of the dual
space is introduced by [6]. Our method generalizes this concept and combines
it with the χ2-discrepancy to obtain a statistical test.

3.3 Weight distribution test and random walk

As explained in §2, χ2-discrepancy test is designed to make a prediction on
the result of the empirical χ2-test. In the case of the weight discrepancy test,
the corresponding empirical test is a classical test sometimes called the weight
distribution test (c.f. [16]), which we shall briefly recall.



Fix s, µ, N , s0 as in §3.1. Choose an initial seed, and generate µ words of
pseudorandom number sequences. Look the s bits in each words, and let W1

be the number of ones in m = µ×s bits. Then again generate µ words, count
the number of ones and let W2 be this number. Iterate this N times to obtain
W1, W2, . . . , WN . If the sequence is truly random, this should conform to the
binomial distribution. We apply the χ2-test to these N samples, using the
categories (8). We obtain one value of the χ2-statistics, and the final result
is the corresponding probability value.

A slight difference on the assumption from the weight discrepancy test is
that in weight distribution test we initialize the generator only once, not on
every µ-th generations. This seems not significant, because the state of a usual
pseudorandom number generator transits as if the next state is uniformly
randomly selected. This expectation is confirmed by experiments in the next
section. We will see that the results of the weight distribution tests are in
close accordance with the forecasts obtained by the weight discrepancy tests.

Note that this test is nothing but a one-dimensional random walk test for
s = 1, where a moving point starts at the origin of the real line, moves to
the right or left by one according to the most significant bit of the generated
number is 1 or 0, respectively. After m = µ steps, the final position is W −2m
where W is the weight of the collection of the most significant bits in the m
consecutive words. This type of simple random-walk test is an essence of all
physical tests including Ising models, as explained in [24].

4 The result of tests

4.1 GFSRs

The first example is a 3-term GFSR of degree 89, based on the recursion
xj+89 := xj+38 + xj over F2, whose period attains the maximal 289 − 1.
We look only at the most significant bit, i.e., put s = 1, and look at the
m = 94 = 89 + 5 consecutive words. For s = 1, r = m holds if m ≤ p and
r = p holds if m > p. Thus the dimension of C⊥ is m − r = 5, and the
exhaustive check of C⊥ is easy. The result of the weight discrepancy test is
shown in Table 1, where ν = 30 denotes the degree of freedom, from which
the categorizing parameter s0 in (8) can be computed by ν = m − 2s0 (i.e.
s0 = 32). The column δ shows the χ2-discrepancy, the column “safe,” “risky”
respectively shows the safe, risky sample size implied by Theorem 1. Thus
if the sample size is less than 25,000 then the sequence will not be rejected
in average, but if it is more than 120,000 then the sequence will be rejected
with significance level 0.99 in average.

We also empirically test the same generator by the weight distribution
test with the same parameters, and show the result in Table 2. We choose
five different initial values randomly, and tested the generator for 3 different
sample sizes N , namely, 25,000, 120,000, and 500,000. The weight discrepancy
test predicts that N = 25, 000 will pass, but N = 120, 000 will be rejected



Table 1. Weight discrepancy test on the generator xj+89 := xj+38 + xj

m ν δ safe risky

94 30 1.80 × 10−4 2.69 × 104 1.16 × 105

Table 2. Weight distribution test on the same GFSR with Table 1

N 1st 2nd 3rd 4th 5th

2.5 × 104 30.2% 61.4% 62.2% 83.9% 26.3%

1.2 × 105 99.3% 88.4% 99.8% 85.3% 99.9991%

5.0 × 105 100% 100% 100% 100% 100%

with probability value .99 in average. Since Proposition 1 shows that E(X )
will increase linearly in N , N = 500, 000 will be definitely rejected. The
empirical results of five tests are in good accordance.

Table 3 shows the same result on a generator based on a five-term relation
xj+89 := xj+57 + xj+23 + xj+15 + xj with the same period. By comparing

Table 3. Weight discrepancy test on a 5-term GFSR of degree 89

m ν δ safe risky

94 30 3.01 × 10−7 1.62 × 107 6.99 × 107

Tables 1 and 3, we see the effect of increasing the number of terms as the
decrease of δ by a factor of roughly 1/600, and consequently as the increase
of the safe and risky sample sizes by the factor of 600 in this example. Ta-
ble 4 shows the corresponding empirical weight distribution tests for safe and
risky sample sizes, namely N = 16, 000, 000 and 70, 000, 000, which again
show a good accordance with the weight discrepancy test. Next example is

Table 4. Weight distribution test on the same GFSR as in Table 3

N 1st 2nd 3rd 4th 5th

1.6 × 107 51.4% 94.5% 56.6% 77.4% 14.0%

7.0 × 107 97.7% 65.1% 99.8% 99.1% 99.3%

same type of generator with degree 521 and period 2521 − 1 � 6.86 × 10156.
To see the effect of the number of terms, we searched for eight primitive

polynomials with 3, 5, 15, 25, 51, 99, 157, 259 terms, respectively. We apply the
weight discrepancy test on the most significant s = 1 bit for the consecutive
m = 526 = 521 + 5 words. Table 5 shows the number of terms, the safe sam-
ple sizes, the risky sample size, and the minimum weight of the dual space
for these eight generators. Table 6 shows the result of the weight distribution



Table 5. Weight discrepancy tests on GFSR of degree 521, with eight different
numbers of nonzero terms

# of terms safe N risky N min. weight

3 7.54 × 106 3.05 × 107 3

5 1.97 × 1011 7.98 × 1011 5

15 4.92 × 1028 1.99 × 1029 15

25 6.11 × 1042 2.47 × 1043 25

51 6.96 × 1071 2.82 × 1072 51

99 3.94 × 10109 1.59 × 10110 99

157 2.41 × 10138 9.74 × 10138 157

259 3.46 × 10156 1.40 × 10157 246

Table 6. Weight distribution test on the first generator in Table 5

N 1st 2nd 3rd 4th 5th

7.5 × 106 99.0% 20.0% 83.9% 92.0% 60.2%

3.1 × 107 100% 99.9% 100% 99.4% 94.9%

tests for the 3-term generator written in the first row in Table 5, confirming
the accordance.

This example illustrates the power of weight discrepancy test. The 3-term
generator at the first low will be rejected only if the sample size is more than
107, but it would take time and effort to notice this by experiments. Some
researches reported that 5-term relations with degree 521 seem defectless, but
our result shows that for sample sizes larger than 8×1011, it will be rejected.
This size seems large enough for present computers, but may be not in future.
On the other hand, it seems very difficult to reject the 15-term generator in
near future, since it will require the sample size at least 5 × 1028. To reject
259-term generators, it requires the sample size N roughly the same order as
the period. It is impossible to deduce this kind of result from empirical tests.
Also, it is noteworthy that the ratio between safe and risky sample sizes is
only about four, which seems rather tight.

The above results suggest that the increase of the number of terms implies
the exponential decrease of discrepancy δ. An intuitive account for this is as
follows. According to explicit computations, it seems that M�,j in (12) satisfy
the convexity

|M�,1| >> |M�,2| >> |M�,3| >> · · · << |M�,m−2| << |M�,m−1| << |M�,m|

for near at the both ends (like j ≤ 5 and j ≥ m − 5), for most of �. For
example, if m = 94 and � = 20, M20,j = M20,94−j is 7.76 × 1019, 4.36 ×
1019, 2.39 × 1019, 1.28 × 1019, 6.59 × 1018 for j = 1, 2, 3, 4, 5, respectively.

This and (11) imply that the main terms in δ would come from the first
nonzero weight enumeration Bd, where d is the minimum weight of C⊥−{0},
or the last nonzero Bd′ . If C⊥ is an “average” subspace, then d is moderately



large and d′ is not near to m, as shown in the proof of Shannon’s theorem
on the existence of good codes. Now the definition of the dual and the inner
product (7) implies that C⊥ contains the coefficient vector of the defining
relation. That is, if the pseudorandom bit sequence is generated by the re-
cursion

xj+n =
n−1∑
i=0

aixj+i,

then an m-dimensional vector (−1, an−1, an−2, . . . , a1, a0, 0, . . . , 0) obtained
from the coefficient vector by supplementing 0’s at the right (we assume
m > n) lies in C⊥ (also its right-shifts as well). Thus, k-term relations imply
the existence of weight k vector in C⊥. For small k, it would be often the case
that k is the minimum weight of C⊥, and often no very-high weight vector
exists in C⊥. These would imply that the number of the terms will mostly
determine δ, which agrees with the results of tests. A quantitative analysis
on this observation is a possible future work.

Next we see the effect of increasing the dimension of C⊥. Table 7 shows the
result on the five-term GFSR xj := xj−11+xj−39+xj−95+xj−218 proposed as
R(11, 39, 95, 218) in [24], which is equivalent to decimation of every 7th output
of xj := xj−11+xj−218. We choose m = 228 and 238, for which the dimension
of the dual space is 10, 20, respectively. The result says that the latter is more
powerful than the former, and that the risky sample size is 600,000,000 for the
latter. Similarly to the above, we confirmed that the weight distribution test
for this risky sample size rejects the generator, although the result is omitted.
This result can be compared to the experiments in [24], where the generator

Table 7. Weight discrepancy test on a 5-term GFSR of degree 218 with m =
228, 238

m ν δ safe risky

228 46 1.29 × 10−8 4.72 × 108 1.96 × 109

238 48 4.37 × 10−8 1.43 × 108 5.90 × 108

passes his random walk test up to 2 × 106 samples, but is reported to show
an error for 108 samples. Note that his random walk is two-dimensional, and
consumes much more random numbers in one trial than 238 in our test. We
also tested five-term relations of degree 250 and 1279 in [24] which passed all
the tests there. For example, the result of weight discrepancy test for degree
1279 with dual dimension 20 shows that the risky sample size is 4.38× 1012,
which is larger than those used in [24], explaining the success of this generator
in the tests.

Table 8 shows an example where s = 4. The first row shows the result on
a twisted GFSR generator named T800 [16]. This generator is known to have
a 3-term linear relation on the most significant three bits for 26 consecutive



words, although the most significant bit behaves very well [17]. Its period is
2800 − 1 � 6.67 × 10240. We choose s = 4, µ = 30 so that m = 120. It turns
out that C⊥ is 15-dimensional. We choose s0 = 43 and ν = 34. The first row
of Table 8 and Table 9 show the results of the weight discrepancy test and the
weight distribution test, respectively. This defect was successfully removed in
TT800 by tempering method in [17] (see also [23]). The second row in Table 8
shows the result of the weight discrepancy test on TT800, where s = 4 and
µ = 204. This µ = 204 is far larger than the previous 30, but is necessary to
have nontrivial C⊥, which is 16-dimensional in this case. The order of 1049

would be large enough for any future machines, but is not the order of the
period which seems best possible in other examples. The third row of Table 8

Table 8. Weight discrepancy test on T800, TT800, and MT521

generator m ν δ safe risky min. weight

T800 120 34 7.77 × 10−4 6.69 × 103 2.85 × 104 3

TT800 816 74 3.23 × 10−49 2.43 × 1049 9.70 × 1049 26

MT521 536 62 3.55 × 10−156 2.01 × 10156 8.13 × 10156 210

TAUS88 104 32 2.63 × 10−26 1.91 × 1026 8.22 × 1026 31

Table 9. Weight distribution test on T800

N 1st 2nd 3rd 4th 5th

6.6 × 103 71.6% 56.8% 99.6% 49.0% 99.4%

2.9 × 104 93.6% 99.7% 94.0% 99.3% 100%

shows the result of weight discrepancy test on a small Mersenne Twister[19]
MT521 with period 2521 − 1 � 6.86 × 10156. We choose s = 4, µ = 134, and
C⊥ turns to be 15-dimensional. We put s0 = 237. It shows that MT521 has
much better δ than TT800. We do not know whether this phenomenon is by
chance or not. The fourth row shows the result on a combined Tausworthe
generator TAUS88[10] of period � 288 � 3.09 × 1026 for s = 4 and µ = 26
with m − r = 16, which seems fairly good. We did not test the standard
Mersenne Twister MT19937 because its size p = 19937 exceeded the ability
of Mathematica, but expect to have a good quality similarly to MT521.

5 Future works

We introduced the weight discrepancy test on specified m-bits of the gener-
ated sequence, which is closely related to physical empirical tests, but is more
powerful and easier to handle in selecting a good generator.



Some shortcomings of our method are that we do not know which choice
of the m-bits leads to a rejection, that m can not be chosen freely, and that
the relation to the number of terms in the recursion is not very clear. It is
desirable to obtain an approximation formula on δ depending only on the
numbers of low weight vectors in C⊥, not on the medium weight vectors.
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