
Twisted GFSR Generators II

Makoto Matsumoto
Research Institute for Mathematical Sciences

Kyoto University, Kyoto 606, Japan
and

Yoshiharu Kurita

National Research Laboratory of Metrology
Tsukuba 305, Japan

December 2, 1992

Abstract
The twisted GFSR generators proposed in a previous paper have a defect in k-distribution

for k larger than the order of recurrence. In this follow-up paper we introduce and ana-
lyze a new TGFSR variant having better k-distribution property. An efficient algorithm
to obtain the order of equidistribution is provided, together with a tight upper bound on
the order. A method to search for generators attaining this bound is discussed, and some
such generators are listed. The upper bound turns out to be (sometimes far) less than the
maximum order of equidistribution for a generator of that period length, but far more than
that for a GFSR with a working area of the same size.

1 Introduction

In the previous paper[9], we introduced a random-number-generating algorithm, the twisted
GFSR generator (TGFSR).

Definition 1. A sequence x0,x1,x2, . . . of w-bit integers is a TGFSR sequence with parameters
(w, n, m,A) (n > m : positive integers) if it satisfies

xl+n = xl+m ⊕ xiA (l = 0, 1, 2, . . .), (1)

where xi are regarded as row vectors of bits, ⊕ denotes the bitwise exclusive-or operation, A is
a w × w matrix with components in GF(2), and xiA denotes the multiplication between a row
vector and a matrix over GF(2).

If A is an identity matrix, then the sequence is a GFSR sequence based on a characteristic
trinomial. As shown in [6, §§3.7, §§3.8], both GFSR and TGFSR can be viewed as implementa-
tion approaches of digital matrix generators, and TGFSR generators can also be implemented
as large GFSRs (based on a characteristic polynomial of order wn).

Categories and Subject Descriptors: G. 2.1. [Discrete Mathematics] : Combinatorics–recurrences and
difference equations; G. 3. [Probability and Statistics]–random number generation.

General Terms: Algorithms, Theory, Experimentation
Additional Key Words and Phrases: GFSR, TGFSR, m-sequences, k-distribution, finite fields

1

With a suitable choice of (w, n, m,A), the sequence attains the maximal period 2nw−1. Here
we treat only TGFSR with maximal periods, and simply call them TGFSR. In the previous
paper, we dealt with the case where A is of rational normal form, as below, because it permits
an efficient implementation of the recurrence (1).

Definition 2. A TGFSR sequence with

A = R :=

1
1

. . .

1
a0 a1 · · · · · · aw−1

is called a TGFSR sequence of rational normal form (TGFSR(R)).

Unfortunately, a TGFSR(R) has a defect from the viewpoint of k-distribution to v-bit accuracy[11],
defined as follows.

Definition 3. A pseudorandom sequence xi of w-bit integers of period P satisfying the fol-
lowing condition is said to be k-distributed to v-bit accuracy: let truncv(x) denote the number
formed by the leading v bits of x, and consider the kv-bit vectors

(truncv(xi), truncv(xi+1), . . . , truncv(xi+k−1)) (0 ≤ i < P).

Then, each of the 2kv possible combinations of bits occurs the same number of times in a period,
except for the all-zero combination that occurs once less often.

Let x0,x1, . . . be a sequence of w-bit integers and let P be its period. For each v = 1, 2, . . . , w,
let k(v) denote the maximum number such that the sequence is k(v)-distributed to v-bit accuracy.
Clearly we have the inequality 2k(v)v− 1 ≤ P , since at most P patterns can occur in one period.
In the case of TGFSR, P = 2nw − 1 holds, hence we have k(v) ≤ �nw/v� with n being the
number of words. However, as Tezuka[10] pointed out, TGFSR(R) is only n-distributed to 2-bit
accuracy, far smaller than the upper bound k(v) ≤ �nw/v�. (Generators attaining this upper
bound for every v (1 ≤ v ≤ w) are called asymptotically random[11].) This led us to consider
k-distribution of TGFSR with other types of A instead of R. The purpose of this paper is to
introduce a new feasible variant of TGFSR with better k-distribution.

It turns out that TGFSR has a tighter upper bound than the one deduced above, namely
k(v) ≤ n�w/v�. Consequently, a TGFSR is never asymptotically random. However, we could
find an efficient algorithm to obtain A attaining this bound and an efficient implementation of
the corresponding TGFSR. We shall list some TGFSR generators attaining these upper bounds
n�w/v� simultaneously for all v. They are much better than the �n/v� achieved by a GFSR of
the same size (i.e., n words of w-bit integers). One may still insist that a GFSR of the same
period 2nw − 1 (consuming w times memory area of TGFSR) may achieve an asymptotically
random distribution k(v) = �nw/v�, and consequently that Theorem 1 is a negative result. This
is not necessarily the case, as shown in the following comparison with an asymptotically random
GFSR of N -words (N ∼ nw) with k(v) = �N/v�.
(i) To obtain a TGFSR whose k(v) exceeds �N/v� for all v, it is sufficient to take n = �2N/(w+1)�
words (� N). (This follows from a simple calculation.) Thus, a TGFSR needs much less memory
than a GFSR of the same k-distribution property. Note that in a multi-task system, a memory-
consuming program is sometimes time-consuming, because of swapping of memories.

2

(ii) In the GFSR case, to obtain k(v) for a given initial value, one must calculate the rank of an
N ×N matrix for each v, while any initial value attains the upper bound in the case of TGFSR.
(iii) Even an asymptotically random GFSR is rejected by the weight-distribution test, if it is
based on a trinomial (see Section 4. See also [9]).

A brief sketch of this paper is as follows. In Section 2, we provide an efficient algorithm to
obtain k(v) through simple operations on matrix A (Theorem 1), which also shows that TGFSR
has the upper bound k(v) ≤ n�w/v�. In Section 3, we discuss how to search for the matrix A
which satisfies the above bounds at once for all v and also allows for an efficient implementation.
In Subsection 3.1, we analyze the bad correlation in TGFSR(R) by applying Theorem 1. In
Subsection 3.2, based on this analysis, we discuss a method to modify the output sequence of a
TGFSR(R) by a simple linear transformation into a sequence of TGFSR satisfying the bound
of Theorem 1. This modification requires only a few instructions to be added to the previous
TGFSR(R) program. In Subsection 3.3, we discuss an efficient way to determine a modifying
parameter. In Section 4, we list some efficient generators attaining these bounds. We conduct
empirical tests on these generators and the old TGFSR(R), and we dismiss the latter type.

2 Criterion for equidistribution

The next theorem provides an efficient algorithm to obtain k(v) and its tight upper bound for
the general TGFSR.

Theorem 1. Let (w, n, m,A) be the parameters of a TGFSR. Let d
(i)
j denote the i-th column

vector of Aj . Consider the sequence of vectors

d
(0)
0 ,d

(1)
0 , . . . ,d

(v−1)
0 ,d

(0)
1 ,d

(1)
1 , . . . ,d

(v−1)
1 ,d

(0)
2 ,

Let d
(i0)
j0 be the first vector that is GF(2)-linearly dependent with the preceding vectors. Then

we have
k(v) = nj0.

Corollary 1.
n|k(v) and k(v) ≤ n�w/v� (v = 1, 2, . . . , w).

Proof (by R. Couture). Fix k and v. Let Vw := GF (2)w be the space of w-bit integers regarded
as a row vector space.

Define
Ωw := Ω′

w := V k
w ,

and identify Ωw with the space of k × w matrices. Similarly define Vv, Ωv, and Ω′
v.

Let ρ : V n
w → Ωw map (x0, . . . ,xn−1) to the first k values (x0, . . . ,xk−1) of the TGFSR

sequence (x0,x1, . . . ,xj, . . .) with initial value (x0, . . . ,xn−1). Let trunc : Vw → Vv denote
the truncation map defined in Definition 3, that is, the multiplication by the w × v-matrix

Q :=

(
Iv
0

)
from the right. We denote the multiplication from the right by ×Q and from the

left by Q×. Now the k-distribution to v-bit accuracy is equivalent to the surjectivity of the
composition map

V n
w

ρ→ Ωw
×Q→ Ωv,

3

since the state vector assumes all nonzero values in V n
w in one period. Let τ : V n

w → Ω′
w be the

map defined by

(x0,x1, . . . ,xn−1)
→ (x0,x1, . . . ,xn−1,x0A,x1A . . . ,xn−1A,x0A
2, . . . ,x0A

q, . . . ,xr−1A
q),

where r and q are the residue and the quotient of k/n, respectively.
Let us consider the linear recurrence

yl+n = yl+m + ylX (l = 0, 1, 2, . . .),

where X is an indeterminate, y0, . . . , yn−1 are indeterminates, and yl (l ≥ n) is a polynomial of
these indeterminates. Then, for any integer N , yN can be written as a linear combination of

{yiX
j|i = 0, 1, . . . , n− 1, i + jn ≤ N},

and the coefficient of yiX
j for unique (i, j) with N = i + jn does not vanish. By substituting

yl := xl and X := A, we see that there is a regular lower-half triangular k × k-matrix T such
that the composition

V n
w

τ→ Ω′
w

T×→ Ωw

coincides with ρ. Now we have a commutative diagram

V n
w

τ→ Ω′
w

×Q→ Ω′
v

‖ ↓ ↓
V n

w
ρ→ Ωw

×Q→ Ωv

,

where the two vertical maps are the isomorphisms T×. Hence, it is sufficient to consider the
surjectivity of the upper row, which is the linear transformation

(x0,x1, . . . ,xn−1)
→ (x0Q,x1Q, . . . ,xn−1Q,x0AQ,x1AQ, . . . ,xn−1AQ,x0A
2Q, . . . ,xr−1A

qQ),

and this splits to a direct sum according to V n
w = Vw ⊕ Vw ⊕ · · · ⊕ Vw. Thus the surjectivity of

the upper row reduces to the surjectivity of

V n
w → V q+1

v

x
→ xU,

where U is a w × (q + 1)v-matrix

U := (Q, AQ,A2Q, . . . , AqQ).

Thus, k-distribution of the v-bit accuracy is equivalent to the rank of U being (q +1)v. In other
words, to the independence of columns of U . The maximum q equals j0 in the statement of the
theorem, and since q = �k/n�, the theorem follows. Corollary 1 is an immediate consequence of
the theorem.

Remark 1. The j0 in the theorem coincides with the order of equidistribution to v-bit accuracy
of the matrix linear congruential sequence defined by zi+1 = ziA, if ϕA(t) is primitive. It is worth
noting that the condition for a TGFSR with parameters (w, n, m,A) to achieve the upper bound
in Corollary 1 depends only on A, and is independent of n and m, unlike the case of GFSR[11][3].
This implies that one good A serves for any n and m, provided that (w, n, m,A) is a tuple of
parameters of a (maximal period) TGFSR generator.

4

3 How to attain the bound

We want to find matrices A satisfying the upper bound in Corollary 1 and permitting an efficient
implementation. We will show that TGFSR(R)s cannot reach that upper bound, and then
propose a way of constructing matrices A that satisfy those conditions.

3.1 Bad correlation in TGFSR(R)

We interpret j0 in Theorem 1 as the degree of the minimal-degree relation between some poly-
nomials, in order to investigate bad correlations in TGFSR(R). Let us fix one set of parameters
(w, n, m,A) providing a TGFSR. Let η be an eigenvalue of A. Then η generates GF(2w) over
GF(2) and is of multiplicity one, because the characteristic polynomial of A is irreducible. Thus,
the corresponding row eigenvector can be taken in GF(2w)w. Let (φ1, . . . , φw) be such a (row)
eigenvector of A, namely,

(φ1, . . . , φw)A = (ηφ1, . . . , ηφw), φi ∈ GF(2w). (2)

We can state Theorem 1 in terms of degree, as follows.

Theorem 2. Let η ∈ GF(2w) be an eigenvalue of A and (φ1, . . . , φw) be a corresponding row
eigenvector. Let us define the degree of an element of GF(2w) as the minimal degree of its
representations as a nonzero polynomial in η. (Thus, degree of 0 is w.) Let v be an integer with
1 ≤ v ≤ w. For a linear relation

∑v
i=1 γiφi = 0 in GF(2w), we define the degree of the linear

relation as the maximum degree of γi (i = 1, . . . , v).
Then, k(v) equals n times the degree of the minimal-degree relation between {φ1, φ2, . . . , φv}.

Proof. First we claim that {φ1, φ2, . . . , φw} is linearly independent over GF(2). Because,
if not, they satisfy a linear relation over GF(2), and hence all Galois conjugates of the set
{φ1, φ2, . . . , φw} satisfy the same linear relation. Thus, the Galois conjugates of the vector
(φ1, φ2, . . . , φw) (there are exactly w conjugates) are linearly dependent. This contradicts that
each of these vectors lies in an eigenspace with distinct eigenvalues.

By this and Theorem 1, k(v) is n times the minimum j such that the components in the
(j + 1)v-dim GF(2w)-vector

(φ1, φ2, . . . , φv)(Q, AQ,A2Q, . . . , AjQ)

(Q: the w × v matrix defined in the proof of Theorem 1) are linearly dependent over GF(2), in
other words, the set

{φ1, φ2, . . . , φv, ηφ1, ηφ2, . . . , ηφvη
2φ1, . . . , η

jφ1, . . . , η
jφv}

being linearly dependent. Thus, j is nothing but the degree of the minimal-degree relation
between {φ1, . . . , φv}.

We shall apply this theorem to TGFSR(R). A direct calculation shows the following.

Lemma 1. Let A := R be the matrix in Definition 2. Then, a GF(2w) vector (φ1, φ2, . . . , φw)
is a (row) eigenvector of R if and only if it satisfies the equations

φi = ηφi+1 + aiφw (i = 1, . . . , w − 1) (3)

5

and
a0φw = ηφ1. (4)

Because a0 = 1, equations (3) and (4) in the above lemma show that

φi = η(φi+1 + aiφ1), (i = 1, . . . , w − 1). (5)

Thus, in the case of i = 1, this shows that the degree of the minimal-degree linear relation
between φ1 and φ2 is one, and hence Theorem 2 shows that k(2) = n× 1, recovering a result of
Tezuka[10]. Next, we consider consecutive three bits φi, φi+1, and φi+2. If ai is zero, then by (3)
the minimal-degree linear relation between φi and φi+1 has degree one; hence the i-th bit and
i + 1-th bit are at most n-distributed. If ai+1 is zero, the same is true between the i + 1-th and
the i + 2-th bits. If ai = ai+1 = 1, then one can eliminate φw from equation (3) to obtain

φi − φi+1 = ηφi+1 − ηφi+2,

which asserts the following.

Proposition 1. In the TGFSR sequence, any three consecutive bits of xi are at most n-
distributed.

From (5) we obtain a recurring formula

φi+1 = η−1φi + aiφ1,

and by solving this inductively, it is easy to see that

φi = Φi(η
−1)φ1

holds for some polynomial Φi(t) ∈GF(2)[t] of degree i − 1 (i ≤ w). Thus, any GF(2)-linear
combination of φ1, . . . , φs can be written in the form of Ψ(η−1)φ1 with Ψ(t) of degree ≤ s− 1.
Any two such linear combinations Ψ(η−1)φ1 and Ψ(η−1)′φ1 have a linear relation of degree≤ s−1,
namely, (Ψ(η−1)′ηs−1) ·Ψ(η−1)φ1 = (Ψ(η−1)ηs−1) ·Ψ(η−1)′φ1. By Theorem 2 we have proven the
following.

Proposition 2. Any two linear combinations of (φ1, . . . , φs) has a linear relation of degree
s − 1. Thus, for a TGFSR(R) sequence, any two linear combinations of the most significant s
bits are at most n(s− 1)-distributed.

3.2 Tempering TGFSR(R)

We shall provide an efficient method to search for a good A based on the above analysis of
TGFSR(R). The idea is the following modification (called tempering) of TGFSR(R) generators,
which is equivalent to considering a general A.

Let {xi} be a TGFSR(R) sequence, and define a sequence {zi} by putting

zi := xiP, (6)

where P is a regular GF(2)-matrix. By deleting x from (1) using (6), we realize that {zi} is a
TGFSR sequence with parameters (w, n, m, P−1RP). Since the characteristic polynomial of A

6

of a (maximal period) TGFSR is irreducible, A is similar to a (unique) rational normal form R,
that is, A = P−1RP holds for certain P and R. Hence, any (maximal period) TGFSR can be
obtained in this way. Thus, what we should do is to choose a simple P such that {zi} attains
the bound in Theorem 1.

Let (φ1, . . . , φw) be the row eigenvector of R, as in §3.1. Then, the eigenvector of A = P−1RP
is

(φ′
1, . . . , φ

′
w) = (φ1, . . . , φw)P,

and hence Theorem 2 can be applied.
We shall investigate a feasible transform x
→ xP permitting an efficient implementation.

The linear operations with respect to GF(2) existing in a usual instruction set are exclusive-or,
bit shift, and bitwise AND with a constant bitmask. Proposition 1 suggests that bitwise AND
will be necessary in some way, since the others do not cut off the adjacency of the consecutive

bits. Proposition 2 asserts that a P such as

(
U V
0 W

)
, where U is an s × 2 matrix and

s− 1 < �w/2�, never attains the bound on k(2) since k(2) ≤ n(s− 1). To attain the bound, P
should add the s-th bit of x with s − 1 ≥ �w/2� to one of the most significant two bits. This
observation and the limitation in the instruction set lead us to a transformation

x
→ x⊕ (x << s− 2), (7)

with s− 1 ≥ �w/2�, where x << s− 2 denotes the (s− 2)-bit shiftleft operation on x.
Taking Proposition 1 into account, we contrive a transformation

y := x⊕ ((x << some bits)&BITMASK), (8)

where & represents the bitwise AND operation and BITMASK is a suitable bitmask.
A more complicated combinatorial analysis with many case divisions shows that this trans-

form is not yet sufficient. We extensively examined several alternatives, and finally found a
feasible transformation, namely, applying the transform (8) twice:

Transform 1. We define P to be the transform x→ xP = z given by

y := x⊕ ((x << s)&b);

z := y⊕ ((y << t)&c); (9)

where s and t are integers, b and c are suitable bitmasks of word size, (x << s) indicates the
s-bit shiftleft, and & means the bitwise AND operation.

Note that 0 ≥ s, t ≥ w − 1. To attain the bound on k(2), it is necessary to satisfy s + t ≥
�w/2� − 1, since P is easily seen to have the form

(
U V
0 W

)
with U of size (s + t + 2) × 2.

Empirically, all TGFSR(R) that we have found can be tempered into TGFSR which attains the
bounds by using Transform 1.

3.3 How to find parameters

In this section, a strategy to determine the bitmasks b and c is described. Take s and t satisfying
the condition stated after Transform 1. Experimentally, we could find b and c attaining the

7

bound if we choose t near �w/2�− 1 and s near t/2 (see Table 1). Now we fix such s and t, and
explain a way to find such b and c.

First set b := 0; c := 0. Assume that the converted sequence {zi} shows the optimal order
of equidistribution up to (v − 1)-bit accuracy in the sense of the Corollary 1. Now we shall
optimize the order of equidistribution to v-bit accuracy. The bits of b and c possibly affecting
the v-th bit of z are

b(v), c(v), b(v+t),

where b(v) denotes the v-th bit of b, etc. The easiest bit to control is c(v). This bit does not affect
more significant bits in z. Bit b(v) influences z(v−t) if v − t > 0 and c(v−t) = 1, and hence should
not be changed in this case. Bit b(v+t) does not affect more significant bits, but if c(v) = 0, then it
does not affect z(v). In summary, we may change the bitmasks under the following restrictions.

c(v) =

{
0 if v > w − t
(0, 1) otherwise,

b(v) =

0 if v > w − s
as it was if c(v−t) = 1 and v − t > 0
(0, 1) otherwise,

b(v+t) =

{
0 if v + t > w − s or c(v) = 0
(0, 1) otherwise.

By checking k(v) in each case, we determine these three bits. We use the backtracking technique
to find a parameter satisfying the bounds on k(v), v = 0, 1, . . . , w − 1.

Note that independence of some columns of P−1RjP , as in Theorem 1 (see also Definition 5),
is equivalent to that of RjP . Instead of using columns of RjP , it is somewhat easier to use rows
of tP tRj . The i-th row pi of tP is obtained by

y := ei ⊕ ((ei&c) >> t);

pi := y ⊕ ((y&b) >> s);

where ei is the i-th unit (row) vector. The transform x
→ xtR is obtained by xtR = shift left(x)⊕
q, where q is 0 or ew according to the parity of the number of 1s in x&a.

4 Practical generators and their tests

Table 1 lists some examples of TGFSR obtained by the method in §3.3. In the table, TT*** is ob-
tained by tempering T*** in the previous paper[9]. Hence tempering can easily be implemented
by adding two lines (9) to the original programs for T***. T800 is an original TGFSR(R) gen-
erator without tempering, used here for comparison. G607 is an asymptotically random GFSR
generator proposed in [11].

Observe that k(v) coincides with n�w/v� for the tempered TGFSR, which is the upper bound
given in the Corollary 1. Note also that any TGFSR satisfies k(v) ≥ n, as proven in [9].

8

Generator The order of equidistribution
ID Parameters k(1) k(2) k(3) k(4) k(5) k(6) k(7) k(8)

k(9) k(10) k(11) k(12) k(13) k(14) k(15) k(16)
k(17) k(18) k(19) k(20) k(21) k(22) k(23) k(24)
k(25) k(26) k(27) k(28) k(29) k(30) k(31) k(32)

TT400 (w,n, m) = (16, 25, 11) 400 200 125 100 75 50 50 50
a= A875 25 25 25 25 25 25 25 25

s=2, b= 6A68 * * * * * * * *
t=7, c= 7500 * * * * * * * *

TT403 (w,n, m) = (31, 13, 2) 403 195 130 91 78 65 52 39
a=6B5ECCF6 39 39 26 26 26 26 26 13

s=8, b=102D1200 13 13 13 13 13 13 13 13
t=14, c=66E50000 13 13 13 13 13 13 13 *

TT775 (w,n, m) = (31, 25, 8) 775 375 250 175 150 125 100 75
a= 6C6CB38C 75 75 50 50 50 50 50 25

s=6, b=1ABD5900 25 25 25 25 25 25 25 25
t=14, c=776A0000 25 25 25 25 25 25 25 25

TT800 (w,n, m) = (32, 25, 7) 800 400 250 200 150 125 100 100
a=8EBFD028 75 75 50 50 50 50 50 50

s=7, b=2B5B2500 25 25 25 25 25 25 25 25
t=15, c=DB8B0000 25 25 25 25 25 25 25 25

T800 (w,n, m) = (32, 25, 7) 800 25 25 25 25 25 25 25
a=8EBFD028 25 25 25 25 25 25 25 25

25 25 25 25 25 25 25 25
25 25 25 25 25 25 25 25

G607 (w,n, m) = (23, 607, 334) 607 303 202 151 121 101 86 75
(an asymptotically random GFSR 67 60 55 50 46 43 40 37

of 607 words[11]) 35 33 31 30 28 27 26 *
* * * * * * * *

Table 1∗. k-distribution of four tempered TGFSR(R), one plain TGFSR(R), and one GFSR

In Table 1, a, b, and c are written in hexadecimal. Thus, for example, the TT775 31-bit
pseudorandom-integer generators can be implemented as follows (C-like notations are used for
bit operations).

Define four integer constants n := 25, m := 8, s := 6, and t := 14, and three 32-bit integers
in the hexadecimal notation a := 6C6CB38C, b := 1ABD5900, and c := 776A0000.

Let x[n] be an array of n 32-bit integers, y be a 32-bit integer variable, and l be an integer
variable.

Step 1. l ← 0

Step 2. Set x[0], x[1], . . ., x[n − 1] to suitable nonzero initial values (with most significant bit
0).

Step 3. y ← x[l]⊕ ((x[l] << s)&b); y ← y ⊕ ((y << t)&c); output y.

Step 4. x[l]← x[(l + m) mod n]⊕ shiftright(x[l])⊕
{

0 if LSB of x[l]=0
a if LSB of x[l]=1,

Step 5. l ← (l + 1) mod n

Step 6. Goto Step 3.

∗If w = 31, the most significant bit is always zero in 32-bit words.

9

Statistical Tests.
To verify the improvement due to tempering, the following statistical tests, weight distribution

tests[9], are performed. These tests are designed for a statistical treatment of the deviation of
weights of trinomial-based m-sequences, which was pointed out by Fredricsson[1].

Using a randomly selected initial seed, we generate N×r uniformly distributed random num-
bers x1, x2, ..., xN×r ∈ [0, 1]. This sequence is divide into r pieces: y1 := (x1, x2, . . . , xN), y2 :=
(xN+1, xN+2, . . . , x2N), . . . , yr := (x(r−1)N+1, x(r−1)N+2, . . . , xrN). For each yi (1 ≤ i ≤ r), let Xi

be the number of components of yi greater than R, where R is a fixed constant 0 < R < 1.
The observations Xi (1 ≤ i ≤ r) are expected to conform to the binomial distribution: P (X =

k) =
(

N
k

)
RN−k(1− R)k. Then we compare the empirical distribution of these r observations to

the theoretical distribution in a goodness-of-fit test of hypothesis. To be precise, we divided the
interval [0, N] into eight intervals so that the probability of X falling in each interval is roughly
equal to each other. Then we count the number of Xi falling in each of eight categories, and get
the chi-square statistic[4].

The above procedure is iterated t times with randomly sampled initial seeds, and thus we
get t chi-square statistics, u1, u2, ..., ut. These {ui} (1 ≤ i ≤ t) are expected to conform to the
chi-square distribution with 7 degrees of freedom. Then we measure the difference between this
empirical distribution and chi-square distribution using Kolmogorov-Smirnov statistics. We get
two observations KS+ and KS−, which are expected to conform to the KS-distribution. We
denote by KS±(%) the corresponding percentile values, namely, KS+(%) (resp. KS−(%)) is
the probability that the random variable K+

t (resp. K−
t) will be KS+ (resp. KS−) or less (see

[4]).
Table 2 lists the results of the above test for various generators with R = 1/4, N = 256, r =

8192, t = 64. Since R = 1/4, only the most significant two bits are tested. This table shows
that the tempered TGFSR generators and LM ∗ , G607 † and G1563 ‡ are not rejected, while
the plain TGFSR(R) generators are rejected. The cpu-time consumed by each generators is also
listed. Tempering causes approximately ten percent loss in speed.

As a by-product of this test, we also calculate the third moment M3 of the r observations
{Xi (1 ≤ i ≤ r)}, t times. Then we get the mean value of M3 for these t values: [M3] =∑t

τ=1{M3}τ/t (about the deviation of M3 of trinomial GFSRs, see [7]). The theoretical value
is NR(1 − R)(2R − 1), which in this case is −24. The authors do not know the distribution
function of M3, and hence cannot perform a formal test of hypothesis. We can, however, clearly
distinguish two groups, one with the mean value within −24 ± 3 and the other with that less
than −40.

In addition to weight distribution tests with different parameters (R = 1/8, 1/3, 2/3, 3/4
etc.), we performed extensively two other types of tests, the run-test and the KS-test (for details,
see [9]) for various generators and these tempered TGFSR sequences always passed. However,
trinomial-based GFSR generators such as G607 and G1563 are rejected in the weight distribution
test with R = 1/2, N = 4096, r = 8192, t = 64, as shown in Table 3.

Table 2. The result of weight distribution test
with R = 1/4, N = 256, r = 8192, t = 64

∗ Lehmer’s congruential method, proposed by the authors[9]
† based on a primitive trinomial X607 + X273 + 1, proposed by Tootill[11]
‡ based on the recursion xn = xn−3p + xn−3q, where p = 521 and q = 32, proposed by Fushimi[2]

10

Generator T400 T403 T775 T800 TT400 TT403 TT775 TT800 LM G607 G1563
KS+(%) 100 100 100 100 91 54 32 4 84 81 79
KS−(%) 0 2 0 0 3 26 49 85 22 45 3

[M3] -44 -46 -46 -44 -27 -25 -23 -24 -22 -23 -23
cpu time (′′) 74 63 72 72 79 70 79 80 92 55 174

Table 3. The result of weight distribution test
with R = 1/2, N = 4096, r = 8192, t = 64

Generator T400 T403 T775 T800 TT400 TT403 TT775 TT800 LM G607 G1563
KS+(%) 80 37 57 39 80 18 18 26 3 100 100
KS−(%) 10 65 12 76 10 86 79 42 87 0 0

[M3] 41 40 102 -72 41 76 17 71 95 -5974 -2730

Remark 2. The generator G1563 was suggested by one of the referees as a more contemporary
serious competitor. We should emphasize that this generator is one of the trinomial-based
GFSRs, and any of them has a serious deviation in weights for N more than twice of the order
of recurrence, as deduced from the warnings in [7] and [1]. The characteristic polynomial of
G1563 has many terms, but it divides a trinomial of degree 1563 (which should be avoided
according to [7]), and the generating algorithm of G1563 shows that the criticizing argument in
[1] is again valid in this case.

Remark 3. Recently L’Ecuyer[5] tested some class of pseudorandom-number generators and
reported that a TGFSR sequence failed in one nearest-pair test. This result was possibly caused
by the linear relation between the consecutive three bits (see Proposition 1).

Acknowledgement. The authors would like to express their sincere gratitude to R. Couture,
who informed us of the simple proof of Theorem 1 and pointed out its equivalence to Theorem 2.
Thanks are also due to the anonymous referees for invaluable comments.

Appendix: a C-program.

Here is a C-program implementing the generator TT800. The function genrand() returns a
uniformly distributed real pseudorandom number (double precision) between 0 and 1. Note that
the initial seed (the initial value of x, a 25-dimensional array of 32-bit integers) can be chosen
arbitrarily except all-zero, and this makes the code shorter than that of GFSR generators (c.f.
the code in the appendix of [2]).

/* A C-program for TT800 */

#include <stdio.h>

#define N 25

#define M 7

double

genrand()

{

unsigned long y;

static int k = 0;

static unsigned long x[N]={ /* initial seeds: N=25 words */

0x95f24dab, 0x0b685215, 0xe76ccae7, 0xaf3ec239, 0x715fad23,

0x24a590ad, 0x69e4b5ef, 0xbf456141, 0x96bc1b7b, 0xa7bdf825,

0xc1de75b7, 0x8858a9c9, 0x2da87693, 0xb657f9dd, 0xffdc8a9f,

0x8121da71, 0x8b823ecb, 0x885d05f5, 0x4e20cd47, 0x5a9ad5d9,

0x512c0c03, 0xea857ccd, 0x4cc1d30f, 0x8891a8a1, 0xa6b7aadb

11

};

if (k==N) { /* generate N words at one time */

int kk;

for (kk=0;kk<N-M;kk++) {

if (x[kk] % 2 == 0) { x[kk] = x[kk+M] ^ (x[kk] >> 1); }

else { x[kk] = x[kk+M] ^ (x[kk] >> 1) ^ 0x8ebfd028; } /* a */

}

for (; kk<N;kk++) {

if (x[kk] % 2 == 0) { x[kk] = x[kk+(M-N)] ^ (x[kk] >> 1); }

else { x[kk] = x[kk+(M-N)] ^ (x[kk] >> 1) ^ 0x8ebfd028; } /* a */

}

k=0;

}

y = x[k++];

y ^= (y << 7) & 0x2b5b2500; /* s and b */

y ^= (y << 15) & 0xdb8b0000; /* t and c */

return((double) y / (unsigned long) 0xffffffff);

}

References

[1] Fredricsson, S. A. Pseudo-randomness Properties of Binary Shift Register Sequences. IEEE
Trans. Inform. Theory IT-21 (1975), 115–120.

[2] Fushimi, M. Random number generation with the recursion Xt = Xt−3p ⊕Xt−3q. J. Comp.
and Appl. Math. 31 (1990), 105–118.

[3] Fushimi, M. and Tezuka, S. The k-distribution of generalized feedback shift register pseu-
dorandom numbers. Commun. ACM 26(1983), 516–523.

[4] Knuth, D. E. The art of Computer Programming, Vol 2: Seminumerical Algorithms, 2nd
ed. Addison-Wesley, Reading, Mass., 1981.

[5] L’Ecuyer, P. Testing random number generators. Proceedings of the 1992 Winter Simulation
Conference, IEEE Press (1992), 305–313.

[6] L’Ecuyer, P. Uniform random number generation. Annals of Operations Research, to appear.

[7] Lindholm, J. H. An analysis of the pseudo-randomness properties of subsequences of long
m-sequences. IEEE Trans. Inform. Theory, IT-14(July 1968), 569–576.

[8] Marsaglia, G. and Zaman, A. A new class of random number generators. Annals of Applied
Probability 1(1991), 462–480.

[9] Matsumoto, M. and Kurita, Y. Twisted GFSR generators. ACM Trans. on Modelling and
Computer Simulation 2(1992), 179–194.

[10] Tezuka, S. A unified view of long-period random number generators. A manuscript.

[11] Tootill, J. P. R., Robinson, W. D. and Eagle, D. J. An asymptotically random Tausworthe
sequence. J. ACM 20, 3(July 1973), 469–481.

12

