
A Fast Stream Cipher with Huge State Space
and Quasigroup Filter for Software ?

Makoto Matsumoto1, Mutsuo Saito2, Takuji Nishimura3, and Mariko
Hagita4

1 Dept. of Math., Hiroshima University, m-mat@math.sci.hiroshima-u.ac.jp
2 Dept. of Math., Hiroshima University, saito@math.sci.hiroshima-u.ac.jp

3 Dept. of Math. Sci., Yamagata University, nisimura@sci.kj.yamagata-u.ac.jp
4 Dept. of Info. Sci., Ochanomizu University, hagita@is.ocha.ac.jp

Abstract. Recent personal computers have high-spec CPUs and plenty
of memory. The motivation of this study is to take these advantages in
designing a tough and fast key-stream generator. Natural controversies
on using a large state space for a generator are (1) effectiveness is unclear,
(2) slower generation speed, (3) expensive initialization, and (4) costs in
a hardware implementation.
Our proposal is to combine a linear feedback shift register (LFSR) and a
uniform quasigroup filter with memory of wordsize. We prove theorems
which assure the period and the distribution property of such genera-
tors, answering to (1). As for (2), the generation speed of a LFSR is
independent of the state size. In addition, we propose a filter based on
integer multiplication, which is rather fast in modern CPUs. We analyze
the algebraic degree of such filters. We answer to (3) by a simple trick
to use another small generator to initialize LFSR while outputting. We
have no answer to (4), but comment that recent hardwares tend to have
larger memory and sophisticated instructions.
As a concrete example, we propose CryptMT stream generator with pe-
riod (no less than) 219937−1, 1241-dimensional equidistribution property,
which is sometimes faster than SNOW2.0 in modern CPUs.

Key words: stream cipher, combined generator, filter with mem-
ory, quasigroup filter, multiplicative filter, CryptMT, eSTREAM, period,
distribution

1 Stream Cipher

In this article, we pursue a fast stream cipher in software. We assume
that the machine has plenty of memory, and a fast integer multiplication
instruction.
? This work is supported in part by JSPS Grant-In-Aid #16204002, #18654021,

#18740044, #19204002 and JSPS Core-to-Core Program No.18005.



2

Let B be the set of symbols. Throughout this article, we assume B
to be the set of one byte integers, which is identified with F2

8, where
F2 = {0, 1} is the two-element field. We consider a stream cipher based
on a key-stream generator over B. A generator receives a key k in the set
of possible keys K, then generates a sequence of elements

b0(k), b1(k), . . . , bn(k), . . . ,∈ B.

A plain text (a sequence of elements of B) is encrypted by taking bitwise
exor with the sequence (bn(k)), and then decrypted by the same method.

1.1 Combined Generator

Such a sequence is typically generated by a finite state automaton.

Definition 1. A finite state automaton A without input is a quadruple
A = (S, f, O, o), where S is a finite set (the set of states), f : S → S is a
function (the state transition function), O is a set (the set of the output
symbols), and o : S → O is the output function.

For a given initial state s0, A changes the state by the recursion sn :=
f(sn−1) (n = 1, 2, 3, . . .) and generates the sequence

o(s0), o(s1), o(s2), . . . ∈ O.

For a stream cipher, we prepare an initializing function init : K → S,
and take O := B. By setting s0 := init(k), the automaton A generates a
sequence of elements in B. Its period is bounded by #(S).

To obtain a secure generator, larger #(S) and complicated f and o are
desirable. However, if f is complicated, then the analysis of the sequence
(such as computing the period and the distribution) often becomes dif-
ficult. A typical choice is to choose an F2-linear transition function. We
take S := F2

d and choose a linear transition function f . Then, the pe-
riod can be computed by the linear algebra and polynomial calculus. In
particular, the following linear feedback shift register generators (LFSRs)
are widely used: S := (F2

w)n where w is the word size of the machine
(e.g. w = 32 for 32-bit machines), and the transition is

f(x1, x2, . . . , xn−1, xn) := (x2, x3, . . . , xn, g(x1, . . . , xn)). (1)

Here g : (F2
w)n → F2

w is a linear function called the feedback function.
This state transition is equivalent to the recursion

xi+n := g(xi, xi+1, . . . , xi+n−1) (i = 0, 1, 2, . . .).



3

The output of LFSR is given by

o : S → F2
w, (x1, . . . , xn) 7→ x1,

which is not secure as it is. A software implementation technique using
a cyclic array ([9, P.28 Algorithm A]) reduces the computation of f to
that of g and an index change. Consequently, the computation time is
independent of the size of n, which allows a fast generator with huge state
space. This type of generator is common for the pseudorandom number
generation in Monte Carlo method (PRNG for MC), such as Mersenne
Twister (MT19937) [10], whose period is 219937 − 1.

As a stream cipher, any linear recurring sequence is vulnerable, so we
need to introduce some non-linearity. A conventional method is to choose
a “highly non-linear” o : S → O. In this context, o is called a filter.

One of the estimators of the non-linear property of a function is the
algebraic degree.

Definition 2. Let h(c1, c2, . . . , cn) be a boolean function, i.e.,

h : F2
n → F2.

Then, the function h can be represented as a polynomial function of n
variables c1, c2, . . . , cn with coefficients in F2, namely as a function

h =
∑

T⊂{1,2,...,n}
aT cT

holds, where aT ∈ F2 and cT :=
∏

t∈T ct. This representation is unique,
and called the algebraic normal form of h. Its degree is called the algebraic
degree of h.

Let hi,n(s0) denote the i-th bit of the n-th output bn(s0) of the generator
for the initial state s0. This is a boolean function, when we consider
s0 ∈ S = F2

d as d variables of bit. Thus, an adversary can obtain s0

by solving the simultaneous equations hi,n(s0) = oi,n for unknown s0 for
various i and n, where oi,n are the outputs of the generator observed by
the adversary. This is the algebraic attack (see for example [4], [3]).

A problem of a linear generator with filter is the following. Since any
sn is a linear function of the bits in s0 = init(k), the algebraic degree of
hi,n(s0) is bounded from the above by the algebraic degree of the i-th bit
of the filter function o, namely that of the function

oi : S
o−→ F2

8 ith−−→ F2.



4

To attain the high-speed generation, oi cannot access so many bits in S,
and its algebraic degree is bounded by the number of accessed bits. This
decreases the merits of the large state space. A filter with memory, which
is just a finite state automaton with input, solves this conflict (see §2.3
for its effect on the algebraic degree).

Definition 3. A finite state automaton A with input is a five-tuple A =
(S, I, f, O, o). The data S,O, o are same with Definition 1. The difference
is that it has another component I (the set of input symbols), and that
the state transition function is of the form f : I × S → S. For an initial
state s0 and an input sequence i0, i1, . . . ∈ I, A changes the state by
sn = f(in−1, sn−1) (n = 1, 2, 3, . . .).

Definition 4. (A combined generator with filter with memory.)
Let AM := (SM , fM , OM , oM ) be an automaton without input (called

the mother generator, M for mother). Let AF := (SF , IF , fF , OF , oF ) be
an automaton with input (called the filter with memory, F for the filter).
We assume that OM = IF . Consider a pair of initial states sM,0 ∈ SM

and sF,0 ∈ SF . We generate a sequence of OM = IF by AM with initial
state sM,0, and pass it to AF with initial state sF,0, to obtain a sequence
of OF as the output sequence. This amounts to considering an automaton
C without input, named the combined generator: the state space SC of C
is SM × SF , the transition function is

fC : (sM , sF ) 7→ (fM (sM ), fF (oM (sM ), sF )),

and the output function is

oC : (sM , sF ) 7→ oF (sF ) ∈ OF .

Figure 1 describes a combined generator.

Example 1. The output function oC in the above definition depends only
on SF , but we may consider a function depending both SM and SF .

Such an example is famous SNOW stream cipher [5] [6]. The mother
generator of SNOW2.0 is a LFSR with 512-bit state space, and its filter
has 64-bit state space. Non-linearity is introduced by four copies of one
same S-box of 8-bit size, based on arithmetic operations in 28-element
filed F28 .

SNOW has no rigorous assurance on the period and the distribution of
the generated sequence. We shall introduce the notion of quasigroup filter,
which allows to compute the period and distribution property.



5

Fig. 1. Combined generator.

2 Quasigroup Filter

Definition 5. A function f : X × Y → Z is said to be bi-bijective if
f(−, y) : X → Z, x 7→ f(x, y) is bijective for any fixed y, and so is
f(x,−) : Y → Z, y 7→ f(x, y) for any fixed x. If X = Y = Z, this
coincides with the notion of a quasigroup.

A quasigroup filter is an automaton in Definition 3 where the state
transition function f : I × S → S is bi-bijective.

Example 2. (Multiplicative filter).
Let I = S be the set of odd integers in the ring Z/232 of integers

modulo 232. Let f : I × S → S be the integer multiplication modulo 232.
This is a quasigroup (actually the multiplicative group of the ring Z/232).

We choose oF : S → OF = B as the function taking the 8 MSBs from
the 32-bit integer.

Example 3. If we correspond a 32-bit integer x to a 33-bit odd integer
2x + 1 modulo 233, then the multiplication formula

(2x + 1)× (2y + 1) = 2(2xy + x + y) + 1

gives a quasigroup structure

×̃ : (x, y) 7→ x×̃y := 2xy + x + y mod 232

on the set of 32-bit integers. We can consider the corresponding multi-
plicative filter with I = S being the set of 32-bit integers.

Modern CPUs often have a fast integer multiplication for 32-bit integers.
We shall discuss mathematical property of such filters in §2.3.



6

Example 4. (CryptMT1: MT with multiplicative filter)
We choose a LFSR described in (1) as the mother generator AM , with

OM = F2
w. We can choose its parameters so that the period is a large

Mersenne prime Q = 2p − 1 (e.g. p = 19937 as in the case of MT19937
[10]). By identifying OM as the set of w-bit integers, we can use the
multiplicative filter AF described in Example 3. We call this generator as
MT19937 with multiplicative filter. The output function oF : SF → OF =
F2

8 is extracting 8 MSBs. This generator is called CryptMT Version 1
(CryptMT1) [11].

2.1 k-dimensional Distribution

Let k be an integer, and let A be an automaton without input as in
Definition 1. We define its k-tuple output function o(k) by

o(k) : S → Ok s 7→ (o(s), o(f(s)), o(f2(s)), . . . , o(fk−1(s))) (2)

(i.e. o(k) maps the state to the next k outputs). Consider the multi-set of
the possible output k-tuples for all states:

O(k) := {ok(s) |s ∈ S}.
This is the image of S by o(k) counted with multiplicities.

Definition 6. The output of the automaton A is said to be k-dimensionally
equidistributed if the multiplicity of each element in O(k) is same.

This type of criteria is commonly used for PRNG for MC: MT19937 as a
32-bit integer generator has this property with k = 623. This criterion is
equivalent to the uniformness of the function o(k) defined below.

Definition 7. A mapping g : X → Y is uniform if the cardinality of
g−1(y) is independent of y ∈ Y . A bijection is uniform, and the composi-
tion of uniform mappings is uniform.

A filter with memory is uniform if its output function is uniform.

Example 4 is uniform. The next proposition shows that a uniform quasi-
group filter increases the dimension of equidistribution by 1. A proof is
in Appendix B.1.

Proposition 1. We keep the set-up of Definition 4. Assume that AF is a
uniform quasigroup filter. Suppose that the output of AM is k-dimensionally
equidistributed. Then, the combined generator C is (k + 1)-dimensionally
equidistributed.



7

Corollary 1. CryptMT1 explained in Example 4 is 624-dimensionally
equidistributed.

We mean by a simple distinguishing attack of order N to choose a real
function F with N variables and to detect the deviation of the distribution
of the values of F applied to the consecutive N -outputs. If N does not
exceed the dimension of the equidistribution, then one can observe no
deviation from the true randomness, under the assumption of uniform
choice of the initial state.

By this reason, it seems very difficult to apply a correlation attack or
a distinguishing attack to such generators. For example, to observe some
deviation of MT19937 with multiplicative filter in Example 4, one needs to
observe the correlation of outputs with the lag more than 624. Because
of the high nonlinearity of the multiplicative filter discussed below, we
guess that this would be infeasible.

2.2 A Theorem on the Period

Theorem 1. Consider a combined generator C as in Definition 4. Let
sM,0 be the initial state of the mother generator AM , and assume that
its state transition is purely periodic with period P = Qq for a prime Q
and an integer q. Let So ⊂ SM be the orbit of the state transition. Let
k be an integer. Assume that the k-tuple output function of the mother
generator o

(k)
M : So → Ok

M as defined in (2) is surjective when restricted
to So. Suppose that AF is a quasigroup filter as in Definition 1.

Let r be the ratio of the occupation of the maximum inverse image of
one element by oF : SF → OF in SF , namely

r = max
b∈OF

{#(o−1
F (b))}/#(SF ).

If
r−(k+1) > q · (#(SF ))2,

then the period of the output sequence of C is a nonzero multiple of Q.

A proof is given in Appendix B.2.

Example 5. For MT19937 with multiplicative filter, this theorem shows
that any bit in the output sequence has a period being a multiple of the
prime 219937 − 1, as follows.

We have Q = 219937 − 1 and q = 1. If oF : SF → OF = F2
m is

extracting some m bits from the 32-bit integers, then r = 2w−m/2w =



8

2−m. The inequality condition in the theorem is now

2m(k+1) > 22w,

and hence if this holds, then the m-bit output sequence has a period
which is a multiple of Q.

In the case of MT19937 and the multiplicative filter, since k = 623
and w = 32, the above inequality holds for any m ≥ 1, hence any bit of
the output has a period at least 219937 − 1.

2.3 A Proposition on the Algebraic Degree of Integer
Products

Definition 8. Let us define a boolean function ms,N of (s−1)N variables,
as follows. Consider N of s-bit integer variables x1, . . . , xN . Let

cs−1,ics−2,i · · · c0,i

be the 2-adic representation of xi, hence cj,i = 0, 1. We fix c0,i = 1 for
all i = 1, . . . , N , i.e. assuming xi odd. The boolean function ms,N has
variables cj,i (j = 1, 2, . . . , s− 1, i = 1, 2, . . . , N), and its value is defined
as the s-th digit (from the LSB) of the 2-adic expansion of the product
x1x2 · · ·xN as an integer.

Proposition 2. Assume that N, s ≥ 2. The algebraic degree of ms,N is
bounded from below by

min{2s−2, 2blog2 Nc}.

A proof is given in Appendix B.3. This proposition gives the algebraic
degree of the multiplicative filter, with respect to the inputs x1, . . . , xN .

This proposition implies that we should use MSBs of the multiplica-
tive filter. On the other hand, using 8 MSBs among 32-bit integers as in
Example 2 seems to have enough high algebraic degree. We check this
using a toy model in Appendix A.

3 A Fast Initialization of a Large State Space

Consider LFSR in (1) as a mother generator. Its state space is an array
of w-bit integers with size n. We need to give initial values to such a
large array in the initialization. If one wants to encrypt a much shorter
message than n, then this is not efficient. A possible solution is to use a



9

PRNG with relatively small state space (called the booter) which can be
quickly initialized, and use it to generate the initial array x0, x1, . . . , xn−1,
and at the same time, its outputs are passed to the filter for key-stream
generation. If the message length is smaller than n, then the mother
generator is never used: the outputs of the booter are used as the output
of the mother generator. If the message length exceeds n, then the first
n outputs of the booter are used as the outputs of the mother generator,
and at the same time for filling up the state space of the mother generator.
After the state space is filled up, the mother generator starts to work. See
Appendix C for more detail.

The first outputs come from the booter. One may argue why not using
the booter forever, without using the mother generator. The answer is
that we do not need to care about the attacks to the booter based on a
long output stream.

4 A Concrete Example Using 128-bit Instructions

Recent CPUs often have Single Instruction Multiple Data (SIMD) instruc-
tions. These instructions treat a quadruple of 32-bit integers at one time.
We propose a LFSR and a uniform quasigroup filter, based on 128-bit
instructions, named CryptMT Version 3 (CryptMT3) in the rest of this
paper. CryptMT3 is one of the phase 3 candidates in eSTREAM stream
cipher competition [13]. We shall describe the generation algorithm below.

4.1 SIMD Fast MT

In the LFSR (1), we assume that each xi is a 128-bit integer or equiv-
alently a vector in F2

128. We choose the following recursion: n = 156
and

x156+j := (x156+j−1 & ffdfafdf f5dabfff ffdbffff ef7bffff)⊕
(x108+j >>64 3)⊕ x108+j [2][0][3][1]⊕ (xj [0][3][2][1]).

(3)
Here, & denotes the bit-wise-and operation, and the hexadecimal integer
is a constant 128-bit integer for the bit-mask. The notation ⊕ is bitwise
exor. The notation

(x108+j >>64 3)

means that x108+j is considered as two 64-bit integers, and each of them
is shifted to the right by 3 bits. The notation x108+j [2][0][3][1] is a permu-
tation of four 32-bit integers. The 128-bit integer x108+j is considered as



10

a quadruple of (0th, 1st, 2nd, 3rd) 32-bit integers, and then they are per-
muted by 2 → 0, 1 → 0, 2 → 3, 3 → 1. The next notation xj [0][3][2][1] is a
similar permutation. These instructions are available both in SSE2 SIMD
instructions for Intel processors and in AltiVec SIMD instructions in Pow-
erPC. We call this generator SIMD Fast MT (SFMT) (This is a variant of
[14]). A description is in Figure 2. We proved its 155-dimensional equidis-

Fig. 2. The mother generator of CryptMT3: SIMD Fast Mersenne Twister.
permute: y 7→ y[0][3][2][1].
perm-shift: y 7→ y[2][0][3][1]⊕ (y >>64 3).
bit-mask: ffdfafdf f5dabfff ffdbffff ef7bffff

tribution property. We proved that, if the third component x0[3] of x0

is 0x4d734e48, then the period of the generated sequence of the SFMT
is a multiple of the Mersenne prime 219937 − 1. Note that since 19937 is
a prime, there is no intermediate field of F219937 . This is in contrast to
SNOW1.0, where the existence of the intermediate field F232 introduces
some weakness (see [6]).

4.2 A Modified Multiplicative Filter

Our filter AF has IF = SF being the set of 128-bit integers, and OF being
the set of 64-bit integers, as described below.

For given 128-bit integers y ∈ IF and x ∈ SF , we define

fF (y, x) := (y ⊕ (y[0][3][2][1] >>32 1))×̃32x. (4)

Here, the notation “>>32 1” means to consider a 128-bit integer as a
quadruple of 32-bit integers, and then shift each of them to the right by 1



11

bit. The binary operator x×̃32y means that 32-bit wise binary operation
×̃ (see Example 3) is applied for each 32-bit components, namely, i-th
32-bit integer of x×̃32y is x[i]×̃y[i] (i = 0, 1, 2, 3).

The operation applied to y is an invertible linear transformation, hence
is bijective. Since ×̃ is bi-bijective, so is fF . The purpose to introduce the
permutation-shift is to mix the information among four 32-bit memories
in the filter, and to send the information of the upper bits to the lower
bits. This supplements the multiplication, which lacks this direction of
transfer of the information.

The output function is

oF (y) := LSB16
32(y ⊕ (y >>32 16)). (5)

This means that y is considered as a quadruple of 32-bit integers, and
for each of them, we take the exor of the MSB 16 bits and LSB 16 bits.
Thus we obtain four 16-bit integers, which is the output 64-bit integer
(see Figure 3). To obtain 8-bit integers, we dissect it into 8 pieces.

CryptMT3 is the combination of the SIMD Fast MT (§4.1) and this
filter. Initialization by the booter is explained in Appendix C.

Fig. 3. Filter of CryptMT3.
perm-shift3: y 7→ y ⊕ (y[0][3][2][1] >>32 1).
perm-shift4: y 7→ y ⊕ (y >>32 16).
×̃: multiplication of 33-bit odd integers.

4.3 Speed Comparison

Comparison of the speed of generation for stream ciphers is a delicate
problem: it depends on the platform, compilers, and so on. Here we com-
pare the number of cycles consumed per byte, by CryptMT3, HC256,
SOSEMANUK, Salsa20, Dragon (these are the five candidates in eS-
TREAM software cipher phase 3 permitting 256-bit Key), SNOW2.0 and



12

AES (counter-mode), in three different CPUs: Intel Core 2 Duo, AMD-
Athlon X2, and Motorola PowerPC G4, using eSTREAM timing-tool [7].
The data are listed in Table 1. Actually, they are copied from Bernstein’s
page [2]. The number of cycles in Key set-up and IV set-up are also listed.

CryptMT3 is the fastest in generation in Intel Core 2 Duo CPU, re-
flecting the efficiency of SIMD operations in this newer CPU. CryptMT3
is slower in Motorola PowerPC. This is because AltiVec (SIMD of Pow-
erPC) lacks 32-bit integer multiplication (so we used non-SIMD multipli-
cation instead).

Table 1. Summary from eSTREAM benchmark [2]

Core 2 Duo AMD Athlon 64 X2 Motorola PowerPC G4
Primitive Stream Key setup IV setup Stream Key IV Stream Key IV
CryptMT3 2.95 61.41 514.42 4.73 107.00 505.64 9.23 90.71 732.80

HC-256 3.42 61.31 83805.33 4.26 105.11 88726.20 6.17 87.71 71392.00
SOSEMANUK 3.67 848.51 624.99 4.41 1183.69 474.13 6.17 1797.03 590.47

SNOW-2.0 4.03 90.42 469.02 4.86 110.70 567.00 7.06 107.81 719.38
Salsa20 7.12 19.71 14.62 7.64 61.22 51.09 4.24 69.81 42.12
Dragon 7.61 121.42 1241.67 8.11 120.21 1469.43 8.39 134.60 1567.54

AES-CTR 19.08 625.44 18.90 20.42 905.65 50.00 34.81 305.81 34.11

5 Conclusions

We proposed combination of a LFSR and a uniform quasigroup filter
as a stream cipher in software. As a concrete example, we implemented
CryptMT3 generator. CryptMT3 is as fast as SNOW2.0 and faster than
AES counter-mode for recent CPUs. CryptMT3 satisfies the conditions of
Theorem 1 and Proposition 1, and it can be proved to have the astronom-
ical period ≥ 219937−1 and the 156-dimensional equidistribution property
as a 64-bit integer generator (and hence 1241-dimensional equidistribu-
tion property as a 8-bit integer generator).

CryptMT3 uses integer multiplication instead of an S-box. This is
an advantage over generators with large look-up tables for fast software
implementation of the S-box, such as SNOW or AES, where cache-timing
attacks might be applied [1].

A toy model of CryptMT3 shows high algebraic degrees and nonlin-
earity for the multiplicative filter, which supports its effectiveness.



13

References

1. Bernstein, D. J. Cache-timing attack on AES,
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

2. Bernstein, D. J. Software timings. http://cr.yp.to/streamciphers/timings.html.
3. Courtois, N. Cryptanalysis of Sfinks, http://eprint.iacr.org/2005/243.
4. Courtois, N. Fast algebraic attacks on stream ciphers with linear feedback. In D.

Boneh, editor, Advances in Cryptology - CRYPTO 2003, number 2729 in Lecture
Notes in Computer Science, pages 176–194. Springer-Verlag, 2003.

5. Ekdahl, P., Johansson, T. SNOW-a new stream cipher, Proceedings of First Open
NESSIE Workshop, KU-Leuven, 2000

6. Ekdahl, P., Johansson, T. A New Version of the Stream Cipher SNOW, Selected
Areas in Cryptography, SAC 2002, Springer Verlag, LNCS 2595, pp. 47–61, 2002.

7. eSTREAM – The ECRYPT Stream Cipher Project – Phase 3.
http://www.ecrypt.eu.org/stream/index.html

8. Golomb, S. Shift Register Sequences. Aegean Park Press, 1982.
9. Knuth, D. E. The Art of Computer Programming. Vol. 2. Seminumerical Algo-

rithms 3rd Ed. Addison-Wesley, Reading, Mass., (1997).
10. Matsumoto, M. and Nishimura, T. Mersenne Twister: A 623-dimensionally equidis-

tributed uniform pseudo-random number generator, ACM Transactions on Mod-
eling and Computer Simulation, 8 (1998) 3–30.

11. Matsumoto, M., Saito, M., Nishimura, T. and Hagita, M. Cryptanalysis of
CryptMT: Effect of Huge Prime Period and Multiplicative Filter,
http://www.ecrypt.eu.org/stream/cryptmtfubuki.html

12. Matsumoto, M., Saito, M., Nishimura, T. and Hagita, M. CryptMT Version 2.0: a
large state generator with faster initialization,
http://www.ecrypt.eu.org/stream/cryptmtfubuki.html.

13. Matsumoto, M., Saito M., Nishimura T. and Hagita M, CryptMT Stream Cipher
Version 3. Submitted to eSTREAM stream cipher proposals,
http://www.ecrypt.eu.org/stream/cryptmtp3.html.

14. Saito, M., Matsumoto, M. SIMD-oriented Fast Mersenne Twister: a 128-bit Pseu-
dorandom Number Generator, to appear in the proceedings of MCQMC2006.

Appendix

A Simulation by Toy Models

Since the filter has a memory, it is not clear how to define the algebraic
degree or non-linearity of the filter. Instead, if we consider all bits in the
initial state as variables, then each bit of the outputs is a boolean function
of these variables, and algebraic degree and non-linearity are defined.

However, it seems difficult to compute them explicitly for CryptMT3,
because of the size. So we made a toy model and obtained experimental
results. Its mother generator is a linear generator with 16-bit internal
state, and generates a 16-bit integer sequence defined by

xj+1 := (xj >> 1)⊕ ((xj&1) · a),



14

where >> 1 denotes the one-bit shift-right, (xj&1) denotes the LSB of
xj , a = 1010001001111000 is a constant 16-bit integer, and (xj&1) · a
denotes the product of the scalar (xj&1) ∈ F2 and the vector a.

Then it is filtered by

yj+1 = (xj |1)× yj mod 216,

where (xj |1) denotes xj with LSB set to 1. We put y0 = 1, and compute
the algebraic degree of each of the 16 bits in the outputs y1 ∼ y16, each
regarded as a polynomial function with 16 variables being the bits in x0.
The result is listed in Table 2. The lower six bits of the table clearly show
the pattern 0, 1, 1, 2, 4, 8, which suggests that the lower bound 2s−2 for
s ≥ 2 given in Proposition 2 would be tight, when the iterations are many
enough. On the other hand, eighth bit and higher are “saturated” to the
upper bound 16, after 12 generations.

We expect that the algebraic degrees for CryptMT3 would behave
even better, since its filter is modified. So, if we consider each bit of the
internal state of CryptMT3 as a variable, then the algebraic degree of the
bits in the outputs will be near to 19937, after some steps of generations.

Table 2. Table of the algebraic degrees of output bits of a toy model.

y1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
y2 14 13 12 11 10 9 8 7 6 5 4 3 2 1 1 0
y3 15 15 14 13 12 11 10 9 8 6 4 3 2 1 1 0
y4 15 16 15 14 13 12 11 10 9 7 5 4 2 1 1 0
y5 16 16 15 15 14 13 12 11 10 7 5 4 2 1 1 0
y6 16 16 15 15 15 14 13 11 10 9 7 4 2 1 1 0
y7 16 15 16 16 15 15 14 13 12 9 7 4 2 1 1 0
y8 15 15 15 16 16 15 15 14 13 10 8 4 2 1 1 0
y9 16 15 16 15 15 16 15 15 13 10 8 4 2 1 1 0
y10 15 16 16 16 16 16 15 15 14 12 8 4 2 1 1 0
y11 15 16 16 15 15 15 16 15 15 12 8 4 2 1 1 0
y12 15 16 16 16 16 15 16 16 15 13 8 4 2 1 1 0
y13 16 15 15 15 15 15 16 15 16 13 8 4 2 1 1 0
y14 15 15 16 15 15 16 16 15 16 15 8 4 2 1 1 0
y15 15 16 16 16 15 16 16 16 15 14 8 4 2 1 1 0
y16 16 15 16 15 15 15 15 15 16 14 8 4 2 1 1 0

Also, we computed the non-linearity of the MSB of each yi (i =
1, 2, . . . , 8) of this toy model. The result is listed in Table 3, and each
value is near to 216−1. This suggests that there would be no good linear
approximation of CryptMT3.



15

Table 3. The non-linearity of the MSB of each output of a toy model.

output y1 y2 y3 y4 y5 y6 y7 y8 y9

nonlinearity 0 32112 32204 32238 32201 32211 32208 32170 32235

B Proof of Theorems and Propositions

B.1 Proof of Proposition 1

Proof. Consider the k-tuple output function of the mother generator o
(k)
M :

SM → Ok
M as in (2). Then, the k-dimensional equidistribution property

is equivalent to the uniformness of o
(k)
M . The (k+1)-tuple output function

o
(k+1)
C of the combined generator C is the composite

o
(k+1)
C : SM × SF

o
(k)
M ×idSF−−−−−−→ Ok

M × SF
µ−→ Sk+1

F

ok+1
F−−−→ Ok+1

F ,

where the second map µ is given by

µ : ((xk, xk−1, . . . , x1), y1) 7→ (yk+1, yk, . . . , y1)

where yi’s are inductively defined by yi+1 := fF (xi, yi) (i = 1, 2, . . . , k).
The last map ok+1

F is the direct product of k + 1 copies of oF . The quasi-
group property of fF implies the bijectivity of µ. The last map is uni-
form. Since the composition of uniform mappings is uniform, we obtain
the proof.

B.2 Proof of Theorem 1

Proof. We may replace SM with the orbit starting from s0. Then, replace
SM with its quotient set where two states are identified if the output
sequences from them are identical. Thus, we may assume #(SM ) = P ,
where P is the period of the output sequence of AM . In this proof, we do
not consider multi-sets. Consider the k-tuple output function o

(k+1)
C as in

the proof of Proposition 1. Since o
(k)
M is surjective and µ is bijective (by the

quasigroup property), the image I ⊂ On+1
M of SM×{y0} by µ◦(o(k)

M × idY )
has the cardinality #(OM )k. By the assumption of the pure periodicity
of xi and the bijectivity of fF , the output sequence oF (yi) (i = 0, 1, 2, . . .)
is purely periodic. Let p be its period. Then, ok+1

F (I) ⊂ Ok+1
F can have at

most p elements. Thus, by the assumption on oF and the definition of r,

#(I) ≤ p(r#(SF ))k+1.



16

Since #(OM )k = #(I) and #(OM ) = #(SF ), we have an inequality

r−(k+1) ≤ p#(SF ).

The period P ′ of the state transition of C is a multiple of P = Qq. Since
the state size of C is P ×#(SF ), P ′ = Qm holds for some m ≤ q#(SF ).
Consequently, p is a divisor of Qm. If p is not a multiple of Q, then p
divides m and p ≤ q#(SF ). Thus we have

r−(k+1) ≤ q#(SF )2,

contradicting to the assumption.

B.3 Proof of Proposition 2

Let h(c1, c2, . . . , cn) be a boolean function as in Definition 2, and h =∑
T⊂{1,2,...,n} aT cT be its algebraic normal form.
The following lemma is well known.

Lemma 1. It holds that aT =
∑

U⊂T h(U), where h(U) := h(c1, . . . , cn)
with ci = 0, 1 according to i /∈ U , ∈ U , respectively.

Proof of Proposition

Proof. For s = 2, the claim is easy to check. We assume s ≥ 3.
Case 1. s − 2 ≤ log2 N . In this case, it suffices to prove that the

algebraic degree is at least 2s−2. Take a subset T of size 2s−2 from
{1, 2, . . . , N}, say T = {1, 2, . . . , 2s−2}. Then, we choose c1,1, c1,2, . . . , c1,2s−2

as the #T variables “activated” in Lemma 1, and consequently, the coef-
ficient of c1,1c1,2 · · · c1,2s−2 in the algebraic normal form of ms,N is given
by the sum in F2:

aT :=
∑

U⊂T

(s-th bit of x1 · · ·xn, where cj,i = 1 if and only if j = 1 and i ∈ U).

Note that c0,i = 1. It suffices to prove aT = 1. Now, each term in the
right summation is the s-th bit of the integer 3#U , so the right hand side
equals to

2s−2∑

m=0

[(
2s−2

m

)
× the s-th bit of 3m

]
.

However, the well-known formula

(x + y)2
s−2 ≡ x2s−2

+ y2s−2
mod 2



17

implies that the binary coefficients are even except for the both end, so
the summation is equal to the s-th bit of 32s−2

.
A well-known lemma says that if x ≡ 1 mod2i and x 6≡ 1 mod2i+1

for i ≥ 2, then x2 ≡ 1 mod 2i+1 and x2 6≡ 1 mod 2i+2. By applying
this lemma inductively, we know that

32s−2
= (1 + 8)2

s−3 ≡ 1 mod 2s, 6≡ 1 mod 2s+1.

This means that s-th bit of 32s−2
is 1, and the proposition is proved.

Case 2. s − 2 > blog2(N)c. In this case, we put t := blog2(N)c + 2,
and hence s > t and 2t−2 ≤ N . We apply the above arguments for
T = {1, 2, . . . , 2t−2}, but this time instead of c1,i, we activate

{cs−t+2,i | i ∈ T}.
The same argument as above reduces the non-vanishing of the coefficient
of the term cs−t+2,1 · · · cs−t+2,2t−2 to the non-vanishing of

2t−2∑

m=0

[(
2t−2

m

)
× the s-th bit of (1 + 2s−t+2)m

]
.

Again, only the both ends m = 0 and m = 2t−2 can survive, and the
above summation is the s-th bit of (1 + 2s−t+2)t−2. Since s − t + 2 ≥ 2,
the lemma mentioned above implies that

(1 + 2s−t+2)2
t−2 ≡ 1 mod 2s, 6≡ 1 mod 2s+1,

which implies that its s-th bit is 1.

C The key, IV, and the Booter

The design of the booter (see §3) goes independently of the key-stream
generator. However, as the referees pointed out, we need to specify one
to have a complete description of the generator. Thus, we here include
the booter of CryptMT3 for self-containedness. The booter is described
in Figure 4. We choose an integer H later in §C.1. The state space of the
booter is a shift register consisting of H 128-bit integers. We choose an
initial state x0,x1, . . . ,xH−1 and the initial value a0 of the accumulator
(a 128-bit memory) as described in the next section. Then, the state
transition is given by the recursion

aj := (aj−1 ×̃32 perm-shift2(xH+j−1))
xH+j := perm-shift1(xj +32 xH+j−2)−32 aj ,



18

Fig. 4. Booter of CryptMT3.
perm-shift1: x 7→ (x[2][1][0][3])⊕ (x >>32 13).
perm-shift2: x 7→ (x[1][0][2][3])⊕ (x >>32 11).
×̃: multiplication of (a quadruple of) 33-bit odd integers.
+, −: addition, subtraction of four 32-bit integers modulo 232.

where
perm-shift1(x) := (x[2][1][0][3])⊕ (x >>32 13)
perm-shift2(x) := (x[1][0][2][3])⊕ (x >>32 11).

The notation +32 (−32) denotes the addition (subtraction, respectively)
modulo 232 for each of the four 32-bit integers in the 128-bit integers. The
output of the j-th step is xj +32 xH+j−2.

As described in Figure 4, the booter consists of an automaton with
three inputs and two outputs of 128-bit integers, together with a shift
register. In the implementation, the shift register is taken in an array of
128-bit integers with the length 2H + 2 + n, where n = 156 is the size of
the state array of SFMT. This redundancy of the length is for the idling,
as explained below.

C.1 Key and IV Set-up

We assume that both the IV and the Key are given as arrays of 128-bit
integers. The size of each array is chosen by user, from 1 to 16. Thus,
the Key-size is chosen from 128 bits to 2048 bits, as well as the IV-size.



19

We claim the security level that is the same with the minimum of the
Key-size and the IV-size.

We concatenate the IV and the Key to a single array, and then it is
copied twice to an array, as described in Figure 5. To break the symme-

Fig. 5. Beginning of Key and IV set-up. The IV-array and Key-array are concatenated
and copied to an array twice. Then, a constant is added to the bottom of the second
copy of the key to break a possible symmetry. The automaton is described in Figure 4.

try, we add a constant 128-bit integer (846264, 979323, 265358, 314159)
(denoting four 32-bit integers in a decimal notation, coming from π)
to the bottom row of the second copy of the key (add means +32).
Now, the size H of the shift register in the booter is set to be 2 ×
(IV-size + Key-size (in bits))/128, namely, the twice of the number of
128-bit integers contained in the IV and the Key. For example, if the IV-
size and the Key-size are both 128 bits, then H = 2 × (1 + 1) = 4. The
automaton in the booter described in Figure 4 is equipped on this array,
as shown in Figure 5. The accumulator of the booter-automaton is set to

(the top row of the key array) | (1, 1, 1, 1),

that is, the top row is copied to the accumulator and then the LSB of
each of the 32-bit integers in the accumulator is set to 1.

At the first generation, the automaton reads three 128-bit integers
from the array, and write the output 128-bit integer at the top of the
array. The feedback to the shift register is written into the (H + 1)-
st entry of the array. For the next generation, we shift the automaton
downwards by one, and proceed in the same way.

For idling, we iterate this for H + 2 times. Then, the latest modified
row in the array is the (2H + 2)-nd row, and it is copied to the 128-bit
memory in the filter of CryptMT3. We discard the top H + 2 entries of



20

the array. This completes the Key and IV set-up. Figure 6 shows the state
after the set-up.

Fig. 6. After the Key and IV set-up.

After the set-up, the booter produces 128-bit integer outputs, at most
n times. Let L be the number of bits in the message. If L ≤ n× 64, then
we do not need the mother generator. We generate the necessary number
of 128-bit integers by the booter, and pass them to the filter to obtain the
required outputs. If L ≥ n × 64, then, we generate n 128-bit integers by
the booter, and pass them to the filter to obtain n 64-bit integers, which
are used as the first outputs. At the same time, these n 128-bit integers
are recorded in the array, and they are passed to SFMT as the initial
state.

To eliminate the possibility of shorter period than 219937 − 1, we set
the 32 MSBs of the first row of the state array of SFMT to the magic
number 0x4d734e48 in the hexadecimal representation, as explained in
§4.1. That is, we start the recursion (3) of SFMT with x0,x1, . . . ,xn−1

being the array of length n generated by the booter (with 32 bits replaced
with a magic constant), and then SFMT produces xn,xn+1, . . .. Since xn

might be easier to guess because of the constant part in the initial state,
we skip xn and pass the 128-bit integers xn+1,xn+2, . . . to the filter.


